Что такое волновое сопротивление
Что такое волновое сопротивление
Содержание статьи
Что такое волновое сопротивление?
Лучший способ понять, что такое волновое сопротивление – это представить себе бесконечно длинный провод, который не создает отраженных или обратных волн при нагрузке. Создание переменного напряжения (V) в такой цепи приведет к появлению тока (I). Волновое сопротивление (Z) в этом случае будет численно равно соотношению:
Z = V/I
Эта формула справедлива для вакуума. Но если речь идет о «реальном пространстве», где нет бесконечно длинного провода, уравнение принимает вид закона Ома для участка цепи:
R = V/I
Эквивалентная схема расчета линии передач
Для СВЧ инженеров общим выражением, определяющим волновое сопротивление, является:
Z = R+j*w*L/G+j*w*C
Здесь R, G, L и С – номинальные длины волн модели линии передач. Следует отметить, что в общем виде волновое сопротивление может быть комплексным числом. Важным уточнением является то, что такой случай возможен только, если R или G не равны нулю. На практике всегда стараются достичь минимальных потерь на линии передачи сигнала. Поэтому обычно игнорируют вклад R и G в уравнение и, в конечном итоге, количественное значение волнового сопротивления принимает очень маленькое значение.
Внутреннее сопротивление
Волновое сопротивление присутствует даже если нет линии передачи. Оно связано с распространением волн в любой однородной среде. Внутреннее сопротивление является мерой отношения электрического поля к магнитному. Оно рассчитывается так же, как и в линиях передачи. Предполагая, что нет «реальной» проводимости или сопротивления в среде, уравнение сводится к простой квадратичной форме:
Z = SQRT(L/C)
В этом случае индуктивность на единицу длины сводится к проницаемости среды, а емкость на единицу длины – к диэлектрической проницаемости.
Сопротивление вакуума
В пространстве относительная проницаемость среды и диэлектрическая проницаемость всегда постоянны. Таким образом, уравнение внутреннего сопротивления упрощается до уравнения для волнового сопротивления вакуума:
n = SQRT(m/e)
Здесь m – проницаемость вакуума, а е – диэлектрическая проницаемость среды.
Значение волнового сопротивления вакуума является постоянной величиной и приблизительно равно 120 пикоОм.
Волновое сопротивление 50 или 75 Ом, медненое железо или медь?
Существует стойкое предубеждение и, можно даже сказать, заблуждение многих людей относительно высокочастотных кабелей. Меня, как разработчика антенн, являющегося одновременно и руководителем фирмы по их производству, постоянно одолевают этим вопросом. Попытаюсь раз и навсегда поставить точку в этом вопросе и закрыть тему применения 75 Ом кабелей вместо 50 Ом для целей передачи сигналов небольшой мощности. Я постараюсь не утруждать читателя сложными терминами с формулами, хотя некоторый минимум математики все же необходим для понимания вопроса.
В низкочастотной радиотехнике для передачи сигнала с заданными параметрами ток-напряжение нужен проводник, обладающий некоторыми свойствами изоляции от окружающей среды и погонным сопротивлением, таким, чтобы в точке приема НЧ сигнала мы получили достаточный для последующей обработки сигнал. Иными словами любой проводник обладает сопротивлением, и желательно, чтобы это сопротивление было как можно меньше. Это простое условие для техники низких частот. Для сигналов с малой передаваемой мощностью нам достаточно тонкого провода, для сигналов с большой мощностью мы должны выбирать более толстый провод.
В отличие от низкочастотной радиотехники, в технике высоких частот приходится учитывать много других параметров. Несомненно, как и в НЧ технике, нас интересует передаваемая по среде передачи мощность и сопротивление. То, что на низких частотах мы обычно называем сопротивлением линии передачи, на высоких частотах называют потерями. На низкой частоте потери, прежде всего, определяются собственным погонным сопротивлением линии передачи, тогда как на ВЧ появляется, так называемый, Скин-эффект. Скин-эффект – приводит к тому, что ток, вытесняемый высокочастотным магнитным полем течет лишь по поверхности проводника, вернее в его тонком поверхностном слое. Из-за чего эффективное сечение проводника, можно сказать, уменьшается. Т.е. при равных условиях для прокачки одной и той же мощности на низкой частоте и высокой требуются провода разного сечения. Толщина скин-слоя зависит от частоты, с увеличением частоты толщина скин-слоя уменьшается, что приводит к потерям большим, нежели на более низких частотах. Скин-эффект присутствует при переменном токе любой частоты. Для наглядности приведу некоторые примеры.
Так для тока частотой 60 герц, толщина скин-слоя составляет 8,5 мм. А для тока 10 МГц тощина скин-слоя составит всего 0,02 мм. Не правда ли разительная разница? А для частот 100, 1000 или 2000 МГц, толщина проводящего слоя будет и того меньше! Не вдаваясь в математику, скажу, что толщина скин-слоя зависит, прежде всего от удельной проводимости проводника и частоты. Поэтому для передачи максимально большей мощности на ВЧ нам нужно брать кабель с наибольшей площадью поверхности центральной жилы. При этом учитывая, что на СВЧ толщина скин-слоя мала нам вовсе необязательно использовать цельный медный кабель. Разницы от использования кабеля со стальным центральным проводником покрытым тонким слоем меди вы вероятно даже не заметите. Разве что он будет более жестким на изгиб. Разумеется, что желательно наличие более толстого слоя меди на стальном проводнике. Использование цельного медного кабеля имеет, конечно, преимущества, он более гибкий, по нему можно передавать большую мощность на более низких частотах. Также зачастую по коаксиальному кабелю передают напряжение питания постоянного тока предусилителей, и тут также вне конкуренции медный кабель. Но для передачи небольшой мощности не более 10-200 мВт на СВЧ с экономической точки зрения, более оправданным будет применение именно омедненного кабеля. Будем считать, что вопрос выбора между омедненными и медными кабелями закрыли.
Для понимания различия кабелей в волновом сопротивлении, я не стану рассказывать, что такое волновое сопротивление кабеля. Как ни странно, это не нужно для понимания разницы. Для начала разберемся, почему существуют кабели с разными волновыми сопротивлениями. Прежде всего, это связанно с историей становления радиотехники. На заре радиотехники выбор изолирующих материалов для коаксиальных кабелей был сильно ограничен. Это сейчас мы нормально воспринимаем наличие огромного ряда пластиков, вспененных диэлектриков, резины со свойствами проводников или керамики. 80 лет назад ничего этого не было. Была резина, полиэтилен, парафин, бакелит, в 30-х годах изобретен фторопласт (он же тефлон). Волновое сопротивление кабелей определяется соотношением диаметров центрального внутреннего проводника и внешнего диаметра кабеля.
Ниже приведена номограмма.
Толщина центрального проводника определяется его способностью пропускать наибольшую мощность. Внешний диаметр выбирается в зависимости от используемого диэлектрика – заполнителя находящегося между двумя проводниками. Используя номограмму становится понятно, что диапазон удобных для промышленного изготовления волновых сопротивлений кабелей лежит в пределах 25 – 100 Ом.
Теперь считаю необходимым рассмотреть менее важный вопрос о согласовании линии передачи. Попытаюсь просто ответить на вопросы о том, можно ли подключить 75 Ом кабель вместо 50 Ом.
Рассмотрим ситуацию, когда выходное волновое сопротивление передатчика 50 Ом, мы подключаем к нему 50 Ом кабель и 75 Ом антенну. В этом случае потери составят 4% от выходной мощности. Много ли это? Ответ неоднозначный. Дело в том, что в ВЧ радиотехнике оперируют в основном логарифмическими величинами, приведенными к децибелам. И если 4% перевести в децибелы, то потери в линии составят всего 0,18 дБ.
Если мы подключаем передатчик с 50 Ом выходом к 75 Ом кабелю и далее к 50 Ом антенне. В этом случае теряется 8% мощности. Но приведя это значение к децибелам, выясняется, что потери составят всего лишь 0,36 дБ.
Теперь рассмотрим типовые затухания кабелей для частоты 2000 МГц. И сравним, что лучше применить: 20 метров кабеля 75 Ом или 20 метров кабеля 50 Ом.
Затухание на 20 метрах для известного дорогого кабеля марки Radiolab 5D-FB составляет 0,3*20= 6 дБ.
Затухание на 20 метрах для качественного кабеля Cavel SAT703 составляет 0,29*20= 5,8 дБ.
Учтя потери на рассогласовании – 0,36 дБ, мы получим, что выигрыш от применения 50 Ом кабеля составляет всего 0,16 дБ. Это примерно соответствует 2-м лишним метрам кабеля.
А теперь сравним цену. 20 метров кабеля Radiolab 5D-FB стоят в лучшем случае примерно 80*20=1600 руб. В тоже время 20 метров кабеля Cavel SAT703 стоит 25*20=500 руб. Разница в цене 1100 руб. весьма ощутимая. К достоинствам 75 Ом кабелей можно отнести также легкость их разделки, доступность разъемов.
Волновое сопротивление
Оно свойственно данному типу кабеля и зависит только от его первичных параметров и частоты.
Волновое сопротивление связано с первичными параметрами следующим простым соотношением:
Волновое сопротивление численно равно входному сопротивлению линии бесконечной длины, которая имеет оконечную нагрузку, равную ее собственному волновому сопротивлению. Оно измеряется в омах и определяет количественное соотношение между электрической и магнитной составляющей электромагнитной волны. В общем случае волновое сопротивление является комплексной величиной, его модуль падает по мере роста частоты и на высоких частотах стремится к фиксированному активному сопротивлению:
Кабели на витых парах на звуковых частотах, то есть при передаче телефонных сигналов, имеют сопротивление около 600 Ом, по мере увеличения частоты оно быстро падает и на частотах свыше 1 МГц вплоть до верхней граничной частоты конкретного кабеля не должно отличаться от 100 Ом более чем на + 15%.
Частотная зависимость первичных параметров электрического кабеля
Затухание
При распространении по витой паре электромагнитный сигнал постепенно теряет свою энергию.
Этот эффект называется ослаблением, или затуханием.
Затухание принято оценивать в децибелах как разность между уровнями сигналов на выходе передатчика и входе приемника.
Один децибел соответствует изменению мощности в 1,26 раза или напряжения в 1,12 раза.
Принято различать собственное и рабочее затухание кабеля.
Под собственным затуханием кабеля понимается затухание при работе в идеальных условиях.
В обобщенном виде его величину теоретически можно определить как реальную часть так называемого коэффициента распространения γ, который связан с первичными параметрами следующим простым соотношением:
Экспериментально собственное затухание кабеля можно определить как разность уровней входного и выходного сигналов в том случае, если сопротивление источника сигнала и нагрузки равны между собой и волновому сопротивлению кабеля.
В процессе реальной эксплуатации это условие выполняется не во всех случаях, что обычно сопровождается увеличением затухания.
Такое затухание называется рабочим.
Из изложенного следует важный практический вывод о том, что для минимизации рабочего затухания и его приближения к собственному сопротивление источника сигнала и нагрузка должны быть равны волновому сопротивлению, то есть, по терминологии электротехники, должна быть обеспечена согласованная нагрузка как источника сигнала, так и самого кабеля.
Из формулы выше следует, что затухание является частотнозависимой величиной и, как все входящие в него параметры, зависит от длины кабеля.
Результаты анализа формулы показывают, что затухание связано с длиной витой пары линейной зависимостью на всех частотах.
Для упрощения выполнения инженерных расчетов удобно пользоваться параметром коэффициента затухания или погонного затухания α, который численно равен затуханию кабеля фиксированной длины (применительно к кабелю типа витой пары это обычно 100 м).
Величины коэффициента затухания α, длины L и затухания А связаны между собой следующим простым соотношением:
А |дБ| = α |дБ/100 м| х L |м|/100
Чем меньше величина затухания, тем более мощным оказывается сигнал на входе приемника и тем устойчивее при прочих равных условиях связь. Затухание вызывается активным сопротивлением и потерями в диэлектрической изоляции. Определенный вклад в затухание вносят также излучение электромагнитной энергии и отражения.
Любой проводник, по которому течет переменный ток, является источником излучения в окружающее пространство. Оно отбирает у сигнала энергию и ведет к возрастанию затухания сигнала. Это явление резко возрастает с увеличением частоты сигнала. При λ
Как было отмечено выше, в идеальной симметричной цепи электромагнитное излучение отсутствует. На практике таких идеальных симметричных цепей не существует. Дело в том, что в такой цепи проводники должны бесконечно плотно прилегать друг к другу и в пределе быть стянутыми в бесконечно тонкую линию, суммарный протекающий через которую ток равен нулю. Проводники с меньшим диаметром и более тонкой изоляцией плотнее прилегают друг к другу. Однако чрезмерное уменьшение сечения проводника и утоньшение изоляции ведет к повышению затухания за счет роста активного сопротивления и увеличения проводимости изолирующих покровов.
Частотная зависимость первичных параметров электрического кабеля
Из эквивалентной схемы можно сделать вывод о том, что затухание с ростом частоты имеет тенденцию к росту. Это обусловлено как ростом сопротивления продольной ветви в основном за счет элемента L, так и падением сопротивления поперечной ветви, которое обусловлено главным образом наличием емкости (элемент С). По стандарту TIA/EIA-568-А на длине 100 м и при температуре 20° С частотная характеристика A(f) максимально допустимого затухания, начиная с 0,772 МГц, для кабелей категорий 3, 4 и 5 определяется согласно следующему выражению
A (f) = k1√f + k2f + k3√f,
Категория кабеля | K1 | K2 | K3 |
3 | 2,320 | 0,238 | 0,000 |
4 | 2,050 | 0,043 | 0,057 |
5 | 1,967 | 0,023 | 0,050 |
Кроме аналитического задания величины затухания стандарт TIA/EIA-568-А определяет этот параметр также в табличной форме с расширением нормируемых значений в область нижних частот. Это бывает полезным при выполнении инженерных расчетов трактов связи, предназначенных для поддержки работы некоторых приложений, а также позволяет сразу же получить необходимую информацию без выполнения вычислений.
Максимальное допустимое затухание кабелей категории 3,4 и 5 на длине 100 м при t=20ºС по стандарту TIA/EIA-568-A
На рисунке выше показаны частотные зависимости предельно допустимых затуханий кабелей различных категорий, вычисленные по формуле выше.
Аппроксимация по формуле оказалась очень удачной и достаточно часто используется многими производителями кабельной продукции для описания характеристик их изделий. При этом принимаются свои значения коэффициентов k1-k3, а область действия распространяется на частоты до 400 и даже 550 МГц.
Переходное затухание
При передаче сигнала часть его энергии вследствие неидеальности балансировки витой пары переходит в электромагнитное излучение, которое вызывает наведенные токи в соседних парах. Этот эффект называется переходными наводками. Наводки, накладываясь на полезные сигналы, передаваемые по соседним парам, могут приводить к ошибкам приема и в конечном итоге снижают качество связи.
Разность между уровнями передаваемого сигнала и создаваемой им помехи на соседней паре называется переходным затуханием. В зависимости от места и метода измерения этого параметра различают несколько видов переходного затухания, см. рисунок, на котором через Ii обозначены токи наводок, создаваемые различными участками влияющей витой пары во влияемой.
Переходные наводки на ближнем (слева) и дальнем (справа) концах соседней пары
Чем выше значение NEXT и FEXT, тем меньший уровень имеет наводка в соседних парах, и соответственно тем более качественным является кабель. С практической точки зрения представляет интерес частотная зависимость переходного затухания на ближнем и дальнем концах, а также зависимость этих параметров от длины линии. Влияющая пара и пара, подверженная влиянию, проложены параллельно под общей защитной оболочкой. За счет этого их проводники могут рассматриваться как обкладки конденсатора. Это означает, что с ростом частоты переходное затухание падает. Стандарт TIA/EIA-568-A нормирует минимальные значения переходного затухания на ближнем конце при длине кабеля 100 м. Для определения минимально допустимого параметра NEXT на частотах, превышающих 0,772 МГц, используется следующее аппроксимирующее выражение:
Дополнительно стандарт нормирует значения NEXT на частотах менее 0,772 МГц, что бывает необходимо для некоторых приложений. Нормируемые значения в этом случае представляются в табличной форме.
Результаты расчетов по формуле выше приведены на рисунке.
Максимально допустимые значения NEXT для кабелей категории 3,4 и 5 на длине 100 м по стандарту TIA/EIA-568-A
Суммирование отдельных составляющих одной частоты переходной помехи на ближнем конце происходит с различными фазами (по напряжению). Поэтому реальный график частотной зависимости величины NEXT имеет вид шумообразной кривой с резкими перепадами величин переходного затухания на близких частотах. Стандарты нормируют только минимальную величину параметра NEXT, и кабель считается соответствующим требованиям стандарта, если во всем рабочем частотном диапазоне реальная величина NEXT не падает ниже определенного нормами значения.
Типовая зависимость переходного затухания на ближнем и дальнем концах от длины линии показана на рисунке.
Зависимость переходного затухания не дальнем и ближнем концах от длины линии
Переходное затухание на ближнем конце с увеличением длины линии сначала несколько уменьшается, а затем стабилизируется. Качественное объяснение этого эффекта состоит в том, что, начиная с определенной длины линии, токи помех с отдаленных участков приходят на ближний конец настолько ослабленными, что практически не увеличивают взаимного влияния между цепями, и величина NEXT остается постоянной. Отсюда следует, что значения NEXT для двух концов одной пары могут существенно различаться между собой, поэтому все стандарты требуют его измерения с обеих сторон. График зависимости переходного затухания на дальнем конце от длины линии носит экстремальный характер. Вначале, пока длина линии мала, увеличение ее протяженности увеличивает мощность помехи. По мере увеличения длины начинает проявляться рост затухания помеховых составляющих, и FEXT монотонно возрастает.
Для улучшения параметра NEXT в симметричных кабелях применяют различный шаг скрутки витых пар. Кроме ослабления электромагнитной связи отдельных пар такое решение не позволяет им плотно прилегать друг к другу по всей длине, что дополнительно увеличивает переходное затухание.
Известно, что сетевое оборудование различного назначения по-разному использует симметричный кабель как среду передачи. Поэтому в зависимости от приложения и метода использования кабеля нормирование величины переходных помех или, что эквивалентно, переходного затухания выполняется по-разному.
Наиболее популярными ЛВС в настоящее время являются сети Ethernet. При использовании полнодуплексного режима передатчик и приемник работают одновременно, и эта аппаратура использует для работы две витые пары одного кабеля. Этот случай в схематическом виде изображен на рисунке.
К определению NEXT
При этом ослабленный после прохождения по витой паре информационный сигнал взаимодействует на входе приемника с мощной переходной помехой работающего на этом же конце передатчика. Поэтому достаточно нормировать следующий параметр:
Величина max Рп берется на наихудший случай, так как заранее неизвестно, какие две пары будут использоваться сетевым оборудованием для организации информационного обмена.
В последнее время при построении сетевого оборудования четко обозначилась тенденция использования им для передачи информации одновременно нескольких пар (оборудование ЛВС 100Base-T4, 100VG AnyLAN и 1000Base-TX). С другой стороны, сигналы нескольких приложений все чаще передаются в одном многопарном кабеле. В данной ситуации нормирование только параметра NEXT оказывается недостаточным, так как на приемник одновременно действует несколько источников помех. Для учета этого обстоятельства используется более сложная расчетная модель, которая для 4-парного кабеля имеет вид, изображенный на рисунке (все пары действуют на одну), и нормируется параметр так называемой суммарной мощности (power sum).
К определению PS-NEXT
Из-за разного расстояния между парами, различного шага скрутки и т.д. разность между величинами NEXT и PS- NEXT оказывается равной не 4,8 д Б, а примерно 2 дБ.
Наконец, в новейших перспективных приложениях типа Gigabit Ethernet вход приемника и выход передатчика развязаны с помощью дифференциальной системы. Это позволяет одновременно использовать одну витую пару для приема и передачи сигналов. В этой ситуации дополнительно к переходным помехам на ближнем конце необходимо учитывать также помехи на дальнем конце и соответственно нормировать величину переходного затухания на дальнем конце:
К определению PS-NEXT
И, наконец, некоторые производители начинают нормировать так называемую глобальную переходную помеху GXT (global crosstalk), которая равна сумме наведенных переходных помех на обоих концах кабеля.
В настоящий момент официальными редакциями стандартов задаются только величины NEXT и PS-NEXT (последнее значение приводится для многопарных и комбинированных кабелей), нормирование величин FEXT и GXT производится ограниченным количеством фирм.
Защищенность
Для оценки качества передачи информации в технике проводной связи широко используется параметр защищенности от помех, или просто защищенности, который представляет собой разность между уровнями полезного сигнала и помехи в рассматриваемой точке.
К определению NEXT
то есть зависит только от величин затухания и переходного затухания.
К определению параметра защищенности
Расчетные значения минимально допустимых параметров ACR по данным стандарта TIA/EIA-568-A для кабелей категории 3,4 и 5 на длине 100 м
Из этого рисунка видно, что, в худшем случае, сигнал на входе приемника должен превышать шумы наводок от соседней пары не менее чем на 10 дБ, что эквивалентно отношению сигнал/шум в 3,16 раз по напряжению или в 10 раз по мощности.
Введение параметра ACR позволяет конкретизировать понятие верхней граничной частоты кабеля. Считается, что кабели из витых пар с установленными на них оконечными разъемами обеспечивают устойчивую полнодуплексную работу любого приложения с такой верхней граничной частотой, на которой параметр ACR составляет 10 дБ. Это положение отдельно выделено на рисунке.
К определению параметра защищенности
Исключением из данного правила являются кабели категории 4, у которых на частоте 20 МГц ACR = 26 дБ. При этом верхнюю граничную частоту приложения не следует путать с максимальной частотой кабеля, на которой изготовитель сертифицирует его параметры, так как зачастую на ней значения ACR получаются отрицательными (особенно ярко это проявляется для неэкранированных конструкций с относительно невысоким NEXT). Необходимость сертификации параметров кабеля на этих частотах возникает для оценки возможности его использования для полудуплексной или однонаправленной (симплексной) передачи каких-либо сигналов, например телевизионных.
В случае высокочастотных приложений, которые в процессе работы используют для передачи информации все витые пары и одновременно в двух направлениях, нормирование только величины ACR оказывается недостаточным. Для расчета помеховой составляющей, создаваемой наводками на дальнем конце, используется аналогичная ACR величина