Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Какой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ называСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ многогольник

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠ°Ρ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ любой прямой, проходящий Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Π΅Π³ΠΎ сосСдниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Или ΠΆΠ΅ Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ опрСдСлСния:

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΎΠ±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ условиС: Ссли Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π΄Π²Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ ΠΈΡ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ, Ρ‚ΠΎ всС Ρ‚ΠΎΡ‡ΠΊΠΈ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Ρ‚Π°ΠΊ ΠΆΠ΅ Π±ΡƒΠ΄ΡƒΡ‚ Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠžΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎ! Если ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ отчислСния). Если Π½Π΅Ρ‚ возмоТности Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ самому, Π·Π°ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‚ΡƒΡ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ \(М_1\) β€” Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ, Π° \(М_2\) β€” Π½Π΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ.

Π‘ΡƒΠΌΠΌΠ° ΡƒΠ³Π»ΠΎΠ² Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

\(A_1A_2A_3. A_n\) β€” Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. НайдСм сумму Π΅Π³ΠΎ ΡƒΠ³Π»ΠΎΠ²:

\(\angle A_nA_1A_2,\;\angle A_1A_2A_3,\;\angle A_A_nA_1,\;. \)

Π‘ΡƒΠΌΠΌΠ° Π²Π½Π΅ΡˆΠ½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

\(\angle OAD\) β€” внСшний ΡƒΠ³ΠΎΠ» ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABCDE ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ А. (смСТный с \(\angle BAE\) )

\(180^\circ-A_1+180^\circ-A_2+. +180^\circ-A_n=n\cdot180^\circ-(A_1+A_2+. +A_n)=n\cdot180^\circ-(n-2)\cdot180^\circ=n\cdot180^\circ-n\cdot180^\circ+2\cdot180^\circ=360^\circ\)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ? Π’ Ρ‡Ρ‘ΠΌ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π΅ являСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ?

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” это ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ Π² ΠΎΠ΄Π½ΠΎΠΉ полуплоскости ΠΎΡ‚ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ прямой, содСрТащСй Π΅Π³ΠΎ сторону.

Π’ΠΎ Π΅ΡΡ‚ΡŒ Π½ΠΈ ΠΎΠ΄Π½Π° ΠΈΠ· прямых, проходящих Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ сосСдниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π½Π΅ Ρ€Π°Π·Ρ€Π΅Π·Π°Π΅Ρ‚ этот ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° Π΄Π²Π΅ части.

1) ABCDEF β€” Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ полуплоскости ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· прямых AB, BC, CD, DE ΠΈ EF.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

2) MNKFEL β€” Π½Π΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ,

Он Π½Π΅ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ полуплоскости ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прямых KF ΠΈ FE.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

НС Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ Π½Π° ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ число Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² курсС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ срСднСй ΡˆΠΊΠΎΠ»Ρ‹ ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.

Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΠ΅ Π²ΠΈΠ΄Ρ‹ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ называСтся ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΉ Ρ‚Π΅ΠΌ свойством, Ρ‡Ρ‚ΠΎ всС Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ Π»Π΅ΠΆΠ°Ρ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ любой прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Π΅Π³ΠΎ сосСдниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ

БущСствуСт мноТСство эквивалСнтных ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π’Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ обобщСния

Π‘ΠΌ. Ρ‚Π°ΠΊΠΆΠ΅

ПолСзноС

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” β–² ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ↑ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ ΡƒΠ³ΠΎΠ» мСньшС Π΄Π²ΡƒΡ… прямых; располоТСн Π² ΠΎΠ΄Π½ΠΎΠΉ полуплоскости ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ любой прямой, содСрТащСй Π΅Π³ΠΎ сторону. равносторонний. Ρ€Π°Π²Π½ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. ΠΈΠ·ΠΎΠ³ΠΎΠ½ … Π˜Π΄Π΅ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ русского языка

Π’Π«ΠŸΠ£ΠšΠ›Π«Π™ ΠœΠΠžΠ“ΠžΠ£Π“ΠžΠ›Π¬ΠΠ˜Πš β€” плоскоС Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ΅ мноТСство, Π³Ρ€Π°Π½ΠΈΡ†Π° ΠΊ Ρ€ΠΎΠ³ΠΎ ломаная линия, состоящая ΠΈΠ· ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа прямолинСйных ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ². Иногда Π’. ΠΌ. Π½Π°Π·. Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΅Π³ΠΎ Π³Ρ€Π°Π½ΠΈΡ†Ρƒ. Π’. ΠΌ. Π΅ΡΡ‚ΡŒ пСрСсСчСниС ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа (Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ…) полуплоскостСй. М … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” Π£ этого Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ значСния, см. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (значСния). ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΎΠΏ … ВикипСдия

ΠœΠΠžΠ“ΠžΠ£Π“ΠžΠ›Π¬ΠΠ˜Πš β€” 1) Замкнутая ломаная линия, ΠΈΠΌΠ΅Π½Π½ΠΎ: Ссли Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½ΠΈΠΊΠ°ΠΊΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€ΠΈ ΠΈΠ· ΠΊ Ρ€Ρ‹Ρ… Π½Π΅ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой, Ρ‚ΠΎ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² Π½Π°Π·. ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ (см. рис. 1). М. ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ пространствСнными ΠΈΠ»ΠΈ плоскими (ниТС… … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ сторонами ΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ … Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ совСтская энциклопСдия

Π—Π²Ρ‘Π·Π΄Ρ‡Π°Ρ‚Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ β€” Π—Π²Ρ‘Π·Π΄Ρ‡Π°Ρ‚Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ располоТСны ΠΊΠ°ΠΊ Ρƒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. БущСствуСт мноТСство ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π·Π²Ρ‘Π·Π΄Ρ‡Π°Ρ‚Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² (ΠΈΠ»ΠΈ просто Π·Π²Ρ‘Π·Π΄),… … ВикипСдия

ΠŸΠ›ΠΠΠ˜Π“ΠžΠ β€” Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния плоскости Π½Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, Ρ‚. Π΅. Ρ‚Π°ΠΊΠΎΠ³ΠΎ разбиСния, Ρ‡Ρ‚ΠΎ сущСствуСт Π³Ρ€ΡƒΠΏΠΏΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ плоскости, ΡΠΎΠ²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰Π°Ρ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ с собой, ΠΊ рая дСйствуСт Ρ‚Ρ€Π°Π½Π·ΠΈΡ‚ΠΈΠ²Π½ΠΎ Π½Π° совокупности ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²β€¦ … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

Вписанная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, вписанная Π² ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABCDE ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ называСтся вписанной Π² ΡƒΠ³ΠΎΠ», Ссли ΠΎΠ½Π° Π»Π΅ΠΆΠΈΡ‚ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΡƒΠ³Π»Π° ΠΈ касаСтся Π΅Π³ΠΎ сторон. Π¦Π΅Π½Ρ‚Ρ€ окруТности, вписанной Π² ΡƒΠ³ΠΎΠ», Π»Π΅ΠΆΠΈΡ‚ Π½Π° биссСктри … ВикипСдия

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 1. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ βˆ’ замкнутая ломаная линия.

ОбъСдинСниС ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ ΠΈΠΌ части плоскости Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ прСдставим Π΄Ρ€ΡƒΠ³ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 2. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ βˆ’ это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, которая являСтся Ρ‡Π°ΡΡ‚ΡŽ плоскости, ограничСнная Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ Π»ΠΎΠΌΠ°Π½ΠΎΠΉ.

Π’Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π»ΠΎΠΌΠ°Π½ΠΎΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π—Π²Π΅Π½ΡŒΡ Π»ΠΎΠΌΠ°Π½ΠΎΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ сторонами ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π›ΡŽΠ±ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ раздСляСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π½Π° Π΄Π²Π΅ части, ΠΎΠ΄Π½Π° ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… называСтся Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π° другая внСшнСй ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π’ΠΈΠ΄Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с трСмя Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ называСтся Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, с чСтырСмя Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ βˆ’ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, с пяти Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ βˆ’ ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, ΠΈ Ρ‚.Π΄. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с \( \small n \) Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ называСтся \( \small n- \)ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 1 прСдставлСны Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ, стоящих ΠΏΡ€ΠΈ Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π°Ρ…. ΠΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Ρ‡Π΅Ρ€Π΅Π΄ΠΎΠ²Π°Π² Π±ΡƒΠΊΠ²Ρ‹ ΠΏΡ€ΠΈ Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π°Ρ… ΠΏΠΎ часовой стрСлкС ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки. НапримСр, ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° рисункС 2 Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ \( \small A_1A_2A_3A_4A_5A_6 \) ΠΈΠ»ΠΈ \( \small A_6A_5A_4A_3A_2A_1 \).

БосСдниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π’Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ сосСдними, Ссли ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΅Π³ΠΎ сторон.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 2 Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ \( \small A_2 \) ΠΈ \( \small A_3 \) ΡΠ²Π»ΡΡŽΡ‚ΡΡ сосСдними, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ стороны \( \small A_2A_3. \)

Π‘ΠΌΠ΅ΠΆΠ½Ρ‹Π΅ стороны ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ смСТными, Ссли ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΡƒΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ.

На рисункС 2 стороны \( \small A_4A_5 \) ΠΈ \( \small A_5A_6 \) ΡΠ²Π»ΡΡŽΡ‚ΡΡ смСТными, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΡƒΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ \( \small A_5. \)

ΠŸΡ€ΠΎΡΡ‚ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π‘Π°ΠΌΠΎΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ называСтся простым, Ссли Π΅Π³ΠΎ нСсмСТныС стороны Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ (Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΈΠ»ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹Ρ…).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 3 ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ простой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ стороны ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ самопСрСсСчСний. А Π½Π° рисункС 4 ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π΅ являСтся простым, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ стороны \( \small A_1A_4 \) ΠΈ \( \small A_2A_3 \) ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ. Π’Π°ΠΊΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ называСтся ΡΠ°ΠΌΠΎΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ называСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ, Ссли ΠΎΠ½Π° Π»Π΅ΠΆΠΈΡ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π»ΡŽΠ±ΡƒΡŽ Π΅Π³ΠΎ сторону.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 5 ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π»Π΅ΠΆΠΈΡ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ прямых \( \small m, \ n, \ l, \ p, \ q, \ r\) проходящих Ρ‡Π΅Ρ€Π΅Π· стороны ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 6 прямая \( \small m\) Π΄Π΅Π»ΠΈΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° Π΄Π²Π΅ части, Ρ‚.Π΅. ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π΅ Π»Π΅ΠΆΠΈΡ‚ ΠΏΠΎ ΠΎΠ΄Π½Ρƒ сторону ΠΎΡ‚ прямой \( \small m\). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π΅ являСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

ΠŸΡ€ΠΎΡΡ‚ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ, Ссли всС Π΅Π³ΠΎ стороны Ρ€Π°Π²Π½Ρ‹ ΠΈ всС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹. НапримСр равносторонний Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ всС Π΅Π³ΠΎ стороны Ρ€Π°Π²Π½Ρ‹, ΠΈ всС Π΅Π³ΠΎ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹ 60Β°. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ всС Π΅Π³ΠΎ стороны Ρ€Π°Π²Π½Ρ‹ ΠΈ всС Π΅Π³ΠΎ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹ 90Β°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 7 ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ), Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρƒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° всС стороны Ρ€Π°Π²Π½Ρ‹ ΠΈ всС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (Ρ€ΠΎΠΌΠ±) Π½Π° Π½Π° рисункС 8 Π½Π΅ являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ всС стороны ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹, Π½ΠΎ всС ΡƒΠ³Π»Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π΅ Ρ€Π°Π²Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ нСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ всС ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Ρ‹, Π½ΠΎ всС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ стороны ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π΅ Ρ€Π°Π²Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ.

Π—Π²Π΅Π·Π΄Ρ‡Π°Ρ‚Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ

Π‘Π°ΠΌΠΎΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, всС стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π½Ρ‹ ΠΈ всС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, называСтся Π·Π²Π΅Π·Π΄Ρ‡Π°Ρ‚Ρ‹ΠΌ ΠΈΠ»ΠΈ Π·Π²Π΅Π·Π΄Ρ‡Π°Ρ‚ΠΎ-ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

На рисункС 9 прСдставлСн Π·Π²Π΅Π·Π΄Ρ‡Π°Ρ‚Ρ‹ΠΉ ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ всС ΡƒΠ³Π»Ρ‹ \( \small A_1, \ A_2, \ A_3, \ A_4, \ A_5 \) Ρ€Π°Π²Π½Ρ‹ ΠΈ Ρ€Π°Π²Π½Ρ‹ всС стороны: \( \small A_1A_2=A_2A_3=A_3A_4=A_4A_5=A_5A_1. \)

ΠŸΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π‘ΡƒΠΌΠΌΠ° всСх сторон ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° называСтся ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Для ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° \( \small A_1A_2. A_A_n \) ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ вычисляСтся ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹:

Π£Π³ΠΎΠ» ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π£Π³Π»ΠΎΠΌ (Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ ΡƒΠ³Π»ΠΎΠΌ) ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ называСтся ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя сторонами ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, сходящимися ΠΊ этой Π²Π΅Ρ€ΡˆΠΈΠ½Π΅. Если ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ, Ρ‚ΠΎ всС ΡƒΠ³Π»Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° мСньшС 180Β°. Если ΠΆΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π΅Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ, Ρ‚ΠΎ ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ ΡƒΠ³ΠΎΠ» большС 180Β° (ΡƒΠ³ΠΎΠ» \( \small A_3 \) Π½Π° рисункС 2).

Π’Π½Π΅ΡˆΠ½ΠΈΠΉ ΡƒΠ³ΠΎΠ» ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π’Π½Π΅ΡˆΠ½ΠΈΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ называСтся ΡƒΠ³ΠΎΠ» смСТный Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌΡƒ ΡƒΠ³Π»Ρƒ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅.

На рисункС 10 ΡƒΠ³ΠΎΠ» 1 являСтся внСшним ΡƒΠ³Π»ΠΎΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΡ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ \( \small E. \)

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ

Диагоналями Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ Π΄Π²Π΅ нСсосСдниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π’Ρ‹Π²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΡƒΠ»Ρƒ вычислСния количСства Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠŸΡƒΡΡ‚ΡŒ Π·Π°Π΄Π°Π½ \( \small n \)-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΎΠ΄Π½Ρƒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ мыслСнно всС ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ эту Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ с ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ \( \small n-1 \) ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ². Но ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Π²Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ для Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ сосСдними, Π° ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π½ΠΈΡŽ диагональ βˆ’ это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ нСсосСдниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Ρ‚ΠΎ ΠΈΠ· \( \small n-1 \) Π²Ρ‹Ρ‡Ρ‚Π΅ΠΌ 2. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ \( \small n-3 \). ВсСго \( \small n \) Π²Π΅Ρ€ΡˆΠΈΠ½. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ количСство вычислСнных Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ \( \small n(n-3). \) Учитывая, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ диагональ βˆ’ это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Ρ‚ΠΎ получится, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ вычислили ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ диагональ Π΄Π²Π°ΠΆΠ΄Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ число Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π°. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ количСство Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ \( \small n- \)ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Π‘ΡƒΠΌΠΌΠ° ΡƒΠ³Π»ΠΎΠ² Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Π’Ρ‹Π²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ вычислСния суммы ΡƒΠ³Π»ΠΎΠ² Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Для этого ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ \( \small A_1 \) всС Π΄ΠΈΠ°Π³Π½ΠΎΠ°Π»ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° \( \small A_1A_2. A_A_n \) (Рис.11):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΊΡ€Π°Ρ‚ΠΊΠΎ

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΡ‹, ΠΊΠ°ΠΊ выяснили ΠΈΠ· ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π° Ρ€Π°Π²Π½ΠΎ \( \small n-3 \). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, эти Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° \( \small n-3+1=n-2 \) Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ сумма ΡƒΠ³Π»ΠΎΠ² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Π° 180Β°, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ сумма ΡƒΠ³Π»ΠΎΠ² Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Π°: \( \small 180Β°(n-2). \)

Π³Π΄Π΅ \( \small n \) βˆ’ΠΊΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ сторон (Π²Π΅Ρ€ΡˆΠΈΠ½) Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π£Π³ΠΎΠ» ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρƒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° всС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (1) ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΠ³ΠΎΠ» ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Π³Π΄Π΅ \( \small n \) βˆ’ΠΊΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ сторон (Π²Π΅Ρ€ΡˆΠΈΠ½) ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, элСмСнты, свойства, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

А Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π­Ρ‚ΠΎ гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, содСрТащаяся Π² плоскости, которая характСризуСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ всС Π΅Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ находятся Π²Π½ΡƒΡ‚Ρ€ΠΈ, Π° Π΅Π΅ ΡƒΠ³Π»Ρ‹ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΌΠ΅Π½Π΅Π΅ 180 Β°. Π‘Ρ€Π΅Π΄ΠΈ Π΅Π³ΠΎ свойств ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅:

1) Он состоит ΠΈΠ· n ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… сСгмСнтов, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… послСдний ΠΈΠ· сСгмСнтов соСдиняСтся с ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ. 2) Ни ΠΎΠ΄ΠΈΠ½ ΠΈΠ· сСгмСнтов Π½Π΅ пСрСсСкаСтся Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΈ внСшнСй областях. 3) ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ области строго мСньшС плоского ΡƒΠ³Π»Π°.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ состоит ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… элСмСнтов:

Когда Ρƒ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° всС стороны ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. ВсС ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Π΅.

Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Π΅ ΠΈ Π½Π΅Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ

Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, число 3 прСдставляСт собой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ сторонами, Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π΅Π³ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² большС 180 Β°, поэтому ΠΎΠ½ Π½Π΅ удовлСтворяСт ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ выпуклости. Π’ΠΎ Π΅ΡΡ‚ΡŒ это Π½Π΅Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ чСтырСхсторонний ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π²ΠΎΠ³Π½ΡƒΡ‚Ρ‹ΠΌ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

Число 4 прСдставляСт собой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ (сторонами), Π΄Π²Π° ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ. Π§Π΅Ρ‚Ρ‹Ρ€Π΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»Π° мСньшС 180 Β°, Π½ΠΎ ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Π²Π΅ стороны ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ, получаСтся Π½Π΅Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅ΠΊΡ€Π΅Ρ‰Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (ΠΏΠ΅Ρ€Π΅ΠΊΡ€Π΅Ρ‰Π΅Π½Π½Ρ‹ΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ).

НаконСц, число 6, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ Π΅ΡΡ‚ΡŒ ΠΏΡΡ‚ΡŒ сторон, ΠΈΠΌΠ΅Π΅Ρ‚ всС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ мСньшС 180ΒΊ, поэтому это Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ с ΠΏΡΡ‚ΡŒΡŽ сторонами (Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ).

Бвойства Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

1. ΠΠ΅ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΈΠ»ΠΈ простой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π΄Π΅Π»ΠΈΡ‚ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΡƒΡŽ Π΅Π³ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π½Π° Π΄Π²Π΅ области. ВнутрСнняя ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΈ внСшняя ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ являСтся Π³Ρ€Π°Π½ΠΈΡ†Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя областями.

Но Ссли ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ, Ρ‚ΠΎΠ³Π΄Π° Ρƒ нас Π΅ΡΡ‚ΡŒ внутрСнняя ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, которая являСтся односвязной, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ, взяв Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ· Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ области, ΠΎΠ½ всСгда ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ соСдинСн сСгмСнтом, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ области.

2- ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΉ ΡƒΠ³ΠΎΠ» Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° мСньшС плоского ΡƒΠ³Π»Π° (180ΒΊ).

3- ВсС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° всСгда ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· полуплоскостСй, опрСдСляСмых Π»ΠΈΠ½ΠΈΠ΅ΠΉ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

4- Π’ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ всС Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ содСрТатся Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ области.

5- Π’Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠΌΡƒ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΌΡƒ сСктору, опрСдСляСмому ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ ΡƒΠ³Π»ΠΎΠΌ.

6. ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, всС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ находятся Π½Π° окруТности, являСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ называСтся цикличСским ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

7- ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ цикличСский ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ являСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ, Π½ΠΎ Π½Π΅ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ являСтся цикличСским.

8- ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ Π½Π΅ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (простой ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ), всС стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π½Ρ‹, являСтся Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ ΠΈ извСстСн ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡƒΠ³Π»Ρ‹ Π² Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ…

9- ΠžΠ±Ρ‰Π΅Π΅ количСство N Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с n сторонами опрСдСляСтся ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

10- Π‘ΡƒΠΌΠΌΠ° S Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с n сторонами опрСдСляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. Из Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ выводятся n-3 Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ n-2 Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘ΡƒΠΌΠΌΠ° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° составляСт 180ΒΊ. ΠžΠ±Ρ‰Π°Ρ сумма ΡƒΠ³Π»ΠΎΠ² n-2 Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Ρ€Π°Π²Π½Π° (n-2) * 180ΒΊ, Ρ‡Ρ‚ΠΎ совпадаСт с суммой Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ энСгона.

Π‘ΡƒΠΌΠΌΠ° всСх Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² 9-стороннСго ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π½Π°:

Но сущСствуСт 9 Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΡƒΠ³Π»ΠΎΠ² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ€Ρ‹ Ξ±, поэтому Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ равСнство:

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ€Π° Ξ± ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ ΡƒΠ³Π»Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Π°:

5 Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΆΠΈΠ΄ΠΊΠΈΠΌ ΠΈ кристаллизованным ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΠΎΠΌ

20 самых Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π² ΠΌΠΈΡ€Π΅ (ΠΈ ΠΈΡ… Ρ†Π΅Π½Π°)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *