Что такое впячивание цитоплазматической мембраны

Что такое впячивание цитоплазматической мембраны

• Различные молекулы проходят через цитоплазматическую мембрану за счет пассивной диффузии или активного перемещения

• Большинство растворенных веществ перемещается через мембрану с участием специфических транспортных белков

• Цитоплазматическая мембрана поддерживает протонный градиент между цитоплазмой и внеклеточной средой

Клетки всех организмов обладают цитоплазматической (или плазматической) мембраной, которая предотвращает выход и поступление в клетку растворимых соединений. У прокариот цитоплазматическая мембрана, толщиной примерно 8 нм, служит барьером между содержимым клетки и окружающей средой. Цитоплазматические мембраны содержат липиды и белки. Так же как и для других биологических мембран, в основе их структуры лежит фосфолипидный бислой. Фосфолипиды содержат фосфатную группу, присоединенную к основной трехуглеродной структуре глицерина.

Гидрофобные цепи жирных кислот связаны со свободными атомами углерода этой структуры, причем они ориентированы по направлению друг к другу и в противоположную сторону от внешней среды, содержащей воду. Напротив, гидрофильные фосфатные группы ориентированы в сторону водного окружения. Цитоплазматическая мембрана не дает возможность большинству биологических молекул и ионов пассивно диффундировать через нее в обоих направлениях. Исключение составляет вода, которая способна к медленной диффузии через цитоплазматическую мембрану; небольшой размер молекул и отсутствие заряда позволяют ей свободно проходить через фосфолипидный бислой.

С цитоплазматической мембраной связано много типов белков. Часто мембранные белки содержат участки гидрофобных аминокислот, которые взаимодействуют с гидрофобными цепями жирных кислот, находящихся в мембране. Белки, гидрофобные участки которых пронизывают мембрану, называются интегральными мембранными белками. Многие белки, находящиеся в цитоплазматической мембране, играют определенную роль в транспорте молекул в клетку и в выходе из нее. Такой транспорт через плазматическую мембрану может представлять собой активный или пассивный процесс. При пассивном транспорте молекулы движутся по концентрационному градиенту, т. е. из области их высокой концентрации в область с низкой концентрацией.

Таким образом, пассивный транспорт не требует затрат энергии. В противоположность пассивной диффузии, в результате активного транспорта, внутри клетки и вне ее устанавливаются различные концентрации растворенных метаболитов. Транспортные системы состоят из белков, которые связаны или с мембраной в виде ее стабильных интегральных компонентов, или с расположенными на периферии липидами через модифицированные концевые аминогруппы, за счет которых белок прикрепляется к поверхности мембраны. Такие большие молекулы, как белки, которые не могут свободно диффундировать через мембраны, транспортируются в процессе активного транспорта. Часто транспортные системы проявляют высокую специфичность, транспортируя только молекулы одного вещества или группы веществ.

Комплекс транспортных белков, связывающий АТФ (ABC), представляет собой самое обширное семейство транспортных белков прокариот. Только у Е. coli оно насчитывает свыше 200 белков. ABC-переносчики могут перемещать субстраты в клетку и из нее. Они проявляют активность по отношению к разнообразным субстратам, от ионов до молекул белков. ABC-переносчики, транспортирующие субстраты в клетки грамотрицательных бактерий, обычно состоят из трех компонентов: транспортный белок, пронизывающий мембрану, периплазматический белок, связывающий субстрат, и белок, гидролизующий АТФ, локализованный в цитоплазме. Периплазматические связывающие белки проявляют крайне высокое сродство к специфическим субстратам.

Это позволяет им осуществлять транспорт субстратов, даже если они присутствуют в крайне низких концентрациях. Белки связывающие АТФ, расположенные на цитоплазматической стороне мембраны, обеспечивают энергией процесс транспорта. Эти белки стабильно связаны с мембраной через липидную часть со стороны N-концевого участка.

Цитоплазматическая мембрана играет важную роль в энергетических процессах у прокариот. Электроны, которые генерируются в процессе дыхания, сопрягаются со своими рецепторами в мембране. Протоны транспортируются к клеточной поверхности посредством мембранных транспортных белков; при этом наружная мембрана приобретает слабый положительный заряд.

Внутренняя часть мембраны заряжена отрицательно. Таким образом, создается трансмембранный протонный градиент. Энергетически выгодное движение протонов по градиенту, от наружной поверхности вглубь клетки, обеспечивает протекание многих внутриклеточных реакций. Иными словами, энергия, запасенная в цитоплазматической мембране может использоваться клеткой для разных целей. Например, ферменты используют протонный градиент для образования АТФ из АДФ. Некоторые мембраносвязанные ферментные комплексы способствуют генерации протонного градиента в ходе окислительного фосфорилирования.

При окислительном фосфорилировании терминальным акцептором электронов служит кислород. Однако в анаэробных условиях многие прокариоты могут использовать другие акцепторы электронов, например серу, азот, железо и марганец. Энергия, которая запасается в цитоплазматической мембране за счет функционирования ферментов, обеспечивает большую часть потребностей растущей клетки, т. е. такие процессы, как синтез молекул, транспорт белков и субстратов, а также ее подвижность. Изучение молекулярных механизмов генерации энергии в бактериальных клетках представляет собой активно развивающуюся область современных исследований.

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраныУ грамотрицательных бакерий растворимые субстраты поступают в периплазму при участии поринов,
представляющих собой белки, которые образуют в наружной мембране определенных размеров поры.
Субстраты связываются специфическими белками, присутствующими в периплазме, которые, в свою очередь,
в цитоплазматической мембране связываются с ABC переносчиками.
Для транспортировки субстратов в цитоплазму, эти переносчики используют энергию гидролиза АТФ.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Кавеолы: уникальные «порталы» клеточной мембраны

Кавеолы — особые «впячивания» на клеточной мембране. Белок кавеолин вставлен в мембрану кавеолы таким образом, что его концы обращены в цитоплазму (показан синими линиями). Кружками разных цветов обозначены различные мембранные фосфолипиды.

Автор
Редакторы

Любая клетка имеет мембрану, состоящую из двойного слоя липидов со встроенными в него белками. Разумеется, клетка должна обмениваться с окружающей средой сигналами и веществами. Малые молекулы просто диффундируют через мембрану или проникают через особые белковые каналы. Но как быть с более крупными молекулами — например, с небольшими белками? Для этого существует специальный путь — эндоцитоз. В общем случае его схема выглядит так: от клеточной мембраны отпочковывается пузырёк (везикула), переносящая вещество; далее везикула сливается с лизосомами, ферменты которых расщепляют ее содержимое. Но эндоцитоз может идти и другим путём — посредством структур, известных как кавеолы. Именно им и будет посвящена наша статья.

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рисунок 1. Электронная микрофотография кавеол (отмечены стрелками) в мембране первичного фибробласта. Звездочкой отмечена связанная с мембраной вакуоль. Масштабная линейка 100 нм.

Клеточную мембрану можно назвать «колыбелью жизни» [1], и она отнюдь не является чем-то неподвижным, статическим, навсегда сформированным. Напротив, это «живая» и активно трансформирующаяся структура, об одной из «опций» которой — кавеолах — мы и расскажем. Впервые открытые почти 40 лет назад [2], кавеолы всё ещё хранят в себе немало загадок (рис. 1). Хотя за это время прояснились многие черты их строения и состава, мы всё ещё не до конца представляем, на что способны эти невзрачные «впячивания» клеточной мембраны. Известно, однако, что кавеолы активно участвуют во внутриклеточной передаче сигналов. Кроме того, они служат клеточными «сенсорами» механического стресса. В нашей статье собраны последние данные о структуре и функционировании кавеол.

Структура

«Биомолекула» уже подробно рассказывала о сложном составе и многочисленных функциях биологических мембран: «Липидный фундамент жизни» [1]. — Ред.

Считается, что ключевую роль в формировании кавеол играет кавеолин-1. Белки кавины распознают два особых мембранных фосфолипида — фосфатидилсерин (PS) и фосфатидилинозитол-(4,5)-бисфосфат (PI(4,5)P2), — однако только при участии кавеолина-1. Согласно наиболее общепринятой модели, собственно впячивание мембраны обеспечивает кавеолин-1, который вставляется в мембрану будущей кавеолы, взаимодействуя с холестерином. Кавины олигомеризуются на кавеолиновой «платформе» и, взаимодействуя с мембранными фосфолипидами, дополнительно стабилизируют кавеолу (рис. 2). В пользу этой модели свидетельствует тот факт, что при экспрессии кавеолина-1 в бактериальных клетках он сам способен вызывать впячивание мембраны без вспомогательных белков. Кроме того, в отсутствие кавеолина-1 кавеолы не образуются [2]. При этом кавеолин-1 можно обнаружить и вне кавеол, что говорит о возможных его ролях в других частях клетки [3].

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рисунок 2. Схема образования кавеол

Динамика

Кавеолы можно найти не во всех тканях млекопитающих. Их очень много в клетках, подвергающихся механическому стрессу — мышечных клетках, фибробластах, клетках эндотелия и адипоцитах, но они полностью отсутствуют в нейронах и лимфоцитах [3]. Вероятно, это связано с тем, что одна из важнейших функций кавеол — передача сигналов механического стресса, поэтому клеткам, которые не подвергаются интенсивным механическим воздействиям, кавеолы не очень-то и нужны.

Кавеолы, как и обычные участки клеточной мембраны, способны к эндоцитозу. Например, в фибробластах кавеолы отпочковываются от мембраны, но не утрачивают белковую оболочку и сливаются с ранними эндосомами. В дальнейшем они могут отпочковаться от эндосомы обратно (благодаря тому, что их белковая оболочка осталась нетронутой) и вернуться в мембрану (рис. 3). По этому пути кавеолы покидают клеточную мембрану в метафазе митоза и возвращаются в неё в телофазе. Схожим образом ведут себя кавеолы в клетках эндотелия: они доставляют в ранние эндосомы молекулы, захваченные ими из кровотока [3].

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рисунок 3. Кругооборот кавеол. Кавеолы могут отшнуровываться внутрь клетки или разбираться в ответ на увеличение напряжения мембраны. Высвобожденные кавины могут разрушаться, взаимодействовать с другими клеточными белками или вновь формировать кавеолы.

Эндоцитоз кавеол запускается при утрате клеткой контактов с соседними клетками или межклеточным матриксом (клеточной адгезии), ингибировании серин/треониновых фосфатаз или при заражении вирусом SV40. Эндоцитоз кавеол происходит при участии белка динамина и актиновых микрофиламентов. В условиях утраты клеточной адгезии кавеолин покидает кавеолы в составе маленьких везикул, которые при участии микротрубочек накапливаются в цитоплазме вокруг ядра [4].

В некоторых условиях белковая оболочка кавеол разбирается. Так происходит, в частности, при механических нагрузках, которые приводят к увеличению натяжения клеточной мембраны. В следующем разделе рассмотрим роль кавеол в передаче сигналов механического стресса.

Функции

Одной из функций кавеол является участие в разнообразных путях внутриклеточной передачи сигналов. Показано, что множество факторов роста, рецепторов, киназ и других молекул, участвующих во внутриклеточной сигнализации, локализованы в кавеолах. Кроме того, кавеолин взаимодействует со многими клеточными белками, участвующими в передаче сигналов, благодаря особому домену, обращённому в цитоплазму. Например, кавеолин регулирует синтез оксида азота (NO) в клетках эндотелия, подавляя в них активность синтазы оксида азота. Наконец, сами по себе кавеолы тоже могут принимать участие в передаче сигналов. Например, изменение кривизны клеточной мембраны вблизи кавеол влияет на передачу сигнала малой ГТФазой Ras, которая заякорена в мембране [3].

Подробнее про биомеханические свойства клеток можно почитать в обзоре на «Биомолекуле»: «Биомеханика живой клетки» [11]. — Ред.

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рисунок 4. Связь кавеол со стресс-фибриллами и актиновым цитоскелетом

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рисунок 5. Кавеолярные розетки: схема (слева; синим цветом изображены кавеолины, жёлтым — кавины) и электронная микрофотография (справа).

Кавеолы и вирусы

Как особые домены в липидной мембране, кавеолы могут играть важную роль в жизненном цикле вирусов. Например, сдерживают выход из клетки вируса Tiger Frog, который поражает лягушек Rana tigrina rugulosa, причём в состав вирусных частиц попадают некоторые белки кавеол [6]. Вероятно, таким образом вирус мешает формированию кавеол, которые сдерживают его размножение. В некоторых случаях, наоборот, проникновение вируса в клетку происходит через кавеолы, как в случае вируса Peste des Petits Ruminants, который вызывает некротическое разрушение эпителиальной и лимфоидной тканей у овец и коз [7].

Медицинское значение

Мутации, затрагивающие кавеолярные белки, нередко приводят к разнообразным болезням. Например, у мышей, лишенных кавина-1, развивается липодистрофия, которая проявляется в снижении массы жировой ткани. Мутации в гене кавина-1 приводят к схожим симптомам и у человека. Дело в том, что в отсутствие этого белка (и, соответственно, кавеол) адипоциты становятся более восприимчивыми к механическому стрессу и могут накапливать внутри лишь небольшое количество жира.

Кроме того, мутации в гене кавина-1 приводят к нарушениям в сердечно-сосудистой системе. Это связано с тем, что эндотелиальные клетки, лишенные кавеол, не выдерживают механических нагрузок. Нарушения в клеточном ответе на механический стресс, вызванные дисфункцией кавеол, могут также приводить к легочной артериальной гипертонии, фиброзу и атеросклерозу. Мутации, затрагивающие гены кавина-1, −3 и −4, связаны с несколькими формами мышечной дистрофии и кардиомиопатии. В отсутствие кавеол в мышечных клетках разрушается система Т-трубочек, и мышцы не могут нормально сокращаться. Многочисленные исследования показали важную роль кавина-1 в развитии разнообразных раковых заболеваний, причем он может обладать как онкогенными свойствами, так и выступать в роли супрессора опухолей. Вероятно, роль кавеол в развитии рака объясняется их участием во многих сигнальных путях, связанных с развитием опухоли [2].

В настоящее время происходит бурное развитие многих областей биологии, и клеточная биология, в которой, казалось бы, уже всё давно изучено, не остается в стороне: постоянно обнаруживаются всё новые и новые молекулярные подробности функционирования органелл, а усовершенствование методов микроскопии позволяет в мельчайших подробностях изучить их ультраструктуру. Мы продолжаем следить за судьбой кавеол и других клеточных структур, которые, несомненно, ещё принесут немало сюрпризов.

Источник

Научная электронная библиотека

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраныучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембранытранспортировка питательных веществ и утилизация продуктов обмена клетки;

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраныбуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраныподдержание тургора (упругость) клетки;

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембранывсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Что такое впячивание цитоплазматической мембраны. Смотреть фото Что такое впячивание цитоплазматической мембраны. Смотреть картинку Что такое впячивание цитоплазматической мембраны. Картинка про Что такое впячивание цитоплазматической мембраны. Фото Что такое впячивание цитоплазматической мембраны

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *