Что такое весовая форма
Гравиметрия (химия)
Гравиметрия (весовой анализ) — метод количественного анализа в аналитической химии, который основан на изменении массы определяемого компонента, выделенном в виде веществ определённого состава.
Используется уравнение химической реакции типа: aX + bR = XaRb для получения осадка XaRb
При выполнении весовых определений определяемый компонент смеси, или составную часть (элемент, ион) вещества количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена (так называемая гравиметрическая форма, ранее она именовалась «весовая форма»). Состав этого соединения должен быть строго определённым, то есть точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей.
В гравиметрии используются различные неорганические и органические химические соединения. Так, например, 1,2,3-Бензотриазол применяется для гравиметрического определения металлов: меди, серебра, цинка и др.
Вершины своего развития весовой анализ достиг в 1950-е годы, когда ещё не было широкого применения спектральных и хроматографических методов.
В настоящее время он остаётся своеобразным эталоном, методической базой при разработке и аттестации других методов.
В гравиметрии есть три метода: отгонка, осаждение и выделение.
Гравиметрические методы применяют редко. Основное их достоинство — исключается построение калибровочных графиков (построение графика при анализе многокомпонентных смесей затруднительно, из-за невозможности приготовления стандартной смеси, точно моделирующей пробу, не зная заранее состава пробы). Гравиметрические методы применяют в качестве арбитражных при определении магния, натрия, кремнекислоты, сульфат-ионов, суммарного содержания нефтепродуктов, жиров. [1]
Содержание
Применение гравиметрического анализа
Методы гравиметрии
Метод осаждения
Поскольку осаждённое вещество может не соответствовать тому, что получается после прокаливания, различают осаждаемую и гравиметрическую форму осадка.
где CaC2O3 будет являться осаждаемой формой, так как при прокаливании он изменяет свой состав:
Метод выделения
Основан на выделении определяемого компонента из анализируемого вещества и его точном взвешивании. Например определение золы в твердом топливе.
Метод отгонки
В этом методе определяемый компонент выделяют в виде летучего соединения действием кислоты или высокой температуры. Возможны различные варианты этого метода:
Отбор средней пробы и ее подготовка к анализу
Способы отбора средних проб
Виды средних проб
Дальнейшая подготовка пробы состоит: в измельчении, перемешивании и уменьшении массы. Для этого используют метод квартования, которое повторяют многократно.
Взятие навески
Выбор величины навески
При слишком малой навеске ошибки во взвешивании и других операциях значительно снижают точность определения. Таким образом, выбор величины навески анализируемого вещества определяется массой осадка, наиболее удобной в работе. На бумажном фильтре диаметром 7 см можно легко отфильтровать 0,5 г кристаллического осадка (BaSO4, CaCO3, CaC2O3 и т. д.), но с такой же массой аморфного осадка (H2SiO3*nH2O, Fe(OH)3, Al(OH)3) работать трудно. Аналитической практикой установлено, что наиболее удобны в работе кристаллические осадки массой 0,4-0,5 г и объемистые аморфные осадки массой 0,1-0,3 г.
Учитывая эти нормы осадков и зная относительное содержание определяемого элемента в веществе, выбирают необходимую величину навески.
Иногда, выбирая навеску, учитывают необходимую точность определения и возможные потери из-за растворимости осадка. Выбор величины навески зависит ещё от метода, с помощью которого будет выполнятся анализ (макро, полумикро или микроанализ). При определениях, не связанных с получением осадка (изучение влажности, зольности) допустимы навески в 1-2 г, а иногда и больше.
Так как взвешивание на аналитических весах более длительное, приблизительную навеску берут сначала на техно-химических весах, а затем точно взвешивают на аналитических весах. Навески порошкообразных веществ удобно взвешивать в пробирке с пробкой. На часовом стекле взвешивают только те вещества, которые не выделяют паров и не поглощают вещества из окружающей среды, в противном случае вещество взвешивают в бюксе.
Техника взятия навески
Техника взятия навески может быть различна:
Такой способ более удобен в тех случаях, когда необходимо взять несколько навесок анализируемого вещества.
Растворение
Пробы труднорастворимых органических веществ разлагают двумя способами:
Что такое весовая форма
Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.
Весовая (гравиметрическая) форма— это соединение, в виде которого взвешивается определяемый элемент. К весовой форме предъявляются следующие требования:
— состав весовой формы должен точно соответствовать её химической формуле;
— весовая форма должна обладать химической устойчивостью к компонентам воздуха (пары воды, кислород, СО2 и т.д.) и продуктам сгорания фильтра;
— весовая форма должна быть термически устойчивой в широком интервале температур;
— желательно малое содержание определяемого элемента в весовой форме (по возможности минимальное значение гравиметрического фактора пересчета), чтобы погрешности в определении её массы в меньшей мере сказывались на результатах анализа
Весовую форму получают из формы осаждения либо высушиванием, либо прокаливанием осадка до постоянной массы. Условия перевода в гравиметрическую форму зависят от свойств осадка и его стабильности.
Высушивание в сушильном шкафу при 100-1150С используют для осадков, разлагающихся нестехиометрично при более высоких температурах. Обычно таким способом получают весовую форму при определении металлов с помощью органических реагентов-осадителей, например, при определении никеля с диметилглиоксимом (реактив Чугаева), или кобальта с α-нитрозо-β-нафтолом.Иногда применяют высушивание без нагревания путем последовательной промывки осадка водой, спиртом и эфиром и удаления следов эфира продувкой сухим воздухом. Таким способом высушивают легко разлагающийся осадок цинкуранилацетата натрия NaZn(UO2)3(CH3COO)9 при гравиметрическом определении натрия. Высушиванию подвергают осадки, полученные фильтрованием через доведенные до постоянной массы стеклянные фильтры. При высушивании состав осадка не меняется, а удаляется только внешняя (гигроскопическая) влага и легко летучие примеси, например, остаток органического растворителя реагента-осадителя.
Осадок (форма осаждения), полученный при фильтровании через бумажный беззольный фильтр, предварительно высушивают вместе с фильтром в сушильном шкафу при температуре около 1000С, а затем прокаливают. Для этого сухой фильтр с осадком помещают в предварительно прокаленный до постоянной массы и взвешенный тигель (фарфоровый, кварцевый, платиновый) и осторожно озоляют (обугливают) в пламени газовой горелки или на электрической плитке, следя за тем, чтобы фильтр не воспламенялся (во избежание потерь при сгорании фильтра). По окончании озоления тигель с осадком прокаливают в муфельной печи до постоянной массы при температуре, зависящей от природы осадка. Например, сульфат бария прокаливают при 700-9000С; при этом состав осадка не меняется, а удаляются только примеси. Температура прокаливания осадка не должна превышать 11000С, так как дальнейшее увеличение температуры может привести к разложению гравиметрической формы, например:
BaSO4®BaO+ SO3(> 13000C)
При прокаливании с осадком могут происходить химические превращения, приводящие к получению стабильной гравиметрической формы. Так, при определении железа гидратированная осаждаемая форма Fe(OH)3∙xН2О при прокаливании переходит в весовую форму Fe2O3, а двойная соль MgNH4PO4, осаждаемая в ходе определения магния, в устойчивый пирофосфат магния – Mg2P2O7.
Техника доведения пустого стеклянного фильтра и тигля для прокаливания, а также фильтра и тигля с осадком до постоянной массы изложена в разделе II настоящих методических указаний при описании выполнения лабораторных работ. По разности измеренных масс тигля (фильтра) с осадком и пустого тигля (фильтра) рассчитывают массу весовой формы, которую используют для расчета результатов гравиметрического анализа.
Лекция 41. Получение весовой (гравиметрической) формы
Ключевые слова: весовая (гравиметрическая) форма, высушивание, прокаливание, озоление.
— состав весовой формы должен точно соответствовать её химической формуле;
— весовая форма должна обладать химической устойчивостью к компонентам воздуха (пары воды, кислород, СО2 и т.д.) и продуктам сгорания фильтра;
— весовая форма должна быть термически устойчивой в широком интервале температур;
— желательно малое содержание определяемого компонента в весовой форме (по возможности минимальное значение гравиметрического фактора пересчета), чтобы погрешности в определении её массы в меньшей мере сказывались на результатах анализа.
Весовую форму получают из осаждаемой формы либо высушиванием, либо прокаливанием осадка до постоянной массы. Условия перевода в гравиметрическую форму зависят от свойств осадка и его стабильности.
Высушивание в сушильном шкафу при 100-115°С используют для осадков, разлагающихся нестехиометрично при более высоких температурах. Обычно таким способом получают весовую форму при определении металлов с помощью органических реагентов-осадителей, например при определении никеля с диметилглиоксимом (реактив Чугаева) или кобальта с α-нитрозо-β-нафтолом. Иногда применяют высушивание без нагревания путем последовательной промывки осадка водой, спиртом и эфиром и удаления следов эфира продувкой сухим воздухом. Таким способом, например, высушивают легко разлагающийся осадок цинкуранилацетата натрия NaZn(UO2)3(CH3COO)9 при гравиметрическом определении натрия. При высушивании состав осадка не меняется, а удаляется только внешняя (гигроскопическая) влага и легколетучие примеси, например остаток органического растворителя реагента-осадителя.
Если осаждаемую форму переводят в весовую прокаливанием, то осадок, полученный при фильтровании через бумажный обеззоленный фильтр, предварительно высушивают вместе с фильтром в сушильном шкафу при температуре 70-100°С, а затем прокаливают. Для этого сухой фильтр с осадком помещают в предварительно прокаленный до постоянной массы и взвешенный тигель (фарфоровый, кварцевый, платиновый) и осторожно озоляют(обугливают) в пламени газовой горелки или на электрической плитке, следя за тем, чтобы фильтр не воспламенялся (во избежание потерь при сгорании фильтра). По окончании озоления тигель с осадком прокаливают в муфельной печи до постоянной массы при температуре, зависящей от природы осадка. Например, сульфат бария прокаливают при 700-900°С; при этом состав осадка не меняется, а удаляются только примеси. Во время прокаливания сульфата бария сначала может частично произойти реакция восстановления его углеродом, образовавшимся во время обугливания фильтра:
Масса осадка при этом уменьшается. При дальнейшем прокаливании сульфид бария снова окисляется кислородом воздуха:
В результате весовая форма окажется такой же, как осаждаемая.
Температура прокаливания осадка сульфата бария не должна превышать 1100°С, так как дальнейшее увеличение температуры может привести к разложению гравиметрической формы, например:
При прокаливании с осадком могут происходить химические превращения, приводящие к получению стабильной гравиметрической формы. Так, при определении железа гидратированная осаждаемая форма Fe(OH)3∙xН2О при прокаливании переходит в весовую форму Fe2O3, при этом наряду с Fe2O3 частично может образоваться Fe3O4 (FeO∙Fe2O3), в этом случае по охлаждении образца необходимо добавить несколько капель концентрированной HNО3 и снова прокалить. Двойная соль MgNH4PO4, осаждаемая в ходе определения магния, переходит в устойчивый пирофосфат магния – Mg2P2O7. Еще более сложные превращения могут происходить с оксалатом кальция:
По разности измеренных масс тигля с осадком и пустого тигля рассчитывают массу весовой формы, которую используют для расчета результатов гравиметрического анализа.
Контрольные вопросы
1. Что такое весовая (гравиметрическая) форма? Каким требованиям она должна отвечать?
2. В каких случаях для получения весовой формы используют высушивание осаждаемой формы? Приведите примеры.
3. Как проводят прокаливание осаждаемой формы?
4. Какие изменения осаждаемой формы возможны при прокаливании осадка? Приведите примеры.
Список рекомендуемой литературы
С.Б. Денисова, О.И. Михайленко
Дата добавления: 2016-09-20 ; просмотров: 2728 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Гравиметрический (весовой) метод анализа. Характеристика
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Гравиметрический (весовой) метод анализа
Классическое название метода — весовой анализ. Гравиметрический анализ широко используют при количественных определениях. С его помощью определяют, например, содержание фосфора в фосфоритах, апатитах, фосфорных удобрениях, почвах, кормах и т. п.
1. Общая характеристика метода
Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента.
Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа, его характеристики: предел обнаружения — 0,10%; правильность – 0,2 отн.%; информативность — 17 бит. В гравиметрии используют реакции обмена, замещения, разложения и комплексообразования, а также электрохимические процессы. Наиболее распространен метод осаждения.
1. Метод осаждения – это метод, при котором навеску анализируемого вещества растворяют и прибавляют 1,5-кратный избыток реагента- осадителя, соблюдая необходимые условия осаждения. Полученный осадок называют осаждаемой формой. Осадок отделяют от раствора (чаще всего фильтрованием), промывают, затем высушивают или прокаливают, получая гравиметрическую (весовую) форму. Массу определяемого компонента mа рассчитывают по формуле:
где mа — масса высушенного или прокаленного осадка, г;
F — гравиметрический фактор, определяемый по химической формуле гравиметрической формы;
а — навеска анализируемого вещества, г.
Гравиметрические факторы, называемые также аналитическими множителями или факторами пересчета, вычисляют как отношение молекулярной массы определяемого компонента к молекулярной массе гравиметрической формы с учетом стехиометрических коэффициентов.
Пример. Вычислить гравиметрические факторы для следующих гравиметрических определений:
| Определяемый компонент | Al | Ca | CO2 | Ba |
| Гравиметрическая форма | Al2O3 | CaO | BaCO3 | BaSO4 |
Решение: F = ABa / MBaSO4= 137.4 / 233.4 = 0.5887
2. Методы выделения – основаны на выделении определяемого компонента из анализируемого вещества и точном взвешивании его. Например, при определении содержания золы в твердом топливе сжигают определенное количество (навеску) этого топлива, взвешивают золу и вычисляют процентное содержание ее во взятом образце.
3.Метод отгонки состоит в том, что определяемый компонент «количественно» выделяют в виде летучего соединения (газа, пара) действием кислоты, основания или высокой температуры на анализируемое вещество. Например, определяя, содержание двуокиси углерода в карбонатной породе, обрабатывают образец ее соляной кислотой. Выделившийся газ пропускают через поглотительные трубки со специальными реактивами. По увеличению массы поглотительной трубки определяют количество выделившегося CO2.
4.Термогравиметрия. Выполнение большинства операций гравиметрического анализа (фильтрование, высушивание и прокаливание осадка, доведение его до постоянной массы) отнимает очень много времени. Однако с помощью термовесов, сконструированных Дювалем, удается значительно ускорить определение. В этом приборе можно нагревать твердые вещества до температуры приблизительно 1000 0 C и наблюдать, как изменяется их масса. При этом прибор автоматически вычерчивает на бумаге кривую изменения массы вещества. Получающаяся ступенчатая кривая характеризует изменение массы осадка в процессе повышения температуры и даже позволяет судить о химических превращениях веществ.
Например, такая кривая показывает, что кристаллогидрат оксалата кальция CaC2O4•H2O устойчив лишь при температуре не выше 100 0 C. При повышении температуры до 226 0 C он разрушается с образованием безводной соли CaC2O4. Последняя при 420 0 C разлагается с получением карбоната кальция СаСО3. Далее при 660 0 C начинается распад карбоната на окись кальция и двуокись углерода. Этот процесс заканчивается при температуре 840 0 C.
2.Основные операции весового анализа
В ходе гравиметрического определения различают следующие операции: 1) отбор средней пробы вещества и подготовку ее к анализу; 2) взятие навески; 3) растворение; 4) осаждение определяемого элемента (с пробой на полноту осаждения); 5) фильтрование; 6) промывание осадка (с пробой на полноту промывания); 7) высушивание и прокаливание осадка; 8) взвешивание; 9) вычисление результатов анализа.
Отбор средней пробы. Аналитическое определение лишь тогда приводит к содержательным выводам, когда отобранная для анализа проба является представительной по отношению к исследуемому материалу.
В производстве бывает необходимо определить средний химический состав большой партии неоднородного материала (удобрения, ядохимиката, почвы, руды и т. п.). При этом подготовка вещества к анализу сводится к правильному отбору так называемой средней пробы. Правила отбора средних проб различных материалов предусмотрены государственными стандартами или техническими условиями. Выполнение этой операции всегда подчинено единому принципу: средняя проба должна быть составлена из большого числа мелких порций, взятых в разных местах анализируемого материала. Благодаря этому состав отобранной пробы приближается к среднему химическому составу большого количества исследуемого материала.
Перекристаллизация. В условиях исследовательской лаборатории часто требуется найти содержание какого-нибудь элемента в химически чистом соединении (например, содержание бария в хлориде барии ВаС12•2Н20). Здесь подготовка вещества к анализу состоит и очистке его от примесей и обычно осуществляется путем перекристаллизации для удаления примесей только из кристаллических веществ, например из солей.
Применительно к пробоотбору введены следующие количественные характеристики:
1. Рабочий диапазон. A=mi — диапазон количеств определяемого компонента i, к которым применима данная методика.
2. Диапазон количества пробы P=mi+mo — диапазон общих количеств пробы, состоящий из определяемого компонента (индекс i) и “матрицы” (индекс 0) — суммы остальных компонентов. В зависимости от требуемого для анализа количества пробы методики обычно классифицируют следующим образом:
3.Диапазон содержаний компонента
В зависимости от величины G компоненты пробы обычно называют следующим образом:



