Что такое входное сопротивление
Электроника
учебно-справочное пособие
Входное и выходное сопротивление
Все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и т.д. Например, (рис. 1) состоит из двух блоков.
На рисунке 1 в левом блоке мы получаем постоянное напряжение, а в правом блоке его стабилизируем (рис. 2).
Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.
На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.
Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением.
Входное сопротивление
Как и полагается, этот блок используется в каком-нибудь радиоэлектронном устройстве и выполняет какую-либо функцию. Значит, на его вход будет подаваться какое-то входное напряжение Uвх от другого блока или от источника питания, а на его выходе появится напряжение Uвых (или не появится, если блок является конечным).
Но раз уж мы подаем напряжение на вход (входное напряжение Uвх), следовательно, у нас этот блок будет потреблять какую-то силу тока Iвх.
Значит, сила тока у нас зависит от напряжения и от сопротивления. Предположим, что напряжение у нас не меняется, следовательно, сила тока в цепи будет зависеть от. СОПРОТИВЛЕНИЯ. Но где нам его найти? А прячется оно в самом каскаде и называется входным сопротивлением.
То есть, разобрав такой блок, внутри него мы можем найти этот резистор? Конечно же нет. Он является своего рода сопротивлением радиоэлементов, соединенных по схеме этого блока.
Измерение входного сопротивления
Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?
Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.
Мы с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).
Падение напряжения на резисторе R обозначим, как
Из всего этого получаем.
Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!
Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление Rвх=1 МОм, а резистор взяли R = 1 КОм. Пусть генератор выдает постоянное напряжение U=10 В. В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.
Рассчитываем силу тока в цепи в амперах:
Получается, что падение напряжения на сопротивлении R в вольтах будет:
Грубо говоря 0,01 В. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем мультиметре.
Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также очень большого номинала. В этом случае работает правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.
Давайте теперь на практике попробуем замерить входное сопротивление какого-либо устройства. Итак, выставляем на блоке питания рабочее напряжение этого транзистор-метра, то есть 9 В, и во включенном состоянии замеряем потребляемую силу тока. По схеме все это будет выглядеть вот так:
Итак, у нас получилось 22,5 миллиАмпер.
Теперь, зная значение потребляемого тока, можно найти по этой формуле входное сопротивление:
Выходное сопротивление
Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогеновую лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:
И как только подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.
У всех аккумуляторов есть это внутреннее сопротивление r, и «цепляется» оно последовательно с источником ЭДС ( Е ).
Выходным сопротивлением обладают все источники питания. Это может быть блок питания, генератор частоты, либо вообще какой-нибудь усилитель.
В теореме Тевенина говорилось, что любую цепь, которая имеет две клеммы и содержит в себе много различных источников ЭДС и резисторов разного номинала можно привести к источнику ЭДС с каким-то значением напряжения ( Eэкв ) и с каким-то внутренним сопротивлением ( Rэкв ).
Eэкв — эквивалентный источник ЭДС
Rэкв — эквивалентное сопротивление
То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же выходное сопротивление.
В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что
Есть другой, более безопасный способ. Не буду повторяться, просто скопирую со статьи закон Ома для полной цепи, где мы находили внутреннее сопротивление аккумулятора. В той статье, мы к акуму цепляли галогеновую лампочку, которая была нагрузкой R. В результате по цепи шел электрический ток. На лампочке и на внутреннем сопротивлении у нас падало напряжение, сумма которых равнялась ЭДС.
Итак, для начала замеряем напряжение на аккумуляторе без лампочки (рис. 17).
Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае E = 12,09 В.
Как только мы цепанули нагрузку, то у нас сразу же упало напряжение на внутреннем резисторе и на нагрузке, в данном случае на лампочке:
Сейчас на нагрузке (на галогенке) у нас упало напряжение
следовательно, на внутреннем резисторе падение напряжения составило
Сила тока в цепи равняется I =4,35 Ампер. ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи вычисляем, чему у нас будет равняться внутреннее сопротивление r:
Выводы
Входное и выходное сопротивление каскадов (блоков) в электронике играют очень важную роль при согласовании узлов радиоэлектронных схем. Все качественные вольтметры и осциллографы также стараются делать с очень высоким входным сопротивлением, чтобы оно меньше сказывалось на замеряемый сигнал и не гасило его амплитуду.
С выходным сопротивлением все намного интереснее. Когда мы подключаем низкоомную нагрузку, то чем больше внутреннее сопротивление, тем больше напряжение падает на внутреннем сопротивлении. То есть в нагрузку будет отдаваться меньшее напряжение, так как разница осядет на внутреннем резисторе. Поэтому, качественные источники питания, типа блока питания либо генератора частоты, пытаются делать как можно с меньшим выходным сопротивлением, чтобы напряжение на выходе «не проседало» при подключении низкоомной нагрузки. Даже если сильно просядет, то мы можем вручную подкорректировать с помощью регулировки выходного напряжения, которые есть в каждом нормальном источнике питания. В некоторых источниках это делается уже автоматически.
Источники:
Электроника © ЦДЮТТ • Марсель Арасланов • 2019
Операционный усилитель
Что такое операционный усилитель
Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.
Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!
Обозначение на схеме операционного усилителя
На схемах операционный усилитель обозначается вот так:
Чаще всего ОУ на схемах обозначаются без выводов питания
Итак, далее по классике, слева два входа, а справа – выход.
Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.
Питание операционных усилителей
Давайте представим себе батарейку
Думаю, все вы в курсе, что у батарейки есть «плюс» и есть «минус». В этом случае «минус» батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.
А давайте возьмем еще одну такую батарейку и соединим их последовательно:
Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.
А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?
Вот здесь мы как раз и получили двухполярное питание.
Идеальная и реальная модель операционного усилителя
Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.
1) Входное сопротивление идеального ОУ бесконечно большое.
В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения — несколько МОм.
2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.
На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.
3) Выходное сопротивление идеального ОУ равняется нулю.
Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.
4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.
5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.
6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).
Схема простейшего ОУ на транзисторах выглядит примерно вот так:
Принцип работы операционного усилителя
Давайте рассмотрим, как работает ОУ
Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.
Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
Что будет на выходе ОУ, если на обоих входах будет ноль вольт?
Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.
А что покажет Falstad? Ноль Вольт.
Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.
Смотрим, что имеем на виртуальном осциллографе:
Скорость нарастания выходного напряжения
Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых .
Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.
Также смотрите видео «Что такое операционный усилитель (ОУ) и как он работает»
Термин: Сопротивление входное
Под входным сопротивлением прибора (устройства) понимают сопротивление RВХ его входной цепи при пропускании через эту цепь тока Iвх.
При простой модели входного сопротивления по постоянному току RВХ представляют как величину активного сопротивления. В более сложной модели при работе на переменном токе RВХ представляют как величину импеданса на определённой частоте сигнала. Эти вопросы относятся к построению эквивалентной схемы входной цепи прибора (устройства).
Если специально не оговаривается, то величина входного сопротивления приводится для рабочего диапазона сигнала для данного входа при нормальной температуре окружающей среды. При превышении рабочего диапазона сигнала входное сопротивление может отличаться от входного сопротивления в рабочем диапазоне сигнала и даже можнет стать нелинейным из-за наличия во входной цепи защитных элементов ограничения напряжения. В выключенном (обесточенном) состоянии прибора входное сопротивление может резко отличаться от входного сопротивления в рабочем режиме.
Для приборов с входным коммутатором каналов входное сопротивление всегда нормируется для одноканального режима, при котором коммутационный процесс отсутствует. Это связано с тем, что коммутационный процесс вносит в цепь измерения динамический заряд коммутатора в момент переключения и тем самым усложняет саму модель входа такого прибора, в результате чего оценивать его по критерию «входное сопротивление» становится некорректно.
У приборов с входом напряжения входное сопротивление относительно высокое, поскольку данный вход параллельно подключают к цепи измерения.
У приборов с входом тока входное сопротивление относительно низкое, поскольку требуется последовательно включать такой прибор в цепь измерения.
Для усилителей заряда 1-го типа, преобразующих составляющую напряжения заряда, вход заряда имеет очень высокое входное сопротивление в режиме измерения.
Для усилителей заряда 2-го типа, преобразующих переменный заряд путём пропускания тока цепи заряда через вход (например, как у LE-41), вход имеет низкое входное сопротивление.
Для дифференциального входа применяется понятие входного сопротивления как для дифференциальной цепи X, Y (при условии соблюдения синфазного диапазона сигнала относительно AGND), так и для цепи синфазного сигнала при соединённых вместе входах X и Y (относительно AGND).
Измерить входное сопротивление можно методом вольтметра − амперметра, контролируя напряжение и ток в цепи входа и вычисляя сопротивление по закону Ома для участка цепи. Но более точное измерение входного сопротивление прибора получается по двум измерениям для разных напряжений U1 и U2 и соответствующим измеренным токам I1 и I2; в этом случае входное сопротивление вычисляется по формуле:
Напоследок – лирическое отступление о философском смысле, связанном с понятием входного сопротивления прибора. Теоретически невозможно создать идеальный прибор, не влияющий на цепь измерения, поскольку невозможно измерить физическую величину, не отобрав из цепи измерения энергию. Это означает, что невозможно создать идеальные вольтметр и амперметр с бесконечно большим и, соответственно, бесконечно малым входным импедансом. Или, другими словами, достижимая точность измерения всегда конечна. Эти фундаментальные истины подтверждены известным в квантовой механике принципом неопределённости.
Понятие входного (внутреннего) сопротивления пассивной или активной электрической цепи являтся базовым понятием Теории линейных электрических цепей в курсе ТОЭ.
Пример использования термина
Термин используется для описания электрических свойств входов преобразователей и систем сбора данных.