Что такое весовое водоизмещение
§ 7. Весовые и объемные измерители судна
Каждое судно как физическое тело обладает определенным весом и объемом. Плавая на воде, оно занимает положение, определяемое осадкой, находящейся в прямои связи с его весом и объемом подводной части. Эти зависимости выражаются числовыми характеристиками, которые разделяются по признаку размерности на линейные (уже знакомые нам), на весовые и объемные измерители судна.
Весовое водоизмещение является главным весовым измерителем судна и слагается по статьям нагрузки из постоянного вес а (вес корпуса, механизмов, электрооборудования, устройств и т. п. ) и переменного вес а (топливо, запасы, экипаж, перевозимые грузы, пассажиры и пр.). Вес этих грузов точно учитывается при проектировании судна в специальном документе, который носит название весовой нагрузки судна и в соответствии с которым производятся все расчеты, связанные с определением качеств судна.
В зависимости от количества принимаемого переменного груза весовое водоизмещение может широко изменяться, вследствие чего возникает необходимость в установлении видов водоизмещения судна при различных состояниях его нагрузки. Для гражданских судов установлены следующие главные виды водоизмещения:
1) водоизмещение порожнем, равное весу готового к действию корабля, но без личного состава, боезапасов, снабжения, продовольствия и без запасов топлива, смазочных материалов и пресной воды;
2) стандартное водоизмещение, равное весу готового к действию корабля с личным составом и со всеми запасами, необходимыми в военное время, но без запасов топлива, смазочных материалов и котельной воды;
Объемное водоизмещение судна является основной характеристикой надводного судна и определяется объемом подводной части его корпуса. Оно прямо связано с весовым водоизмещением судна, так как по закону Архимеда всякое плавающее тело вытесняет объем воды, вес которой равен весу самого тела.
Объемное водоизмещение зависит от удельного веса воды (плотности воды). В пресной воде, удельный вес которой равен единице, весовое водоизмещение, выраженное в метрических тоннах, численно равно объемному водоизмещению в кубических метрах.
Определение объемного водоизмещения (объем погруженной части корпуса) производится одним из способов, указанных ниже.
Что такое весовое водоизмещение
Для изучения формы корпуса, оказывающей значительное влияние на навигационные качества судна, корпус принято рассекать тремя взаимно перпендикулярными плоскостями, которые называются главными плоскостями судна (рис.1а.), (рис.1б.), (рис.1в.).
Вертикальная продольная плоскость, делящая корпус судна на две симметричные части, называется диаметральной плоскостью.
Вертикальная поперечная плоскость, проходящая посередине расчетной длины корпуса судна и делящая его на носовую и кормовую части, называется плоскостью мидель-шпангоута.
Горизонтальная плоскость, совпадающая с поверхностью спокойной воды при плавании судна по расчетную осадку и делящая судно на подводную и надводную части, называется плоскостью конструктивной ватерлинии (КВЛ), или плоскостью грузовой ватерлинии (ГВЛ).
Важными характеристиками для оценки навигационных качеств корпуса судна являются коэффициенты полноты его обводов.
Судно может находиться в равновесии на воде при соблюдении двух условий: во-первых, сила веса судна с находящимся на нем грузом должна равняться силе водоизмещения и, во-вторых, сила веса и сила водоизмещения должны действовать по одной вертикали. Из второго условия вытекает, что центр величины судна должен быть расположен на одной вертикали с его центром тяжести.
Для того чтобы вычислить водоизмещение судна по его теоретическому чертежу, нужно определить объем подводной части корпуса. Корпус судна в большинстве случаев имеет криволинейные обводы. Поэтому точный объем подводной части корпуса, как правило, вычислить не удается. В теории корабля для определения объемного водоизмещения судна, а также для вычисления площадей криволинейных фигур чаще всего пользуются приближенным приемом, называемым правилом трапеций (рис.2.).
Для характеристики распределения сил водоизмещения по длине судна строят специальную эпюру, называемую строевой по шпангоутам (рис.4.).
Для построения этой эпюры горизонтальная линия, выраженная в принятом масштабе теоретическую длину судна, делится на n одинаковых частей, равных числу шпаций на теоретическом чертеже судна.
На перпендикулярах, восстановленных в точках деления, откладывают в определенном масштабе величины площадей погруженных частей соответствующих шпангоутов и концы этих отрезков соединяют плавной линией.
Площадь строевой по шпангоутам равна объему водоизмещения судна.
Так как центр величины судна находится в центре тяжести подводной части судна, а площадь строевой выражает собой объем подводной части, то абсцисса центра тяжести строевой по шпангоутам равна абсциссе центра величины судна.
Аналогичная эпюра, характеризующая распределение сил водоизмещения по высоте судна, называется строевой по ватерлинии (рис.5.).
Площадь строевой по ватерлиниям также равна объемному водоизмещению судна, а ордината ее центра тяжести определяет положение центра величины судна по его высоте.
Остойчивость судна
Наклонение судна может произойти под действием различных сил: давления ветра, давления воды на руль, перемещения груза на судне, приема или снятия части груза, натяжения буксирного троса и др.
Расчет остойчивости имеет своей целью установление условий безопасного плавания судна при действии на него перечисленных сил.
Для примера рассмотрим условия плавания судна, получившего крен или дифферент под действием каких-то внешних сил, не изменивших общего веса судна, например, сил давления ветра (рис.6.), (рис.7.). Будем считать, что все грузы на судне закреплены и на нем не имеется жидких и сыпучих грузов.
Определение местоположения центра тяжести, центра величины и метацентра судна
Местоположение различных точек судна рассматривается в системе координатных осей, показанных на (рис.10а.) и (рис.10б.).
За начало координатных осей принимается точка пересечения диаметральной плоскости, плоскости мидель-шпангоута и основной плоскости, проходящей параллельно конструктивной ватерлинии на глубине, равной осадке судна.
Изменение остойчивости судна под действием вертикальных сил
При проектировании и эксплуатации лесосплавных судов, а также разнообразных машин и механизмов на плавучих основаниях возникает необходимость решения ряда практических задач, связанных с расчетом остойчивости судна.
Покажем три наиболее характерных случая, когда линия действия вертикальной силы проходит через центр тяжести судна, линия действия вертикальной силы расположена в диаметральной плоскости и линия действия вертикальной силы расположена в плоскости мидель-шпангоута.
1. Линия действия вертикальной силы проходит через центр тяжести судна
2. Линия действия вертикальной силы расположена в диаметральной плоскости судна
Под действием силы P1 судно получит дополнительную осадку, что вызовет изменение метацентрических высот. Новое значение большой метацентрической высоты судна H определяется по формеуле представленной ранее.
3. Линия действия вертикальной силы расположена в плоскости мидель-шпангоута
Рассуждая таким же образом, как и при решении предыдущей задачи, рассмотрим отдельно действие на судно силы P1 и пары сил P и P2 (рис.13.).
ГЛАВА 3 Эксплуатационные и мореходные качества судна
В предыдущей главе, говоря о главных размерениях судна, мы коснулись их влияния на эксплуатационные, навигационные (мореходные) и маневренные качества судна. Рассмотрим эти качества поподробнее.
Из существующих эксплуатационных качеств к наиболее характерным для маломерного судна следует отнести: водоизмещение, вместимость, грузоподъемность, пассажировместимость и скорость.
Водоизмещение
Различают два вида водоизмещения массовое (весовое) и объемное.
Массовое (весовое) водоизмещение это масса находящегося на плаву судна, равная массе вытесненной судном воды. Единицей измерения служит тонна. Учитывая, что вес судна является величиной переменной, в практике используют два понятия:
Водоизмещение с полным грузом (D), равное суммарной массе корпуса, его механизмов, устройств, груза, судовых запасов, экипажа и пассажиров при наибольшей допустимой осадке и
Водоизмещение порожнем (Do), в этом случае не учитывается масса груза, экипажа и пассажиров, топлива и других запасов.
Ещё один термин, касающийся водоизмещения объёмное водоизмещение (V) это объем подводной части судна в м3.
Расчет производится через главные размерения: V = SLBT, где V – объемное водоизмещение, L, В, Т – соответственно длина, ширина, осадка судна, а S коэффициент полноты водоизмещения, выражающий отношение объемного водоизмещения судна к объему параллелепипеда со сторонами, равными длине, ширине и осадке судна. Для маломерных судов он равен 0,35 0,6, причем меньшее значение коэффициента присуще для небольших судов с острыми обводами.
Для водоизмещающих катеров S = 0,4 0,55, глиссирующих S = 0,45 0,6, моторных лодок S = 0,35 0,5, для парусных судов этот коэффициент колеблется от 0,15 до 0,4.
Как известно по закону Архимеда любое плавающее тело вытесняет объем воды, масса которой равна массе этого тела. Применительно к судну, можно связать оба вида водоизмещения формулой: D =?V
При одинаковом весовом водоизмещении объемное водоизмещение в пресной воде больше, чем в соленой, так как морская вода имеет большую плотность, а следовательно, и вес.
Вместимость. Под валовой вместимостью понимается полный объем всех помещений судна, кроме объемов рулевой рубки, камбуза и туалета. Вместимость измеряется в м3. Чтобы получить валовую вместимость в регистровых тоннах необходимо полученную величину в м3 разделить на 2,83.
регистровая тонна (р.т.) единица объёма равная 2,83 куб.м., или, что то же самое, 100 куб. футов, служит для обмера судов по регистровому тоннажу.
Для справки: регистровая тонна принята всеми государствами для расчёта валовой вместимости судна в целях возможности ведения единой статистики мирового тоннажа плавающих судов, а также для взимания различных сборов за пользование причалами, проходы через каналы, оплату лоцманам и т.д. Величина одной регистровой тонны была подсчитана, когда впервые в 19 веке, при введении обмера судов по новой единой системе, общую вместимость мирового флота (морского), составлявшего тогда 363 412 500 кубических футов, разделили на его суммарную грузоподъёмность, равнявшуюся тогда 3 700 000 тонн. В результате получилось, что, в среднем, на одну тонну грузоподъёмности приходится объём равный 98,2 кубических фута. Эту величину округлили до 100 куб. футов, что и составило 2,83 кубических метров.
Для приближенного расчета валового объема судна без надстроек можно использовать формулу:
V=S1 х Lнб х Внб х н, где:
S1 коэффициент полноты валового объема; Lнб и Внб наибольшие длина и ширина, м.,
Н высота борта в середине судна, измеренная от внутренней поверхности обшивки у киля до уровня планширя (вм).
Для водоизмещающих катеров S1 = 0,55-0,65, глиссирующих S1 = 0,6 0,8, мотолодок S1 = 0,45 0,55, для парусных судов 0,5 0,8.
Пассажировместимость
Под пассажировместимостью понимается количество людей, разрешенное к размещению на судне в данных условиях плавания.
Пассажировместимость зависит от грузоподъемности:
n=G/100, чел (с багажом)
n=G/75, чел (без багажа)
При этом округление полученного результата производится до меньшего целого числа. На маломерном судне наличие оборудованных сидячих мест должно соответствовать установленной для данного судна пассажировместимости.
Пассажировместимость ориентировочно можно рассчитать по формуле:
N=(LhбxBhб)/K человек, где Кэмпирический коэффициент, принимаемый равным:
для моторных и гребных лодок 1,60;
Скорость
Что такое скорость (V) мы все знаем со школьной скамьи, как и формулу её вычисления: V = S/t, где V скорость, S пройденный путь, a t затраченное на это время. Судоводителю маломерного судна рекомендуется знать три скорости: наибольшую (максимальную), которую судно развивает при максимальной мощности двигателя; наименьшую (минимальную), при которой судно слушается руля; среднюю (или крейсерскую) наиболее экономную при сравнительно больших переходах.
На морских судах скорость измеряется в узлах (миля в час), а на судах внутреннего плавания в километрах в час (км/ч).
1 км/час – 0,54 узла – 16,6667 м/мин – 0,2778 м/сек
1 м/сек – 3,6 км/час – 60 м/мин – 1,9438 узла.
Автономность и дальность плавания
К эксплуатационным качествам судна можно отнести такие как автономность и дальность плавания.
Во время эксплуатации судна расходуются топливо, питьевая вода, продукты и другие судовые запасы. Способность судна находиться в течение определенного времени в плавании без пополнения запасов называется автономностью плавания. Автономность плавания измеряется, как правило, в сутках и зависит от типа судна и характера его эксплуатации. При этом для маломерных судов автономность плавания колеблется в значительных временных пределах, т.к. на моторной лодке или катере уже через несколько часов движения запасы топлива могут быть израсходованы и без их пополнения дальнейшее плавание невозможно.
Под понятием дальность плавания для маломерного судна целесообразно считать расстояние, которое судно способно пройти, использовав полностью максимальный запас топлива.
Способность судна держаться на плаву, не переворачиваться и идти ко дну при затоплении характеризуется его мореходными качествами.
К ним относятся: плавучесть, остойчивость и непотопляемость.
Плавучесть
Плавучесть – способность судна плавать при заданной осадке, имея на борту заданное количество людей и груза.
На судно, находящееся на спокойной воде, постоянно действуют две силы: сила тяжести (веса) и сила поддержания (выталкивания). Судно держится на плаву благодаря тому, что силы тяжести, направленные вниз (ко дну), уравновешиваются выталкивающими силами воды, которые возникают в результате гидростатического давления на корпус судна.
Рис. 8 Статические силы, действующие на судно в состоянии покоя
Равнодействующая сил тяжести судна (D), которое находится на ровном киле (рис. 8), приложена в точке, которая называется центром тяжести (ЦТ), а точка приложения равнодействующей выталкивающих сил (сила поддержания С) называется центром величины (ЦВ).
Чтобы судно находилось в равновесии, силы тяжести и поддержания должны быть равны по величине, и направлены в противоположные стороны по одной вертикали, проходящей посередине вдоль судна – диаметральной плоскости (ДП). Если в какой-либо момент эти точки расположатся иначе, то судно будет получать крен и дифферент до тех пор, пока обе точки не расположатся на одной отвесной линии.
Изменяя расположение грузов на судне и перемещая людей, можно изменить положение центра тяжести, что очень существенно для маломерного судна. Несимметричное случайное перемещение центра тяжести создает крен и дифферент, которые плохо отражаются на управлении судном. Но иногда специально создаваемый дифферент улучшает маневренные качества судна, например, его поворотливость, ходкость. В случае течи в корпусе или пробоины, а также попадания воды во время штормовой погоды внутрь судна, увеличивается его масса.
Поэтому судно должно иметь запас плавучести – непроницаемый (для воды) объем корпуса судна, находящийся выше действующей ватерлинии. При отсутствии запаса плавучести судно затонет.
Необходимый для безопасного плавания судна запас плавучести обеспечивается приданием судну в процессе проектирования достаточной высоты надводного борта, а также наличия водонепроницаемых закрытий и переборок между отсеками. При отсутствии таких переборок любая пробоина подводной части корпуса (если нет возможности ее заделать) приводит к полной потере запаса плавучести и гибели судна.
Запас плавучести зависит от высоты надводного борта – чем выше надводный борт, тем больше запас плавучести. Этот запас нормируется минимальной высотой надводного борта, в зависимости от величины которой, для конкретного маломерного судна устанавливаются район плавания и допустимое удаление от берега. Однако следует знать, что чрезмерное произвольное) увеличение высоты надводного борта отрицательно влияет на не менее важное другое качество судна – остойчивость.
Остойчивость
остойчивостью называется способность судна, выведенного из положения нормального равновесия какимилибо внешними силами, возвращаться в свое первоначальное положение после прекращения действия этих сил. К внешним силам, способным вывести судно из положения нормального равновесия, относятся ветер, волны, перемещение грузов и людей, а также центробежные силы и моменты, возникающие при поворотах судна. Судоводитель обязан знать особенности своего судна и правильно их оценивать. Если силы, вызывающие наклонение судна, действуют медленно, то остойчивость называют статической, а если быстро, то динамической.
Как судно реагирует на нарушение равновесия, вызванное ветром и волнами, зависит от положения метацентра по отношению к центру тяжести. Подводная часть судна изменяет при наклонении вокруг продольной оси свою форму. Вследствие этого точка приложения силы поддержания (центр водоизмещения или величины) из своего начального положения перемещается к погруженной стороне в новое положение, соответствующее углу наклона (крена). При этом новое и первоначальное направления действия выталкивающей силы пересекаются в так называемом «воображаемом метацентре». Истинным метацентром является точка пересечения двух соседних направлений выталкивающей силы. Эта точка при малых углах крена (примерно до 10°) лежит в диаметральной плоскости жания вертикально плавающего судна; при большем угле наклона она находится вне диаметральной плоскости судна на так называемой эволюте. Метацентр это точка, вокруг которой свободно плавающее тело совершает маятниковые колебания. Момент остойчивости спрямляет судно до тех пор, пока центр тяжести при малых углах наклона лежит ниже истинного метацентра и при больших углах наклона ниже воображаемого метацентра, т. е. пока имеется устойчивое равновесие. Если метацентр лежит ниже, то равновесие неустойчиво, т. е. создается момент, который предотвращает возвращение судна в положение равновесия. При совпадении метацентра и центра тяжести равновесие безразличное; не возникает никаких моментов, которые прекращают или поддерживают наклонения.Таким образом, поперечная остойчивость зависит от положения центра тяжести по отношению к истинному или воображаемому метацентру. Расстояние между метацентром и центром тяжести (метацентрическая высота) является, следовательно, мерой способности судна к выпрямлению при нарушающих равновесие воздействиях ветра, волн и несимметричной загрузки.
Момент остойчивости при наклонении судна вокруг продольной оси определяется весом судна, положением центра тяжести и метацентра, а также углом крена. Если у судна в грузу и у судна порожнем метацентрические высоты равны, то сначала, до входа кромки палубы в воду или оголения скулы, нагруженное судно будет более устойчиво против внешних влияний, чем порожнее и, следовательно, более легкое судно. Кроме того, естественно, что судно с тяжелым палубным грузом, у которого общий центр тяжести лежит выше, менее остойчиво, чем судно, у которого тяжелый груз лежит на дне и центр тяжести смещен вниз.
Положение метацентра в большой мере зависит от формы судна, а также от угла крена. Решающую роль играют при этом ширина, высота борта и осадка судна. Если представить себе два судна с различной шириной при крене в 10°, ясно, что для наклонения более широкого судна требуются большие кренящие силы, чем для наклонения узкого; это видно также по входящему в воду и выходящему из воды клинообразному объему. У широкого судна входящий в воду и выходящий из воды объемы, а также путь их перемещения (плечо) больше, чем у более узкого судна. Соответственно различны и перемещения точки приложения выталкивающей силы. Понятно, что у широкого судна метацентр расположен над ватерлинией выше, чем у узкого. Широкое судно, таким образом, более остойчиво, чем узкое.
С другой стороны, если при большем крене кромка палубы входит в воду, а скула оголяется, то путь перемещения вошедшего в воду и вышедшего из нее объемов меньше; следовательно, линия действия подъемной силы проходит через точку приложения выталкивающей силы и пересекает диаметральную плоскость первоначальное направление действия выталкивающей силы в более низкой точке, так что воображаемый метацентр смещается вниз, т. е. ближе к центру тяжести судна. Таким образом, остойчивость при погружении кромки палубы и при выходе скулы уменьшается. Но так как погружение кромки палубы зависит от высоты борта судна над ватерлинией (надводного борта), а выход скулы от осадки судна, то оба эти размеренна в значительной мере определяют поперечную остойчивость судна при больших углах наклонения. Улучшает остойчивость низкое расположение двигателя, топливного бака, сидений и соответствующее размещение грузов и людей.
При шквальном ветре, сильном ударе волны о борт и в некоторых других случаях крен судна увеличивается быстро и возникает динамический кренящий момент. В этом случае крен судна будет увеличиваться и после достижения равенства кренящего и восстанавливающего моментов. Это происходит из-за действия силы инерции. Обычно такой крен в два раза больше крена от статического действия такого же кренящего момента. Поэтому плавание в штормовую погоду, особенно маломерных судов, очень опасно.
Поперечная остойчивость судна на волнении (Рис. 10)
Рис. 10 Поперечная остойчивость судна на волнении
а – судно на спокойной воде,
b – судно на вершине волны,
с – судно на подошве волны
У судов на вершине волны, при условии равенства длин и скоростей судна и волны, создаются особенно неблагоприятные условия для сохранения остойчивости, если волны набегают с кормы. Более благоприятные условия, чем при спокойной воде, возникают, если средняя часть судна находится на подошве, а оконечности на вершинах волн. Пассажирские суда для обеспечения безопасности пассажиров и экипажа должны разделяться по длине водонепроницаемыми стенками переборками таким образом, чтобы при возникновении течи в одном или нескольких отсеках судно сохраняло плавучесть и остойчивость. Если судно при аварии получит течь, вода будет проникать в получившие пробоины отсеки до тех пор, пока уровень воды внутри и снаружи не сравняется. При этом судно погружается глубже в той или иной степени в зависимости от положения затопленных отсеков меняет угол дифферента, и остойчивость его уменьшается.
Продольная остойчивость судна (Рис. 11)
Рис.11 Продольная остойчивость судна
При наклонениях судна вокруг поперечной оси имеют место те же явления, что и при крене. Мера остойчивости вокруг попе речной оси, однако, значительно больше, чем вокруг продольной. Это объясняется величиной входящего в воду и выходящего из воды объемов, а также пути их перемещения. Поэтому перенос грузов в продольном направлении судна не имеет такого большого значения, как перенос в поперечном, и углы дифферента при волнении значительно меньше, чем углы крена.
От дифферента зависят скорость судна и его маневренность. Угол дифферента выбирается не произвольно большим, а поддерживается в определенных границах путем соответствующего распределения груза. Как правило, суда ходят на ровном киле или с легким дифферентом на корму.
У полностью погруженных плавающих тел подводных лодок устойчивое равновесие вокруг продольной и поперечной осей возможно только тогда, когда центр тяжести лежит ниже центра водоизмещения. При этом момент остойчивости вокруг всех осей одинаков, так как у полностью погруженных в воду тел при любом наклоне не возникает изменений формы вытесняющего объема и, следовательно, не может быть смещения центра водоизмещения.
На волнении форма вытесняющего объема постоянно изменяется, а вместе с ней изменяются положение точки приложения выталкивающей силы и, следовательно, расстояние между метацентром и центром тяжести. Когда вершина волны проходит под серединой судна, метацентр лежит значительно ниже, чем при спокойной воде, и, кроме того, кромка палубы при крене погружается раньше, так что угол заката диаграммы статической остойчивости и максимальное плечо уменьшаются.
Аварийное судно (Рис. 12)
Рис. 12 Аварийное судно
И в заключение этой, достаточно сложной (особенно для «гуманитариев») части, ещё раз о факторах, влияющих на остойчивость судна:
• На остойчивость судна наиболее ощутимо влияет его ширина: чем больше она по отношению к его длине, высоте борта и осадке, тем выше остойчивость. У более широкого судна больше восстанавливающий момент.
• Остойчивость небольшого судна повышается, если изменить форму погруженной части корпуса при больших углах крена.
• На этом утверждении, например, основано действие пенопластового привального бруса, который при погружении в воду создаёт дополнительный восстанавливающий момент.
• Остойчивость ухудшается при наличии на судне топливных баков с зеркалом поверхности от борта до борта, поэтому эти баки должны иметь перегородки, установленные параллельно диаметральной плоскости судна, или быть сужены в своей верхней части.
• На остойчивость наиболее сильно влияет размещение на судне пассажиров и грузов, их следует располагать как можно ниже. Нельзя допускать на судне малых размеров во время его движения сидение людей на борту и их произвольное перемещение. Грузы должны быть надежно закреплены, чтобы исключить их неожиданное смещение со штатных мест.
• При сильном ветре и волнении действие кренящего момента (особенно динамического) очень опасно для судна, поэтому с ухудшением погодных условий необходимо отвести судно в укрытие и переждать непогоду. Если этого сделать невозможно из-за значительного расстояния до берега, то в штормовых условиях нужно стараться держать судно «носом на ветер», выбросив плавучий якорь и работая двигателем на малом ходу.
Непотопляемость
Непотопляемостью судна называется его способность держаться на воде, сохраняя свои мореходные (навигационные) качества, несмотря на поступление воды в один или несколько отсеков корпуса судна через борт или через повреждения в обшивке корпуса. Непотопляемость обеспечивается устройствами, не пропускающими в корпус воду, в том числе водонепроницаемой палубой, фальшбортом, ветровым стеклом, ограждениями вокруг кокпитов, комингсов и другими подобными мерами. Непотопляемость в случае повреждений обеспечивается достаточным запасом плавучести, созданным за счет разделения корпуса судна водонепроницаемыми переборками на ряд обособленных отсеков или с помощью других устройств. Судно, оборудованное водонепроницаемыми переборками, должно оставаться на плаву при затоплении одного любого отсека. Маломерное судно без переборок, получив пробоину, также при поступлении воды в корпус должно не только оставаться на плаву, но и иметь избыточный запас плавучести, предназначенный для того, чтобы пассажиры, находясь в воде, могли держаться за корпус аварийного судна.
Незатапливаемые объемы корпуса чаще всего представляют собой блоки из «плавучих» материалов с малым удельным весом (пенопласта и т. д.), воздушных ящиков и др. пенопласта. Необходимое его количество и расположение рассчитываются для обеспечения аварийного запаса плавучести и поддержания аварийного судна в положении «на ровном киле».
Объем воздушных ящиков, пенопласта и т. п. рекомендуется иметь (1/8 1/12)LBH м 3 в зависимости от назначения района плавания. Этот объем должен обеспечивать поддержание на плаву затопленного судна при наличии 1—2 человек и сохранении положительной остойчивости.
На маломерных судах носовая часть судна принимает наибольшее количество ударов и наиболее подвержена повреждениям. Поэтому для обеспечения непотопляемости эффективна установка первой от форштевня водонепроницаемой поперечной переборки. Эти переборки на маломерных судах обычно устанавливают на расстоянии одной-двух шпаций от форштевня, но не менее 0,5 В. Суда со стационарным двигателем имеют водонепроницаемые переборки, ограждающие двигатель, как с носа, так и с кормы. Эти переборки не позволяют воде переливаться из отсека в отсек и тем предотвращают перегрузку носа или кормы при дифференте.
Непотопляемость мелких судов, не имеющих водонепроницаемых переборок, в том числе спасательных шлюпок, даже в случае полного их затопления водой обеспечивается устройством герметических воздушных ящиков. Общий объем воздушных ящиков на маломерных деревянных судах должен быть не менее 1/10 объема судна. На металлических судах для обеспечения достаточной плавучести потребуется больший объем воздушных ящиков.
Данный текст является ознакомительным фрагментом.