Что такое вторая гармоника

Максимально просто о гармониках и проблемах, возникающих от них

Анонс: Что такое гармонические искажения, гармоники и как они влияют на стабильность электроснабжения и качество электроэнергии в сети. Эмиссия гармонических искажений силовым оборудованием, проблемы технических средств компенсации реактивной мощности и фильтров гармоник.

В идеале любой источник питания, в том числе ТП распределительной сети, должен стабильно давать ток идеально синусоидального напряжения в каждом месте силовой сети абонента-потребителя, однако по ряду причин электросетевым компаниям часто бывает трудно обеспечить такие условия из-за эмиссии и трансмиссии гармонических искажений. Гармонические искажения тока, напряжения далеко не новость, но в настоящее время они представляют собой одну из основных проблем, вызывающих нарушения стабильности электроснабжения и качества электроэнергии в электроэнергетике.

В первых электроэнергетических системах гармонические искажения в основном вызывались насыщением трансформаторов, промышленных дуговых печей, мощных электросварочных аппаратов и т. п., а сами гармоники представляли сравнительно небольшую проблему из-за консервативной конструкции силового оборудования. Сегодня все более широкое использование нелинейных нагрузок в силовых сетях промышленных и непромышленных объектов обуславливает увеличение объемов гармонических искажений в распределительных сетях, причем именно через распределительные сети из-за «перегенерации» искажений трансформаторами ТП электросетевой компании силовые сети абонентов обмениваются гармониками между собой, (трансмиссия).

Наиболее часто используемой нелинейной нагрузкой является, пожалуй, ШИМ-преобразователь, широко используемый в сталелитейной, бумажной и текстильной промышленности, в приводах управление скоростью электродвигателя.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаГистограмма амплитуд гармоник, генерируемых в шестипульсном ШИМ-преобразователе

Наряду с этим, свой вклад в засорение сетей гармониками вносят системы энергосберегающего освещения, электроника центров обработки данных, программно-технических комплексов АСУ, электрические транспортные системы, бытовые электроприборы и т. д. К 2000 году было зафиксировано, что на электронные нагрузки приходилось около половины спроса на электроэнергию в США и развитых странах мира, а за два десятка лет нового века эта доля возросла до 70-80 %, и это вывело проблему гармонических искажений в перечень приоритетных и критических.

Для справки
Упрощенно, нелинейные нагрузки — это нагрузки, в которых форма волны тока не похожа на форму волны приложенного напряжения по ряду причин, например, из-за использования электронных переключателей, которые проводят ток только в течение части периода промышленной частоты и, следовательно, здесь закон Ома не может описать связь между напряжением и током. Среди наиболее распространенных нелинейных нагрузок — все типы выпрямительных устройств, в том числе источники бесперебойного питания, преобразователи напряжения компьютеров, частотно-регулируемые приводы, электрические печи, люминесцентные лампы и т. д. Нелинейные нагрузки вызывают искажение формы сигнала напряжения, перегрев трансформаторов и других силовых устройств, перегрузку по току проводов и клемм соединения оборудования, телефонные помехи, сбои в управлении микропроцессорами и пр.

Сам термин «гармоники» заимствован из области акустики, где он был связан с вибрацией струны или молекул воздуха с частотой, кратной базовой частоте, а гармоническая составляющая в системе питания переменного тока определяется как синусоидальная составляющая периодической формы волны, частота которой равна целому кратному основной частоте системы. Тогда гармоники в формах волны напряжения или тока можно представить, как идеально синусоидальные составляющие частот, кратных основной частоте: fn=(n)·f1, где n — порядок гармоники. Т. е. для наших сетей с f1=50 Гц частота третьей (n = 3) гармоники будет f3=3·50=150 Гц, пятой (n=5) f5=5·50=250 Гц, седьмой (n=7) f7=7·50=350 Гц и т. д. Хотя кривые зависимости тока на фундаментальной частоте и токов гармоник имеют форму синусоиды, результирующая кривая искажена из-за взаимного влияния токов разных частот (см. на рис. ниже).

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаСинусоиды тока фундаментальной частоты и токов 3, 5 и 7-й гармоник (сверху), результирующая кривая тока в силовой сети из-за взаимного влияния токов разных частот (снизу

Ситуация стала более сложной с применением конденсаторных батарей, используемых на промышленных предприятиях для коррекции коэффициента мощности, и энергокомпаниями для стабилизации напряжения вдоль распределительных линий. Результирующее реактивное сопротивление емкости образует колебательный контур с индуктивным реактивным сопротивлением системы на определенной (резонансной) частоте, которая может совпадать с одной из характеристических гармоник нагрузки, что обуславливает значительный наброс токов гармоник, перенапряжения, способные повредить изоляцию. По факту далеко не решает проблему в полном объеме использование активных фильтров гармоник (АФГ), по сути, тех же ШИМ-преобразователей (инвертеров), которые демпфируют гармоники противофазными токами «ниже» места присоединения, а для силовой сети «выше» остаются источниками эмиссии гармонических искажений.

Такая ситуация ставит перед инженерами сложную задачу по выявлению и исправлению чрезмерных уровней гармонических искажений формы сигналов тока и напряжения от стадии планирования до стадии проектирования энергетических и промышленных установок, что позволит не только поддерживать сети и оборудование в оптимальных условиях эксплуатации, но и предвидеть потенциальные проблемы с интеграцией, модернизацией нелинейных нагрузок, а также технических средств для нивелирования перетоков реактивной мощности и/или фильтров гармоник.

Источник

Генерация второй гармоники

Вы будете перенаправлены на Автор24

С возникновением сверхмощных источников когерентного преломления оптического диапазона (лазеров) использование нелинейных явлений в оптике стало реальным и простым. В таких процессах, в отличие от обычных оптических эффектов, происходит нарушение принципов суперпозиции световых волн.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Рисунок 1. Поляризация света. Автор24 — интернет-биржа студенческих работ

На сегодняшний день главным методом получения звуковых частот лазерного излучения является генерация второй гармоники, предполагающая формирование гигантского импульса. В этом случае накачка осуществляется до тех пор, пока инверсия населенностей не достигнет предела максимального значения. Тогда подключается добротность резонатора, и количество фотонов в нем начинает мгновенно увеличиваться, что приводит к появлению интенсивного короткого сигнала. В данном случае важно значение времени жизни элементарной частиц на верхнем уровне, который должен быть достаточно большим.

Генерация второй гармоники наблюдается:

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Рисунок 2. Генерация второй оптической гармоники. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Изучение удвоения частоты в генерации второй гармоники позволили ученым выявить новые закономерности взаимосвязи светового излучения с веществом. Практическим итогом исследований стало создание высокоэффективных ускорителей частоты лазерного излучения, а также каскадных удвоителей на третью, четвертую и более высокие гармоники. Такие явления находят широкое применение в устройствах квантовой электроники.

Теория эффекта

Из наиболее общих соображений все нелинейные явления могут быть охарактеризованы как проявления нарушений принципа суперпозиции оптических электромагнитных полей.

Рассмотрение нелинейных явлений может быть проведено на нескольких «уровнях строгости». Простейшее описание дается на основе классических представлений, в которых движение электрона в атоме и взаимодействие с полем описываются классическими уравнениями Ньютона и Максвелла. Более строгая формулировка подразумевает использование квантовой механики для поведения атома и классических уравнений для поля.

Для работы в рамках классической физики, используют модель атома Томсона, состоящая в том, что положительный заряд размазан по всей сфере некоторого радиуса, а в центре данной системы расположен электрон. Напряженность электрического поля положительного заряда в этом случае линейно растет от центра к краю сферы, а действующая на электрон сила удовлетворяет закон Гука.

Нелинейные эффекты второго порядка, а, в частности, генерацию второй гармоники, могут наблюдать только в веществах не изотропных и не имеющих центра симметрии. Действительно, когда материальное вещество изотропно, при изменении изначального направления приложенного электрического поля поляризация должна автоматически менять знак. Чтобы удовлетворить это требование, элементы, включающие четные степени, должны отсутствовать. Такой процесс приведет к постепенному исчезновению коэффициентов второго порядка.

Режим генерации второй гармоники

Для перехода в режим генерации второй гармоники необходимо предоставить определенное напряжение на электрооптическое вещество. При этом часть внутренней энергии излучения главной частоты будет трансформироваться в этот нелинейный эффект. При конструировании считалось, что интенсивность светового преломления второй гармоники прямо пропорциональна общему квадрату интенсивности.

Такое приближение недопустимо при значительных интенсивностях, так как тогда зависимость становится значительно больше. В расчетах ученые используют мощности меньшие 10 Вт, при которых любое условие квадратичной несостоятельности обязательно выполняется.

Показатель пропорциональности определяется, если интенсивность преломления пучка света внутри резонатора преобразуется во вторую гармонику.

Для более эффективного использования выходного импульса одно из зеркал действующего резонатора необходимо сделать полностью прозрачным для возникновения второй гармоники, а второе – частично отражающим. Часть внутренней энергии излучения света выводится постепенно из резонатора, следовательно, интенсивность преломления основной частоты внутри объекта будет уменьшаться.

Это явление при моделировании учитывался во введении прямой зависимости показателя отражения, который действовал в выходных зеркалах от плотности потока фотонов первой гармоник. Таким образом, чем больше плотность данных элементов в резонаторе, тем больше коэффициент трансформации во вторую гармонику и тем быстрее уменьшается интенсивность светового излучения главной частоты.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Рисунок 3. Схемы внерезонаторной генерации второй гармоники. Автор24 — интернет-биржа студенческих работ

Генерация второй гармоники в нелинейном кристалле

При определенных физических условиях волна нелинейной поляризации порождает вторую оптическую гармонику. Интересно, что поляризационная волна распространяется в плоскости с не такой высокой скоростью, как волна второй гармоники. Чтобы передача энергетического потенциала от волны поляризации к переизлученному световому вектору происходила достаточно эффективно, нужно добиться совпадение скоростей обеих волн.

Это означает, что должно выполняться условие, которое в науке называют волновым синхронизмом.

В этом случае используется:

Показатель преломления для обыкновенной волны движется самостоятельно и не зависит от направления распространения электромагнитной волны, тогда как параметр преломления необыкновенной волны непосредственно зависит от направления распределения света.

Если световая волна распространяется вдоль оптического вектора кристалла, тогда она не «расщепляется» на «простую» и «сложную» волны. Если же волновая ось образует некоторый угол, то упомянутый процесс происходит. Итак, условие волнового синхронизма будет считаться выполненным, если волны светового луча распространяются в кристалле под определенным углом к его оптическому вектору, а также, если падающая на кристалл волна полностью поляризована перпендикулярно к плоскости основного сечения.

Следовательно, за основу желательно брать кристаллический образец, где волна второй гармоники поляризована, испытывает определенный снос в поперечном направлении, который характеризуется углом, называемым углом анизотропии. Отмеченное изменение приводит к уменьшению отношения интенсивности второй гармоники к мощности светового излучения, падающего на кристалл. Это отношение ученые и называют эффективностью трансформации во вторую гармонику.

Источник

Гармоники в электрических сетях: причины, источники, защита

Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.

Что такое гармоники?

Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаГармоники и их сложение

Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.

По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.

Категории и принцип разделения

В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:

Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.

Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:

Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.

Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаРис. 2. Развитие тока в нейтрали

Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.

Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник.

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаРис. 3. Схема LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.

За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаРис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

Источник

Гармонические составляющие сети. Что это такое и как с ними быть

2020-12-17 Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоникаСтатьи Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника2 комментария

Как нам хорошо известно, сетевое напряжение имеет синусоидальную форму и частоту равную 50 Гц. Это в идеале, но на практике так бывает далеко не всегда. И дело здесь в гармонических составляющих сети — высших гармониках, представляющих из себя частотные сигналы, отличающиеся от основной частоты, и вносящих искажения в синусоидальную форму питающего напряжения, а это в свою очередь становится причиной ухудшения качества электроэнергии, нарушению нормальной работы электропотребителей и т.д.

Откуда же берутся эти гармонические составляющие?

Дело в том, что в цепях с линейной нагрузкой, к которым можно отнести сопротивление, индуктивность, емкость, протекающий через нагрузку ток пропорционален прикладываемому напряжению и следовательно синусоидальной форме сигнала напряжения соответствует токовая синусоида, поэтому разность фаз между ними равна нулю. А вот в случае, если наблюдается нелинейная зависимость протекающего тока от приложенного напряжения, синусоидальная форма сигнала искажается.

Связано это в первую очередь с ростом количества электрооборудования, имеющего нелинейные характеристики, вызванные наличием в схемотехнике полупроводниковых элементов. Наиболее «проблемными» в этом плане являются тиристорные регуляторы, преобразователи частоты, источники бесперебойного питания, электронные балласты, сварочные аппараты, электродуговые печи и другое оборудование с импульсными источниками питания.

Это приводит к возникновению импульсных токов, содержащих большое количество гармонических составляющих, так называемых высших гармоник, отличающихся от основной гармоники, которые затем попадают в электрические сети и вносят искажения. Гармоники образуются на частотах, кратных основной. Так, первая (основная) гармоника имеет частоту 50 Гц, частота гармоники 3-го порядка будет равна 150 Гц, частота гармоники 5-го порядка – 250 Гц и т.д. Получается, что реальное напряжение в сети представляет собой сумму основного синусоидального сигнала и его гармонических составляющих.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Надо учитывать, что полностью избавиться от влияния гармонических составляющих невозможно, и пока уровень гармоник не превышает допустимых норм, в принципе можно не беспокоиться о каких-то серьезным последствиях. Согласно ГОСТ 13109-97, нормально допустимое значение коэффициентов гармонических составляющих напряжения для сетей 0,38 кВ составляет 8 %, а предельно допустимое — 12 %. Также в этом ГОСТ приведены допустимые значения для каждой n-ой гармонической составляющей, например для 3-ей гармоники это 5%, для 5-ой гармоники – 6,0 %, для 7-ой гармоники – 5 % и т.д. Считается, что наибольшие искажения в синусоидальный сигнал вносят гармоники 3, 5, 7 порядка.

Немного расчётов

Параметр, указывающий на уровень влияния нелинейных искажений, или по другому степень отличия формы сигнала от синусоидальной, называется коэффициентом нелинейных искажений Ku (THD — Total Harmonic Distorsions).

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

U (1) – действующее значение напряжения 1-ой гармоники

U (2), U (3) … U (40) – действующие значения напряжения высших гармоник.

Таким образом можно определить общую долю суммарного напряжения высших гармоник по отношению к напряжению основной частоты.

Еще одним параметром является коэффициент n-ой гармонической составляющей напряжения

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

n — номер гармонической составляющей, кратной основной частоте

По этой формуле вычисляется вклад конкретной гармоники в общие искажения.

Основные характеристики гармоник

Все гармоники можно разделить по трем основным характеристикам — порядковому номеру, частоте и типу последовательности.

Последствия возникновения

Какие же проблемы приносят гармонические составляющие в случае отклонения от предельно допустимых показателей?

На самом деле негативных воздействий немало, это увеличение потерь в сетях, перегрев трансформаторов,перегрузки на нейтральных проводах, гармонические шумы, искажение формы синусоидальной кривой, перегрузка и следовательно уменьшение срока службы конденсаторов коррекции коэффициента мощности, поверхностный эффект. И это еще перечислены не все негативные последствия данного эффекта. Все эти факторы приводят в конечном итоге к экономическим, энергетическим потерям и сокращению срока службы оборудования.

Измерение показателей гармоник в сети

Для анализа качества электросети и выявления высших гармоник применяются, в частности, многофункциональные измерительные приборы или по другому анализаторы качества электроэнергии.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Они позволяют получать подробную информацию по всем основным характеристикам качества электроэнергии, таким как:

И целый ряд других параметров, которые по совокупности позволяют получить точную оценку не только гармонических величин, но и провести полный анализ состояния сетей.

Кроме этого, анализаторы имеют дополнительные функции, такие как ведение журнала событий, проверка последовательности чередования фаз, передача данных на верхний уровень по интерфейсу RS-485 или Ethernet, светодиодная индикация, дискретные входы и выходы.

Способы уменьшения гармонических составляющих

На основании полученных данных можно принимать решения о внедрении средств, направленных на уменьшение гармонических составляющих.

К основным способам уменьшения гармоник относятся разделение линейных и нелинейных нагрузок, обеспечение симметричного режима работы трехфазной системы, снижение полного сопротивления распределительной сети за счет увеличения сечения кабелей, применение линейных дросселей, применение изолирующих трансформаторов с обмотками «треугольник» и «звезда», применение пассивных и активных фильтров.

Одним из наиболее простых способов снижения уровня высших гармоник является установка линейных дросселей переменного тока. В частности, такой способ фильтрации широко применяется для подавления помех, возникающих при работе частотных преобразователей.

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Дроссель имеет малое значение индуктивного сопротивления на основной частоте 50 Гц и большое значение сопротивления для высших гармоник, что приводит к их ослаблению. Помимо дросселей переменного тока, для частотных преобразователей могут применяться и дроссели звена постоянного тока.

Помимо дросселей широко применяются пассивные и активные фильтры.

Пассивный фильтр гармоник

Пассивные фильтры строятся на основе индуктивно-емкостной схемы (LC-фильтры), состоящей из продольных индуктивностей и поперечной цепи, состоящей из последовательно включенных индуктивности и емкости которые образуют последовательный колебательный контур, настроенный на определенную гармонику. Если необходимо уменьшение коэффициента искажения по нескольким гармоникам, можно использовать несколько параллельно включенных фильтров. Такой метод часто используется в цепях с источниками бесперебойного питания ( UPS).

Что такое вторая гармоника. Смотреть фото Что такое вторая гармоника. Смотреть картинку Что такое вторая гармоника. Картинка про Что такое вторая гармоника. Фото Что такое вторая гармоника

Недостатком такого метода является его ограниченный только определенными гармониками эффект, поэтому для подавления всего спектра гармонических составляющих в сети используются активные фильтры.

Активный фильтр гармоник

Активный фильтр гармоник (АФГ) представляет собой электронное устройство, можно сказать является управляемым источником тока, подключаемым параллельно с нагрузкой, генерирующей высшие гармоники. Принцип действия основан на анализе гармоник нелинейной нагрузки и генерировании в распределительную сеть таких же гармоник, но противофазе. В результате высшие гармонические составляющие нейтрализуются в точке подключения фильтра и на выходе получается почти синусоидальная форма.

Такой метод благодаря своей эффективности является одним из наиболее действенных способов подавления высших гармоник, но не самым дешевым. Его применение оправдано там, где наблюдается большой уровень искажений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *