Что такое видеокарта устройство ввода контроллер

Устройство видеокарты

Не секрет, что видеокарты делятся на два типа: интегрированные (встроенные) и дискретные. Дискретные вставляются в разъем PCI Express и являются полноценной, самостоятельной частью ПК. Из-за этого устройство дискретной видеокарты гораздо сложнее и заслуживает отдельной темы. Разберёмся, из каких компонентов состоит видеокарта и за что они отвечают.

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Графический процессор (GPU)

GPU (графический процессор) – является «сердцем» видеокарты, который отвечает за математические расчеты изображения, выводящегося на экран. Иными словами – обработка графики. GPU по своим свойствам похож на центральный процессор (CPU) компьютера, однако предназначен для построения изображения.

Частота

Одна из важнейших характеристик графического процессора – тактовая частота. С ней всё просто. Она измеряется в мегагерцах и чем выше его показатель, тем быстрее идет обработка информации. Частота современных видеокарт достигает отметки в 1000-1400 Мгц.

Техпроцесс

Важным показателем является техпроцесс, это один из первых пунктов среди характеристик видеоадаптеров. Измеряется в нанометрах.

Грубо говоря, основной движущей силой являются транзисторы. Если взять современные видеокарты, то можно заметить, что показатель нанометров все меньше и меньше с каждым поколением видеочипов. Все это обусловлено тем, что чем меньше размер транзисторов, тем больше их можно разместить на одном видеочипе.

С уменьшением размера транзисторов, в целом у видеокарт уменьшается также:

Производительность при этом увеличивается, так как на одной площади можно разместить больше вычислительной мощности.

Чем меньше техпроцесс, тем лучше.

Видеопамять

Работа видеокарты сосредоточена на постоянном выводе цифрового изображения на экран. Существует необходимость в сохранении выводящейся, а также остающейся за пределами экрана информации. Это задача возложена на видеопамять карты.

Память видеокарты по своим свойствам похожа на оперативную память компьютера.

Зачастую память карты используют для маркетинга, особенно в слабых (не игровых и не профессиональных) видеокартах. Кричащие 4 гб памяти почему-то сразу вызывают доверие у неподготовленного покупателя. Но один и тот же объём памяти радикально отличается на разных видеоадаптерах, если говорить о реальной производительности в требовательных задачах и современных играх. Например, даже самая бюджетная из игровых видеокарт nVidia GTX 1050 с двумя гигабайтами памяти во всех задачах покажет себя лучше, чем любой представитель карт серии GT.

Объём видеопамяти – важный, но не ключевой показатель.

Видеопамять в основном делается по стандарту GDDR. В наше время, у пользователей зачастую можно обнаружить память типа GDDR5. Ранее была распространена GDDR3.

Очевидно, что чем выше цифра, тем лучше, так как в каждой новой версии были ряды изменений, которые увеличивали пропускную способность и скорость тактовой частоты. Сейчас среди активных разработчиков можно заметить AMD, Hynix и Qimonda.

Очень важным элементом является шина памяти видеокарты и ее пропускная способность. Именно она гоняет информацию между процессором графического адаптера и его памятью. Частота памяти и шина влияют на производительность видеокарты. Частота измеряется в Мгц (мегагерцах), и чем больше она, тем быстрее работает память. Шина измеряется в bit, от 64 — до 448 bit. Чем «шире» шина, тем быстрее память взаимодействует с графическим процессором (GPU).

Самый распространенный размер шины – 128bit. Однако топовый уровень – это 256 и 384. Благодаря размеру шины и тактовой частоте, в принципе, и строится ее пропускная способность. Чем выше эти показатели, тем быстрее графический процессор обменивается данными с видеопамятью.

Интерфейсы подключения видеокарт

Интерфейсы подключения служат для соединения комплектующих и материнской платы. Различные периферийные устройства (сетевые и звуковые карты, ТВ-тюнеры и т.п.) как правило подключаются через PCI. Это стандартная шина ввода-вывода, но речь не о ней, т.к. для видеокарт используются другие слоты. До 2006 года был популярен интерфейс AGP, затем ему на смену пришёл PCIexpess (PCIe).

AGP был создан по технологиям PCI, но предназначен исключительно для видеокарт. Он отличается более высокой пропускной способностью. Последняя обновленная версия AGP 8x обладает пропускной способностью 2.1 Гб/с. Платы с AGP выпускались до 2006 года. Больше не производится, т.к. появился более совершенный интерфейс – PCIexpress.

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

PCI Express, отличии от AGP, обладает большей пропускной способностью, постоянно модернизируется и имеет обратную совместимость. На данный момент существуют 4 версии, следуя порядковому номеру. Самой последней является, PCIe 4.0. С каждым разом разработчики увеличивали пропускную способность интерфейса. Сейчас им удалось достигнуть отметки в 16 Гбит/с. Не стоит забывать про то, что PCI Express видеоадаптера и материнской платы зачастую не совпадают. Однако особого риска и страха здесь нет. Видеокарта будет работать на старой материнке, хоть и не сможет работать на всю свою мощность. При обратной совместимости вообще не возникает проблем.

SLI и CrossFire

Отдельно про SLI и CrossFire. Для начала стоит сказать, что разница между ними состоит в производителях и связках видеокарт. Не секрет, что вы можете подключить множество видеокарт, если только хватит ваших PCI Express слотов. SLI – фирменная технология nVidia, CrossFire – разработка AMD.

Благодаря SLI можно подключить две видеокарты одной серии с помощью специального мостика. Производительность возрастает, но видеопамять не суммируется. При объединении видеокарт в связку SLI важно знать, что они должны быть не только одного поколения, но и одной серии. Производители при этом могут быть разными. Например, GTX 1080 в SLI заработает только с другой GTX 1080.

CrossFire

Объединение видеокарт в CrossFire проще. Здесь разными могут быть не только призводители, но и модели видеокарт. Так же как и в SLI, видеокарты соединяются друг с другом с помощью специального мостика, видеопамять также не суммируется.

Проблема заключается в том, что не все материнские платы поддерживают SLI или CrossFire. Как правило, это игровые решения.

Немного про разъемы

Современные видеокарты оснащены несколькими портами, чтобы была возможность подключить более одного монитора. В свою же очередь каждый монитор имеет разный тип разъемов, о которых пользователю будет полезно узнать.

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Video Graphics Array (adapter) – достаточно древняя 15-контактная штука синего цвета, которая специализировалась на выводе аналогового сигнала. Его особенностью было то, что на изображение могло повлиять разные вещи: длина провода (который состоял из 5 метров) или личные свойства видеокарты. Ранее был одним из основных, однако с появлением плоских мониторов стал сдавать свои позиции, ибо разрешение экрана увеличивалось, с чем не справлялся VGA. Используется и по сей день.

s-Video

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

S-Video – это так же аналоговый разъем, который часто можно встретить на телевизорах и редко на видеокартах. Качество его хуже, чем у VGA, однако его кабель достигает 20 метров, все еще сохраняя при этом хорошую картинку. Информация передается трёхканально.

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

HDMI имеет несколько преимуществ перед DVI. Главной его особенностью является то, что кроме видео канала, у него так же имеется и аудио. Благодаря этому достиг большой популярности среди известных компаний, получив поддержки. Также из плюсов можно отметить его компактность и отсутствие креплений, которые наблюдаются у DVI. К тому же, кроме видеокарты, он отлично «сотрудничает» с другими устройствами.

DisplayPort

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

DISPLAYPORT, в принципе, далеко не ушел от HDMI, так как они оба способны выводить качественное изображение на большой экран вместе с аудио сопровождением. Однако у DISPLAY-я есть переходники на другие, популярные виды разъемов. В отличии с HDMI производители имеют возможность не платить налог, что увеличивает его популярность. Однако шанс встретить его среди бытовых пользователей, все еще, намного меньше. Максимальный размер кабеля достигает 15 метров. Пропускная способность выше, чем у HDMI, хоть и меняется в зависимости от его версии.

Thunderbolt

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Thunderbolt (бывший Light Peak) – это аппаратный интерфейс для периферийных устройств. Обладает высокой пропускной способностью и функциональностью. По легендам, создан, чтобы улучшить и превзойти USB. Раньше использовался только в продукции Apple. Можно использовать для подключения мониторов с разрешением в 4К.

Питание видеокарты

Однако все пойдет по наклонной, если вы забудете учесть свой блок питания. Сразу можно сказать, что, если у вас 350w, то выбирать видеокарту нужно очень тщательно, так как современные версии очень требовательны к этому. Известно, что материнская плата не способна отдать нужное количество энергии для энергоёмких видеоадаптеров, что приводит к необходимости использования дополнительного питания.

Обычно для подключения дополнительного питания, видеокарта оснащена 6-пиновым переходником. К сожалению, не все блоки питания имеют функцию прямого подключения, так как попросту не имеют подходящего разъема, но страшного ничего здесь нет – большинство видеокарт продают со специальным переходником в комплекте. Современные же блоки обладают уже встроенным разъемом, от чего необходимость в переходниках отпадает. Так же, на современных видеокартах часто можно обнаружить 8-пиновый разъем питания. Это связано с постоянным увеличением необходимой энергии для видеокарты.

Охлаждение

Не менее важным моментом является охлаждение устройства. Как уже было сказано – видеокарта очень требовательна к энергии, потому она больше всего склонна к перегреву. Чтобы избежать подобного существуют разные типы охлаждений. Есть пассивный, он нацелен на то, чтобы поглощать и рассеивать энергию. Активный, в свою очередь, это привычные нам кулеры или система водного охлаждения.

Источник

Видеокарта: параметры и компоненты

Видеокарта – компонент архитектуры современного ПК, отвечает за преобразование графической информации в видеосигнал для монитора. Видеокарта представляет собой плату расширения, которая устанавливается в специальный слот (PCI-Express) материнской платы. Также видеокарта может быть встроенной, то есть, входить в состав северного моста чипсета материнской платы или быть интегрированной в центральный процессор.

Компоненты видеокарты

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Графический процессор, GPU

Является основой видеокарты, отвечает за вычислительные функции, связанные с обработкой трёхмерной графики, тем самым высвобождает ресурсы центрального процессора. Именно от графического процессора зависит производительность видеокарты.

Видеоконтроллер

Отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Современные видеокарты имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Видеопамять

Служит кадровым буфером, в который помещаются изображения, генерируемые графическим процессором перед последующим выводом на экран монитора, а также для хранения промежуточных данных связанных с 3D-вычислениями. Видеокарты комплектуются памятью типа GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры могут использовать в своей работе часть общей системной памяти компьютера.

Цифро-аналоговый преобразователь, RAMDAC

RAMDAC необходим для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Большинство цифро-аналоговых преобразователей имеют разрядность 8 бит на канал, что даёт 256 уровней яркости на каждый основной цвет — 16,7 млн. цветов.

Видео-BIOS

Постоянное запоминающее устройство, в которое записаны: экранные шрифты, служебные таблицы и т. п. Видео-BIOS не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Информация, которая хранится в видео-BIOS применяется для инициализации и работы видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы.

Система охлаждения

Предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Параметры видеокарты

Частота графического процессора (МГц) — тактовая частота ядра, во многом определяет производительность видеосистемы.

Тип видеопамяти (GDDR, GDDR2, GDDR3, GDDR4, GDDR5) — определяет частоту, разрядность шины памяти видеокарты.

Объём видеопамяти (Мб) — чем больше объём, тем большее число кадров способен сформировать графический процессор за короткий промежуток времени.

Частота видеопамяти (МГц) — чем выше частота работы видеопамяти, тем выше общая производительность видеокарты.

Ширина шины видеопамяти — указывает на количество бит (64, 128, 256) информации, передаваемой за такт.

Интерфейс — разъем, для установки видеокарты, на материнской плате (PCI-Express).

Количество поддерживаемых мониторов — одновременное подключение нескольких устройств.

Максимальное разрешение — количество точек, по горизонтали и по вертикали, при построении изображения графическим процессором видеокарты.

Число универсальных процессоров — шейдерные конвейеры, отвечающие за расчет цветов и геометрических структур.

Число текстурных блоков — выполняют выборку и фильтрацию текстур, а также наложение текстур на поверхности геометрических объектов.

Число блоков растеризации — отвечает за финальный этап обработки изображения (сглаживание, фильтрация), а также за запись обработанного изображения в буфер видеокарты.

Версия шейдеров — чем выше версия шейдеров, тем больше у видеокарты возможностей по созданию специальных эффектов.

Поддержка:

Разъемы видеокарты:

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Видеодрайвер

Специальное программное обеспечение, поставляемое производителем видеокарты и загружаемое в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером.

Источник

Видеокарта

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Видеока́рта (также видеоада́птер, графический ада́птер, графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) — электронное устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ); в этом случае устройство, строго говоря, не может быть названо видеокартой.

Содержание

История

Одним из первых графических адаптеров для IBM PC стал MDA (Monochrome Display Adapter) в 1981 году. Он работал только в текстовом режиме с разрешением 80×25 символов (физически 720×350 точек) и поддерживал пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью использовавшегося монитора. Обычно они были белыми, янтарными или изумрудными на чёрном фоне. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер HGC (Hercules Graphics Controller — графический адаптер Геркулес), который имел графическое разрешение 720×348 точек и поддерживал две графические страницы. Но он всё ещё не позволял работать с цветом.

Первой цветной видеокартой стала CGA (Color Graphics Adapter), выпущенная IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40×25 знакомест и 80×25 знакомест (матрица символа — 8×8), либо в графическом с разрешениями 320×200 точек или 640×200 точек. В текстовых режимах доступно 256 атрибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графическом режиме 320×200 было доступно четыре палитры по четыре цвета каждая, режим высокого разрешения 640×200 был монохромным. В развитие этой карты появился EGA (Enhanced Graphics Adapter) — улучшенный графический адаптер, с расширенной до 64 цветов палитрой, и промежуточным буфером. Было улучшено разрешение до 640×350, в результате добавился текстовый режим 80×43 при матрице символа 8×8. Для режима 80×25 использовалась большая матрица — 8×14, одновременно можно было использовать 16 цветов, цветовая палитра была расширена до 64 цветов. Графический режим также позволял использовать при разрешении 640×350 16 цветов из палитры в 64 цвета. Был совместим с CGA и MDA.

Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3 или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.

В ранних моделях компьютеров от IBM PS/2, появляется новый графический адаптер MCGA (Multicolor Graphics Adapter — многоцветный графический адаптер). Текстовое разрешение было поднято до 640×400, что позволило использовать режим 80×50 при матрице 8×8, а для режима 80×25 использовать матрицу 8×16. Количество цветов увеличено до 262144 (64 уровня яркости по каждому цвету), для совместимости с EGA в текстовых режимах была введена таблица цветов, через которую выполнялось преобразование 64-цветного пространства EGA в цветовое пространство MCGA. Появился режим 320x200x256, где каждый пиксел на экране кодировался соответствующим байтом в видеопамяти, никаких битовых плоскостей не было, соответственно с EGA осталась совместимость только по текстовым режимам, совместимость с CGA была полная. Из-за огромного количества яркостей основных цветов возникла необходимость использования уже аналогового цветового сигнала, частота строчной развертки составляла уже 31,5 кГц.

Потом IBM пошла ещё дальше и сделала VGA (Video Graphics Array — графический видео массив), это расширение MCGA, совместимое с EGA и введённое в средних моделях PS/2. Это фактический стандарт видеоадаптера с конца 80-х годов. Добавлены: текстовое разрешение 720×400 для эмуляции MDA и графический режим 640×480 с доступом через битовые плоскости. Режим 640×480 замечателен тем, что в нём используется квадратный пиксел, то есть соотношение числа пикселов по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана — 4:3. Дальше появился IBM 8514/a с разрешениями 640x480x256 и 1024x768x256, и IBM XGA с текстовым режимом 132×25 (1056×400) и увеличенной глубиной цвета (640x480x65K).

С 1991 года появилось понятие SVGA (Super VGA — «сверх» VGA) — расширение VGA с добавлением более высоких режимов и дополнительного сервиса, например возможности поставить произвольную частоту кадров. Число одновременно отображаемых цветов увеличивается до 65 536 (High Color, 16 бит) и 16 777 216 (True Color, 24 бита), появляются дополнительные текстовые режимы. Из сервисных функций появляется поддержка VBE (VESA BIOS Extention — расширение BIOS стандарта VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.

Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся: перемещение больших блоков изображения из одного участка экрана в другой (например, при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс, несомненно, удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.

Устройство

Современная видеокарта состоит из следующих частей:

Графический процессор (Graphics processing unit (GPU) — графическое процессорное устройство) занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако, архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

Видеоконтроллер отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство (ПЗУ), в которое записаны BIOS видеокарты, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор.
BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, задаёт все низкоуровневые параметры видеокарты, в том числе рабочие частоты и питающие напряжения графического процессора и видеопамяти, тайминги памяти. Также, VBIOS содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

Видеопамять выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, GDDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры Uniform Memory Access в качестве видеопамяти используется часть системной памяти компьютера.

Видеоадаптеры MDA, Hercules, EGA и CGA оснащались 9-контактным разъёмом типа D-Sub. Изредка также присутствовал коаксиальный разъём Composite Video, позволяющий вывести черно-белое изображение на телевизионный приемник или монитор, оснащенный НЧ-видеовходом.
Видеоадаптеры VGA и более поздние обычно имели всего один разъём VGA (15-контактный D-Sub). Изредка ранние версии VGA-адаптеров имели также разъём предыдущего поколения (9-контактный) для совместимости со старыми мониторами. Выбор рабочего выхода задавался переключателями на плате видеоадаптера.
В настоящее время платы оснащают разъёмами DVI или HDMI, либо DisplayPort в количестве от одного до трёх (некоторые видеокарты ATi последнего поколения оснащаются шестью коннекторами). Порты DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников. Порт DVI-I также включает аналоговые сигналы, позволяющие подключить монитор через переходник на старый разъём D-SUB (DVI-D не позволяет этого сделать). DisplayPort позволяет подключать до четырёх устройств, в том числе аудиоустройства, USB-концентраторы и иные устройства ввода-вывода.

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Также на видеокарте могут быть размещены композитный и компонентный S-Video видеовыход; также видеовход (обозначаются, как ViVo)

Система охлаждения предназначена для сохранения температурного режима видеопроцессора и (зачастую) видеопамяти в допустимых пределах.

Также, правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Интерфейс

Первое препятствие к повышению быстродействия видеосистемы — это интерфейс передачи данных, к которому подключён видеоадаптер. Как бы ни был быстр процессор видеоадаптера, большая часть его возможностей останется незадействованной, если не будут обеспечены соответствующие каналы обмена информацией между ним, центральным процессором, оперативной памятью компьютера и дополнительными видеоустройствами. Основным каналом передачи данных является, конечно, интерфейсная шина материнской платы, через которую обеспечивается обмен данными с центральным процессором и оперативной памятью. Самой первой шиной использовавшейся в IBM PC была XT-Bus, она имела разрядность 8 бит данных и 20 бит адреса и работала на частоте 4,77 МГц. Далее появилась шина ISA (Industry Standart Architecture — архитектура промышленного стандарта), соответственно она имела разрядность 16/24 бит и работала на частоте 8 МГц. Пиковая пропускная способность составляла чуть больше 5,5 МиБ/с. Этого более чем хватало для отображения текстовой информации и игр с шестнадцатицветной графикой.

Дальнейшим рывком явилось появление шины MCA (Micro Channel Architecture) в новой серии компьютеров PS/2 фирмы IBM. Она уже имела разрядность 32/32 бит и пиковую пропускную способность 40 МиБ/с. Но то обстоятельство, что архитектура MCI являлась закрытой (собственностью IBM), побудило остальных производителей искать иные пути увеличения пропускной способности основного канала доступа к видеоадаптеру.

С появлением процессоров серии 486, было предложено использовать для подключения периферийных устройств локальную шину самого процессора, в результате родилась VLB (VESA Local Bus — локальная шина стандарта VESA). Работая на внешней тактовой частоте процессора, которая составляла от 25 МГц до 50 МГц и имея разрядность 32 бит, шина VLB обеспечивала пиковую пропускную способность около 130 МиБ/с. Этого уже было более чем достаточно для всех существовавших приложений, помимо этого возможность использования её не только для видеоадаптеров, наличие трёх слотов подключения и обеспечение обратной совместимости с ISA (VLB представляет собой просто ещё один 116 контактный разъём за слотом ISA) гарантировали ей достаточно долгую жизнь и поддержку многими производителями чипсетов для материнских плат и периферийных устройств, даже несмотря на то, что при частотах 40 МГц и 50 МГц обеспечить работу даже двух устройств подключенных к ней представлялось проблематичным из-за чрезмерно высокой нагрузки на каскады центрального процессора (ведь большинство управляющих цепей шло с VLB на процессор напрямую, безо всякой буферизации).

И всё-таки, с учётом того, что не только видеоадаптер стал требовать высокую скорость обмена информацией, и явной невозможности подключения к VLB всех устройств (и необходимостью наличия межплатформенного решения, не ограничивающегося только PC), была разработана шина PCI (Periferal Component Interconnect — объединение внешних компонентов) появившаяся, в первую очередь, на материнских платах для процессоров Pentium. С точки зрения производительности на платформе PC всё осталось по-прежнему — при тактовой частоте шины 33 МГц и разрядности 32/32 бит она обеспечивала пиковую пропускную способность 133 МиБ/с — столько же, сколько и VLB. Однако она была удобнее и, в конце концов, вытеснила шину VLB и на материнских платах для процессоров класса 486.

С появлением процессоров Pentium II и серьёзной заявкой PC на принадлежность к рынку высокопроизводительных рабочих станций, а также с появлением 3D-игр со сложной графикой стало ясно, что пропускной способности PCI в том виде, в каком она существовала на платформе PC (обычно частота 33 МГц и разрядность 32 бит), скоро не хватит на удовлетворение запросов системы. Поэтому фирма Intel решила сделать отдельную шину для графической подсистемы, несколько модернизировала шину PCI, обеспечила новой получившейся шине отдельный доступ к памяти с поддержкой некоторых специфических запросов видеоадаптеров и назвала это AGP (Accelerated Graphics Port — ускоренный графический порт). Разрядность шины AGP составляет 32 бит, рабочая частота 66 МГц. Первая версия разъёма поддерживала режимы передачи данных 1x и 2x, вторая — 4x, третья — 8x. В этих режимах за один такт передаются соответственно одно, два, четыре или восемь 32-разрядных слов. Версии AGP не всегда были совместимы между собой в связи с использованием различных напряжений питания в разных версиях. Для предотвращения повреждения оборудования использовался ключ в разъёме. Пиковая пропускная способность в режиме 1x — 266 МиБ/с. Выпуск видеоадаптеров на базе шин PCI и AGP на настоящий момент ничтожно мал, так как шина AGP перестала удовлетворять современным требованиям для мощности новых ПК, и, кроме того, не может обеспечить необходимую мощность питания. Для решения этих проблем создано расширение шины PCI — PCI Express версий 1.0, 1.1 и 2.0. Это последовательный, в отличие от AGP, интерфейс, его пропускная способность может достигать нескольких десятков ГБ/с. На данный момент произошёл практически полный отказ от шины AGP в пользу PCI Express. Однако стоит отметить, что некоторые производители до сих пор предлагают достаточно современные по своей конструкции видеоплаты с интерфейсами PCI и AGP — во многих случаях это достаточно простой путь резко повысить производительность морально устаревшего ПК в некоторых графических задачах.

Видеопамять

Кроме шины данных второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth ) памяти самого видеоадаптера. Причём, изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного «голода» видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC’а. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024×768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC, и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём, ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц, номинально потребная пропускная составляет уже 550 МБ/с. Для сравнения, процессор Pentium-2 имел пиковую скорость работы с памятью 528 МБ/с. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниже.

Пиковая скорость передачи данных

DDR166 — 9501.2 — 30.4 (. )DDR2400 — 24003,2 — 9,6GDDR3700 — 24005.6 — 156.6GDDR42000 — 3600128 — 200GDDR5900 — 5700130 — 320

Объём памяти большого количества современных видеокарт варьируется от 33 МБ (напр. Matrox G550) [1] до 6 ГБ (напр. NVIDIA Quadro 6000). [2] Поскольку доступ к видеопамяти GPU и другими электронным компонентами должен обеспечивать желаемую высокую производительность всей графической подсистемы в целом, используются специализированные высокоскоростные типы памяти, такие как SGRAM, двухпортовые (англ. dual-port ) VRAM, WRAM, другие. Приблизительно с 2003 года, видеопамять, как правило, базировалась на основе DDR технологии памяти SDRAM, с удвоенной эффективной частотой (передача данных синхронизируется не только по нарастающему фронту тактового сигнала, но и ниспадающему). И в дальнейшем DDR2, GDDR3, GDDR4 и GDDR5. Пиковая скорость передачи данных (пропускная способность) памяти современных видеокарт достигает 327 ГБ/с (напр. у NVIDIA GeForce GTX 580 или 320 ГБ/с у AMD Radeon™ HD 6990). [3] [4]

Видеопамять используется для временного сохранения, помимо непосредственно данных изображения, и другие: текстуры, шейдеры, вершинные буферы (en:vertex buffer objects, VBO), Z-буфер (удалённость элементов изображения в 3D графике), и тому подобные данные графической подсистемы (за исключением, по большей части данных Video BIOS, внутренней памяти графического процессора и т. п.) и коды.

Характеристики видеокарт

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера (UMA — Unified Memory Access).

3D-ускорители

Игровые видеоускорители

Профессиональные видеоускорители

Что такое видеокарта устройство ввода контроллер. Смотреть фото Что такое видеокарта устройство ввода контроллер. Смотреть картинку Что такое видеокарта устройство ввода контроллер. Картинка про Что такое видеокарта устройство ввода контроллер. Фото Что такое видеокарта устройство ввода контроллер

Профессиональные графические карты — видеокарты, ориентированные на работу в мощных графических станциях и использования в профессиональных математических и графических пакетах 2D- и 3D-моделирования, на которые ложится значительная нагрузка при обсчёте и прорисовке моделей проектируемых объектов.

Ядра профессиональных видеоускорителей основных производителей, AMD и NVIDIA, «изнутри» мало отличаются от их игровых собратьев. Они давно унифицировали свои GPU и используют их в разных областях. Именно такой ход и позволил этим фирмам вытеснить с рынка компании, занимавшиеся разработкой и продвижением специализированных графических чипов для профессиональных применений.

Особое внимание уделяется подсистеме видеопамяти, поскольку это — особо важная составляющая профессиональных ускорителей, на долю которой выпадает основная нагрузка при работе с моделями гигантского объёма.

Интегрированные (встроенные) видеокарты

Программное обеспечение

На программном уровне видеопроцессор для своей организации вычислений (расчётов трёхмерной графики) использует тот или иной интерфейс прикладного программирования (API).

Самые первые ускорители использовали Glide — API для трёхмерной графики, разработанный 3dfx Interactive для видеокарт на основе собственных графических процессоров Voodoo Graphics.

Затем поколения ускорителей в видеокартах можно считать по версии DirectX, которую они поддерживают. Различают следующие поколения:

Также поколения ускорителей в видеокартах можно считать по версии OpenGL, которую они поддерживают:

Основные производители

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *