Что такое высоковольтный выключатель
УСТРОЙСТВО И ПРИМЕНЕНИЕ ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЕЙ
Высоковольтные выключатели относятся к классу коммутационных устройств, использующихся в электрических сетях напряжением выше 1000 В.
Главным их отличием от других коммутационных аппаратов – разъединителей, отделителей, высоковольтных выключателей нагрузки, является способность разрывать электрические цепи при протекании аварийных сверхтоков.
Основу выключателя составляет его контактная система, особая конструкция которой и обеспечивает возможность коммутации токов большой величины вплоть до аварийных при номинальном напряжении сети, достигающем 1000 кВ и выше.
В 80-х годах прошлого века в рамках создания сверхмощного энергетического моста «Сибирь – Центр», а именно, для ЛЭП – 1150 кВ переменного тока «Экибастуз – Кокшетау» в Казахстане, НПО «Уралэлектротяжмаш» разработало и изготовило уникальные воздушные коммутаторы ВНВ-1150.
Проект в целом не оказался успешным, в настоящее время линия работает под напряжением 500 кВ, но, тем не менее, такое оборудование существует. Что касается электрических сетей постоянного тока, самая высоковольтная линия, соответственно и аппаратура, работающая на ней, имеет напряжение 1330 кВ. Линия находится в США и работает в сети «Pacific Intertie».
Для проверки рабочих параметров коммутационных аппаратов осуществляются испытания высоковольтных выключателей с использованием специальных приборов контроля.
ТИПЫ ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЕЙ
Основной задачей высоковольтного прибора коммутации является гашение электрической дуги при отключении электрической нагрузки. Для успешного выполнения этой функции применяются различные технологические решения. Базовый принцип классификации высоковольтной коммутационной аппаратуры основан на применяемых способах решения этой задачи.
МАСЛЯНЫЕ ВЫСОКОВОЛЬТНЫЕ ВЫКЛЮЧАТЕЛИ
Существуют конструктивные разновидности аппаратов данного типа. Так, устройства, коммутация всех трёх фаз которых происходит в одном общем объёме, заполненном маслом, называются однобаковыми.
Такие конструкции характерны для масляных коммутаторов напряжением до 20 кВ. В другом, трёхбаковом варианте исполнения контакт каждой фазы находится в отдельной ёмкости с маслом.
Гашение дуги осуществляется благодаря изоляционным свойствам применяемого трансформаторного масла и особой конструкции контактов, создающих несколько разрывов в каждой фазе.
Баковые конструкции характеризуются внушительными размерами масляных баков и большим объёмом заливаемого масла, которое кроме дугогашения играет роль основной изоляции.
Другая разновидность высоковольтных масляных аппаратов, представлена маломасляными или горшковыми моделями. Они более компактны и требуют значительно меньше масла, выполняющего исключительно дугогасительные функции. Роль основной изоляции играют твердотельные материалы – фарфор или полимеры.
Кроме этого, масло обладает гигроскопичностью, абсорбируя влагу из воздуха. В процессе эксплуатации требуется осуществление регулярного контроля качества масла путём проведения лабораторных анализов.
При отклонении рабочих характеристик масла от нормы необходимо производить процедуры его осушки, очистки и регенерации с использованием специализированного оборудования.
ВОЗДУШНЫЕ ВЫСОКОВОЛЬТНЫЕ ВЫКЛЮЧАТЕЛИ
Применяются воздушные аппараты преимущественно в открытых распределительных устройствах (ОРУ) электрических подстанций. Связано это с их внушительными габаритами и необходимостью наличия компрессорного хозяйства с сетью воздуховодов высокого давления.
Воздушные приборы коммутации разделяются на два подтипа – аппараты с отделителем и без отделителя. В дугогасительной камере воздушных аппаратов первого подтипа располагаются основные контакты, разрывающие электрическую дугу.
В каждом из полюсов последовательно с дугогасительными контактами располагается отделитель – контакт, обеспечивающий разрыв полюса в отключенном положении.
При отключении привода воздушного аппарата открывается пневмоклапан, подающий воздух на приводные поршни дугогасительных контактов. Перемещение поршня вызывает их размыкание, а также открывает клапан, обеспечивающий поступление сжатой воздушной струи в дугогасительные камеры.
Создаваемое воздушное дутьё гасит дугу, после чего происходит разъединение контактов отделителя. После прекращения воздушной подачи дугогасительные контакты возвращаются в замкнутое состояние, и разрыв полюсов в отключенном положении обеспечивается только контактной группой отделителей.
В воздушных моделях без отделителей главная контактная группа выполняет функции как дугогашения, так и создания разрыва при отключении.
ВАКУУМНЫЕ ВЫСОКОВОЛЬТНЫЕ ВЫКЛЮЧАТЕЛИ
В основе конструкции вакуумных высоковольтных коммутаторов лежит идея использования разрежённой воздушной среды не склонной к ионизации, для гашения электрической дуги, которая возникает при разрыве токовой цепи.
При высокой степени разрежения количество вещества, находящегося в вакуумной камере выключателя настолько мало, что горение электрической дуги может поддерживаться только за счёт эмиссии электронов с поверхности металлических контактов.
В результате гашение дуги в вакуумной камере происходит в течение первого полупериода при прохождении значения переменного тока через ноль.
Ключевыми элементами вакуумных коммутационных аппаратов являются вакуумные камеры, представляющие собой неразборные узлы.
Необходимый уровень разрежения воздуха внутри вакуумной камеры создаётся на заводе при её изготовлении и не требует корректировки в процессе эксплуатации. Это обстоятельство делает вакуумный вид коммутационной аппаратуры привлекательным с точки зрения удобства в эксплуатации.
ЭЛЕГАЗОВЫЕ ВЫСОКОВОЛЬТНЫЕ ВЫКЛЮЧАТЕЛИ
Применение шестифтористой серы SF6, именуемой элегазом в качестве среды для гашения дуги позволило существенно уменьшить габариты дугогасительных камер и упростить конструкцию контактных групп элегазовых выключателей. Элегазовые коммутационные аппараты имеют баковую или колонковую конструкцию.
Элегазовая аппаратура наряду с вакуумной постоянно наращивает своё присутствие на рынке электротехнических устройств и относится к одному из самых перспективных направлений развития отрасли.
© 2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Типы высоковольтных выключателей
Выключатели среднего и высокого напряжения с большим током отключения используются на электрических станциях и подстанциях. Они представляют собой сложную конструкцию, управляемую электромагнитными, пружинными, пневматическими или гидравлическими приводами.
По способу гашения дуги выключатели делятся на:
1. Элегазовые выключатели
Рисунок 1 – Конструкция элегазового выключателя
Элегазовый выключатель работает за счет изоляции фаз между собой с помощью газа(обычно используется электропроточный газ SF6 – так называемый «элегаз»). При поступлении сигнала отключения оборудования контакты камер размыкаются. Они создают электрическую дугу, которая размещается в газовой среде. Дуга разделяет газ на отдельные компоненты, а высокое давление в резервуаре способствует ее гашению.
2. Вакуумные выключатели
Рисунок 2 – Конструкция вакуумного выключателя
Принцип действия вакуумного выключателя основывается на высокой диэлектрической прочности вакуума и его диэлектрических свойствах. В момент размыкания контактов в промежутке между ними возникает дуга за счет испарения металла с их поверхности. При переходе тока через ноль вакуум восстанавливает диэлектрические свойства и дуга больше не возникает.
Рисунок 3 – Принцип работы вакуумного выключателя
3. Масляные выключатели
Рисунок 4 – Конструкция масляного выключателя
В дугогасительных устройствах масляных выключателей гашение дуги происходит при помощи ее эффективного охлаждения в потоке газа и пара, вырабатываемого при разложении и испарении масла
4. Воздушные выключатели
Рисунок 5 – Конструкция воздушного выключателя
Принцип работы воздушного выключателя состоит в гашении дуги с помощью скоростного потока сжатого воздуха, направляемого в дутьевые каналы. Под действием воздушного потока дуга растягивается и направляется в дутьевые каналы, где окончательно гасится.
5. Выключатели нагрузки
Выключатель нагрузки — высоковольтный коммутационный аппарат, который занимает промежуточное положение между разъеденителем и выключателем по уровню допустимой нагрузки комутационных токов. Способен отключать без повреждения как номинальные нагрузочные токи, так и сверхтоки при аварийных режимах. Выключатель нагрузки допускает коммутацию номинального тока, но не рассчитан на разрыв токов КЗ.
По принципу гашения дуги выключатели нагрузки классифицируются:
В распределительных сетях наиболее распространены конструкции выключателей нагрузки (ВНР, ВНА, ВНБ) с гасительными устройствами газогенерирующего типа.
Рисунок 6 – Выключатель нагрузки с гасительными устройствами газогенерирующего типа (BH) а – общий вид выключателя; б – гасительная камера
Как видно по рисунку, устройство основано на элементах трехполюсного разъединителя для внутренней установки. На опорных изоляторах разъединителя укреплены гасительные камеры. Но привод разъеденителя изменен для того, чтобы обеспечить достаточную скорость срабатывания при включении и отключении.
В положении «включено» ножи входят в гасительные камеры. Контакты разъединителя и скользящие контакты гасительных камер замкнуты. При отключении тока сначала отключаются контакты разъединителя, затем ток смещается через вспомогательные ножи в гасительные камеры. После этого размыкаются контакты в камере. Зажигаются дуги, которые гасятся в потоке газов, являющихся продуктами разложения вкладышей из оргстекла, находящихся в камере.
В положении «отключено» вспомогательные ножи находятся вне гасительных камер, обеспечивая достаточные изоляционные разрывы.
Заключение
Учитывая современные тенденции развития коммутационного оборудования, наиболее выгодными для использования являются элегазовые выключатели. Их основные достоинства обусловлены свойствами элегазов, т.к. при атмосферном давлении их диэлектрическая прочность в 3 раза больше, чем у воздуха, а при повышенном давлении больше, чем у трнасформаторного масла.
Также большими перспективами обладают и вакуумные аппараты благодаря большой скорости коммутации токов, малому весу и габаритам.
В современных условиях крайне важно уделять внимание вопросам модернизации оборудования или его замены. Для того, чтобы обеспечивать достаточную безопасность и стабильность работы систем необходимо своевременно обслуживать и заменять высоковольтное оборудование.
Высоковольтные выключатели постоянного и переменного тока
Высоковольтный выключатель
Высоковольтный выключатель состоит из: контактной системы с дугогасительным устройством, токоведущих частей, корпуса, изоляционной конструкции и приводного механизма (например, электромагнитный привод, ручной привод).
Классификация высоковольтных выключателей
По способу гашения дуги
По назначению
По виду установки
По категориям размещения и климатическому исполнению
Общее устройство и принцип действия высоковольтных выключателей
Воздушный выключатель
В воздушных выключателях (ВВ) энергия сжатого воздуха используется и как движущая сила, перемещающая контакты, и как дугогасящая среда. Принцип действия дугогасительного устройства (ВВ) заключается в том, что дуга, образующаяся между контактами, подвергается интенсивному охлаждению потоком сжатого воздуха, вытекающего в атмосферу. При прохождении тока через ноль температура дуги падает и сопротивление промежутка увеличивается. Одновременно происходит механическое разрушение дугового столба и вынос заряженных частиц из промежутка.
Воздушные выключатели конструктивно подразделяются на:
Элегазовый силовой выключатель
Изолирующей и гасящей средой выключателей служит гексафторид серы SF6 (элегаз). Выключатели представляют собой трехполюсный аппарат, полюсы которого имеют одну (общую) раму и управляются одним приводом, либо каждый из трех полюсов выключателей имеет собственную раму и управляется своим приводом (выключатель с пополюсным управлением).
Принцип работы аппаратов основан на гашении электрической дуги (возникающей между расходящимися контактами при отключении тока) потоком элегаза.
Первый источник превалирует при отключении малых токов, а второй — больших.
Полюс выключателя
Колонковое исполнение. Полюс представляет собой вертикальную колонну, состоящую из двух (и более) изоляторов, в верхнем из которых размещено дугогасительное устройство (ДУ), а нижний служит опорой ДУ и обеспечивает ему требуемое изоляционное расстояние от заземленной рамы. Внутри опорного изолятора размещена изоляционная штанга, соединяющая подвижный контакт ДУ с приводной системой аппарата.
Баковое исполнение. Полюс представляет собой металлический цилиндрический бак, на котором установлены два изолятора, образующие высоковольтные вводы выключателя. ДУ в таком выключателе размещено в заземленном металлическом корпусе.
Также на всех современных выключателях установлен предохранительный клапан — устройство с тонкостенной мембраной, разрывающейся при давлении возникающем при внутреннем коротком замыкании, но не достигающем значения, при котором испытываются собственно изоляторы.
Дугогасительное устройство
Дугогасительное устройство предназначено обеспечивать быстрое гашение электрической дуги, образующейся между контактами выключателя при их размыкании. Разработка рациональной и надежной конструкции дугогасительного устройства представляет значительные трудности, так как процессы, происходящие при гашении электрической дуги, чрезвычайно сложны, недостаточно изучены и обусловливаются многими факторами, предусмотреть которые заранее не всегда представляется возможным. Поэтому окончательная разработка дугогасительного устройства может считаться завершенной лишь после его экспериментальной проверки.
Современные выключатели оснащены дугогасительным устройством автокомпрессионного типа, которые демонстрируют свои расчетные преимущества при отключении больших токов.
Подвижная система содержит, кроме главного и дугогасительного контактов, связанную с токовым выводом ДУ неподвижную токоведущую гильзу; поршневое устройство, создающее при отключении повышенное давление в подпоршневой полости, и два фторопластовых сопла (большое и малое), которые направляют потоки газа из зоны повышенного давления в зону расхождения дугогасительных контактов. Большое сопло, кроме того, препятствует радиальному смещению контактов подвижной системы относительно контактов неподвижной, поскольку никогда не выходит из направляющей втулки главного неподвижного контакта.
Главный контакт подвижной системы представляет собой ступенчатую медную гильзу, узкая часть которой адаптирована ко входу в розеточный главный контакт неподвижной системы, а широкая часть имеет два ручья, в которых размещены токосъемные (замкнутые проволочные) спирали, постоянно находящиеся в контакте с охватывающей их неподвижной токоведущей гильзой.
Газовая система
Газовая система аппаратов включает в себя:
Сигнализатор изменения плотности элегаза (датчик плотности) имеет три пары контактов, одна из которых, замыкающаяся при значительном снижении плотности элегаза из-за его утечки, предназначена для подачи сигнала (например, светового) о необходимости дозаправки колонн, а две других, размыкающихся при недопустимом падении плотности элегаза, предназначены для блокирования управления выключателем или для автоматического отключения аппарата с одновременной блокировкой включения (что определяется проектом подстанции).
Привод
В элегазовых выключателя применяют два типа приводов:
Требования, предъявляемые к выключателям
Требования, предъявляемые к выключателям, заключаются в следующем:
Применяемые в настоящее время выключатели отвечают перечисленным требованиям в большей или меньшей степени. Однако конструкторы выключателей стремятся к более полному соответствию характеристик выключателей выдвинутым выше требованиям.
Требование надежности является одним из важнейших требований, поскольку от надежности выключателей зависит надежность работы энергосистемы, следовательно, и надежность электроснабжения потребителей. Срок службы выключателя составляет не менее 20 лет.
Требование быстродействия следует понимать как возможно малое время отключения цепи при КЗ. Время отключения исчисляется от момента подачи команды на отключение до погасания дуги во всех полюсах. Приблизительно до 1940г. время отключения выключателей напряжением 110 кВ и выше составляло 8-10 периодов. Позднее это время было уменьшено до 6 и 4 периодов. В настоящее время большая часть выключателей 110 кВ и выше имеют время отключения 2 периода. За рубежом построены однопериодные выключатели (20 мс).
Уменьшение времени отключения КЗ (например, от 4 до 2 периодов) весьма желательно по следующим соображениям:
Стоимость однопериодных выключателей значительно выше стоимости двухпериодных, однако дополнительные капиталовложения компенсируются увеличением передаваемой мощности по линии. Однопериодные выключатели необходимы также для токоограничивающих устройств, получивших применение в последнее время.
Как устроены и работают высоковольтные выключатели
Устройство и подключение проходных выключателей
Механизм таких изделий немного отличается от обычного. При нажатии на клавишу происходит переключение с одного контакта на второй. В таком положении пластина фиксируется. Следующее нажатие вновь переключит контакт. Сложность заключается в том, что для монтажа потребуется дополнительный проводник. Его располагают между проходными переключателями. Каким образом выполнить подобную работу, станет намного понятнее, если взглянуть на схему коммутации.
Если детально разобраться с монтажом такого разъединителя, понять, как устроен двойной проходной выключатель, будет проще. Схема его подключения идентична с той лишь разницей, что в случае использования парного механизма, питание с клавиш будет подаваться на разные осветительные приборы. Тем уважаемым читателям, которые хотят более подробно понять суть установки таких переключателей, предлагается посмотреть достаточно информативный видеоролик по этой теме.
Автоматические размыкатели и их области применения
Подобные устройства используются для защиты домашней электрической сети от перегрузок и коротких замыканий. Наиболее частое место установки – вводные распределительные шкафы. Автоматический выключатель (АВ) устроен следующим образом. Внутри модульного корпуса расположен статичный соленоид, внутри которого располагается подвижный шток. При превышении допустимой токовой нагрузки на соленоиде или коротком замыкании шток выталкивается, воздействуя на механизм контакта, который автоматически размыкает цепь.
Но чтобы полностью понять, как устроен автоматический выключатель, следует рассмотреть еще одну его функцию – отключение при превышении допустимой температуры. Для этого конструкцией предусмотрена биметаллическая пластина. Для простоты ее можно сравнить с подобным элементом в электрических чайниках. По достижении определенной температуры металл деформируется, отжимая механизм, удерживающий контакт. После охлаждения биметаллическая пластина вновь принимает прежнюю форму.
Автоматические выключатели также могут быть разных видов. Наиболее распространенными можно назвать устройства защитного отключения (УЗО). Они обеспечивают безопасность человека при различных токовых утечках. Если же требуется прибор, способный обеспечить общую защиту и объединяющий в себе функционал АВ и УЗО, применяется автоматический выключатель дифференциального тока (АВДТ).
Назначение
Вакуумные выключатели предназначены для коммутации электрических цепей при нормальных и аварийных режимах в сетях трехфазного переменного тока (частота 50 Гц), номинальным напряжением до 10 кВ с изолированной, компенсированной, заземлённой через резистор или дугогасительный реактор нейтралью. они предназначены для установки в новых и реконструируемых комплектных распределительных устройствах станций, подстанций и других устройств, осуществляющих распределение и потребление электрической энергии во всех отраслях народного хозяйства, в том числе нефтегазодобывающей и перерабатывающей, нефтехимической, химической, горнорудной и др. отраслях.
Для чего предназначен и где применяется
Данный тип автоматов может быть использован как на промышленных предприятиях, так и в частных квартирах. Это возможно благодаря разнообразию их габаритов и различному весу устройств. Они могут быть не только минимальных размеров (квартирные автоматы), но и достаточно больших (выкатного типа), которые оснащены контроллером параметров.
Используют их для защиты электрических приборов и высоковольтных линий передач от повышенного потребления тока и короткого замыкания. Это достигается путем определения количества тока, который протекает через автомат.
Среди его преимуществ можно назвать мгновенное отключение сети, оснащение внутренними механизмами защиты и повышенную устойчивость к перепадам температуры, которая возникает из-за амплитуды мощности тока.
Принцип действия
Рассмотрим вкратце, как работают выключатели нагрузки на примере вышеупомянутого ВНР-10/400, предоставленного на фото:
Конструктивно данный коммутационный аппарат схож с разъединителем. Главное отличие разъединителя от ВН — наличие у последнего дугогасительного устройства и привода, обеспечивающего более быстрое выполнение операций.
Принцип действия выключателя нагрузки следующий. При включенном положении подвижные контакты находятся в дугогасительной камере. В нижней части дугогасительного устройства расположены дополнительные дугогасящие контакты. При выполнении операции отключения сначала размыкаются основные контакты, а затем дугогасительные. Образовавшаяся в процессе разрыва контактов электрическая дуга попадает в дугогасительную камеру, где нагревает до высокой температуры оргстекло, которое в свою очередь выделяет большое количество газов. Эти газы мощным потоком вырываются из дугогасительной камеры, чем гасят возникшую электрическую дугу за несколько миллисекунд.
Как изображается ВН на однолинейных схемах? Ниже приведено условное обозначение на схеме:
Слева на схеме изображен ВН, справа — коммутационный аппарат, который конструктивно укомплектован плавкими предохранителями (ВНП).
Вот мы и рассмотрели устройство, назначение и принцип действия выключателя нагрузки. Надеемся, предоставленный материал был для вас полезным и интересным!
Рекомендуем также прочитать:
Опубликовано:
05.02.2017
Обновлено: 19.10.2017
Как устроен автоматический воздушный выключатель
Когда отключается нагрузка мощных электрических приборов, расходящиеся контакты образовывают своеобразную дугу. Ее сила может быть равна номинальному току. Такая дуга, появляется в результате повышения температуры и образования плазмы и может плавить контакты коммутационного устройства, а также вызывать КЗ. Стоит ли говорить, что это обычно приводит к выводу из строя дорогостоящей техники. Для защиты от действий данной дуги была разработана дугогасительная камера, которая установлена в автоматический воздушный выключатель. Его конструкцию вы можете найти на одном из изображений, представленных в сети.
Классификация высоковольтных выключателей
Общие рекомендации по монтажу разъединителей
Полностью разобравшись, как устроены выключатели различных типов, можно рассмотреть нюансы их коммутации. Основным правилам, которое следует учитывать при подключении таких устройств, является обязательное использование фазного провода. Разрыв нуля при монтаже не допускается. Этому есть вполне конкретные причины. При разъединении нулевого провода осветительный прибор остается под напряжением. При этом обычная замена лампочки может привести к поражению электрическим током с самыми серьезными последствиями, вплоть до летального исхода.
Следует понимать, что при уже смонтированных линиях освещения и управления вряд ли получится подключить проходные выключатели – для их коммутации требуются дополнительные жилы. Здесь есть два варианта. Наиболее простым будет протянуть внешнюю электропроводку, уложив ее в кабель-каналы. Современные изделия подобного типа практически не нарушают созданный интерьер. Можно пойти более сложным путем и полностью заменить проводку между проходными выключателями. Эта работа потребует больше усилий с обязательной последующей отделкой, но конечный результат будет выглядеть эстетичнее.
Устанавливая концевое устройство, необходимо его прозвонить. Зная, как устроен выключатель, легко понять, что при подключении на различные пары контактов алгоритм его работы будет кардинально меняться. Изделие может замыкать цепь при нажатии на кнопку, педаль или лапку механизма, а может, наоборот, разрывать ее. Это обязательно следует учитывать.
Установка обычных выключателей с подсветкой не всегда возможна. Если в подключаемой люстре установлены КЛЛ (компактные люминесцентные), то при неправильной разводке внутри нее, лампы могут периодически мигать при отсутствии подачи напряжения. Это происходит по тому, что проходящий через неоновую лампу минимальный ток до определенного момента накапливается в конденсаторе ЭПРЛ. По достижении предела он высвобождается, лампа вспыхивает и сразу гаснет. Такая проблема возникает в случае подачи фазы на винтовую часть цоколя, а нуля на центральную. «Лечится» сменой полярности проводов на патроне.
Назначение
Назначение ВН — коммутация рабочих токов в электроустановках, то есть мощностей, которые не превышают допустимые (номинальные) значения для того или иного участка электрической сети. Данное устройство не рассчитано на отключение токов аварийного режима, поэтому его можно устанавливать только при условии наличия в цепи защиты от короткого замыкания и перегрузки, которая реализуется плавкими предохранителями (ПК, ПКТ, ПТ) или защитным аппаратом, установленным со стороны источника питания или на группе потребителей.
При этом ВН имеет отключающую способность, которая соответствует электродинамической стойкости при коротких замыканиях, что позволяет использовать данный электрический аппарат для подачи напряжения на участок электрической сети, не зависимо от его текущего состояния, например, для пробного включения.
Таким образом, при условии наличия в цепи защиты от сверхтоков рассматриваемый элемент оборудования может эксплуатироваться как полноценный высоковольтный защитный аппарат (масляный, вакуумный или элегазовый). А при наличии моторного привода может участвовать в работе различных автоматических устройств (АВР, АПВ, АЧР, ЧАПВ), а также управляться удаленно автоматизированной системой диспетчерского технологического управления.
Главный выключатель
Отличия главного выключателя (ГВ) от быстродействующего определяются следующим. Вследствие значительного индуктивного сопротивления силовых цепей электровоза переменный ток при перегрузках и коротких замыканиях не возрастает так резко (рис. 49), как постоянный (см. рис. 29). Кроме того, переменный ток изменяется синусоидально и поэтому проходит через нулевые значения. Благодаря этому легче разорвать цепь тока и не требуется иметь такое высокое быстродействие выключателя, как при постоянном токе.
Рис. 49. Кривая, характеризующая изменение значения переменного тока при коротком замыкании цепи
Этим же объясняется применение высоковольтных и быстродействующих выключателей на различных участках цепи электроснабжения электрифицированных железных дорог. Начиная от электрической станции (см. рис. 2 и 9), и до ввода на тяговую подстанцию дорог постоянного тока установлены высоковольтные выключатели. Контактную сеть защищают быстродействующие выключатели. На дорогах переменного тока все участки цепи электроснабжения защищены высоковольтными выключателями.
В главных выключателях для гашения электрической дуги чаще всего используют сжатый воздух. При включенном выключателе (рис. 50) ток от токоприемника через разъединитель, неподвижный и подвижной контакты, стержень, размещенный внутри проходного изолятора, пойдет в первичную обмотку тягового трансформатора. Стержень служит одновременно первичной обмоткой трансформатора тока. Вторичная обмотка трансформатора тока соединена с катушкой электромагнита отключения главного выключателя.
Рис. 50. Схема главного выключателя
В случае перегрузки или короткого замыкания ток в первичной и вторичной обмотках трансформатора резко увеличивается. Вследствие этого сердечник электромагнита ГВ втягивается в катушку и открывает пусковой клапан. Сжатый воздух, заполняющий бак, начинает давить на поршень главного клапана. Главный клапан открывается, воздух из бака проходит в опорный изолятор и затем устремляется к замкнутым подвижному и неподвижному контактам.
Под действием сжатого воздуха подвижной контакт отходит от неподвижного, между ними образуется электрическая дуга. Сжатый воздух поступает в отверстие в подвижном контакте и далее в дугогасительную камеру, а из нее через отверстия в атмосферу. Дуга гасится при нулевом значении тока, спустя 0,03-0,04 с после размыкания контактов-
Отметим принципиальное отличие в действиях главного выключателя (рис. 51) и быстродействующего: при коротких замыканиях быстродействующий выключатель автоматически срабатывает, как только ток в защищаемой цепи превысит уставку БВ; главный выключатель непосредственно не реагирует на недопустимый ток — он отключается под воздействием реле защит.
Рис. 51. Главный выключатель
Свойства
Выключатели среднего и высокого напряжения (номинальное напряжение 6 — 220 киловольт) и большим током отключения (до 50 килоампер) используются на электрических станциях и подстанциях. Эти выключатели представляют собой довольно сложную конструкцию, управляемую электромагнитными, пружинными, пневматическими или гидравлическими приводами. В зависимости от среды, в которой производят гашение дуги, различают воздушные выключатели, в которых дуга гасится сжатым воздухом, масляные выключатели, в которых контакты помещаются в ёмкость с маслом, а дуга гасится парами масла, электромагнитные выключатели (как правило до 10 кВ), с так называемым магнитным дутьём и дугогасительными камерами с узкими щелями или решётками, элегазовые выключатели, в которых используется электропрочный газ SF6 — «элегаз», и вакуумные выключатели, в которых дугогашение происходит в вакууме — в так называемой вакуумной дугогасительной камере (ВДК). Защитная среда одновременно с дугогашением обеспечивает и диэлектрическую прочность промежутка между контактами в отключенном положении, от чего зависит и величина хода контактов.
Требования к выключателям
Выключатель является самым ответственным аппаратом в высоковольтной системе, при авариях он всегда должен обеспечивать четкую работу. При отказе выключателя авария развивается, что ведет к тяжелым разрушениям и большим материальным потерям, связанным с не доступом электроэнергии, прекращением работы крупных предприятий.
В связи с этим основным требованием к выключателям является особо высокая надежность их работы во всех возможных эксплуатационных режимах. Отключение выключателем любых нагрузок не должно сопровождаться перенапряжениями, опасными для изоляции элементов установки.
В связи с тем, что режим короткого замыкания для системы является наиболее тяжелым, выключатель должен обеспечивать отключение цепи за минимально возможное время.
Общие требования к конструкциям и характеристикам выключателей устанавливается стандартами:
Вывод выключателя для ревизии и ремонта связан с большими трудностями, так как приходится либо переходить на другую схему распредустройства, либо просто отключать потребителей. В связи с этим выключатель должен допускать возможно большее число отключений коротких замыканий без ревизии и ремонта. Современные выключатели могут отключать без ревизии до 15 коротких замыканий при полной мощности отключения.
Ремонт высоковольтных выключателей
Обеспечение функционирования оборудования обеспечивается за счет проведения его периодического и капитального ремонта.
Периодический ремонт выполняется:
Капитальный ремонт выключателей высокого напряжения проходит, согласно рекомендации завода-изготовителя. Мероприятия, как правило, проводятся непосредственно на месте эксплуатации.
При появлении неполадок вводов или трансформаторов, ремонт проходит в специализированных мастерских.
Принцип действия
Механизм гашения дуги в вакуумных выключателях основан на высокой электрической прочности и усиленных диэлектрических свойствах вакуума. В момент размыкания контактов в вакуумном промежутке возникает электрическая дуга, которая поддерживается за счет металла, испаряющегося с поверхности контактов. При переходе тока через ноль, происходит гашение дуги и восстановление диэлектрических свойств вакуумного промежутка, и дуга между разомкнутыми контактами больше не возникает. Из-за большой электрической прочности вакуума гашение дуги может произойти до перехода тока через ноль, это явление называют срезом тока. Срез тока негативно влияет на сеть, так как вызывает коммутационные перенапряжения, которые могут достигать огромных величин.
Несколько слов в заключение
Знать, как устроен выключатель, как монтируются разные виды подобных устройств, обязан любой домашний мастер. Ведь действительно, стыдно вызывать профессионального электромонтера и платить ему за работу по замене разъединителя, когда выполнить ее вполне возможно своими руками. Главное – это соблюдение определенных правил и аккуратность при электромонтаже. Если однажды собственноручно заменен один из выключателей, остальные совершенно не доставят хлопот. И хотя с некоторыми видами дело может обстоять сложнее (к примеру, проходными устройствами), разобраться с алгоритмом работ под силу каждому.