Что такое взаимная индукция
Взаимная индукция
Взаимной индукцией называется явление возбуждения ЭДС электромагнитной индукции в одной электрической цепи при изменении электрического тока в другой цепи или при изменении взаимного расположения этих двух цепей.
|
Рассмотрим два неподвижных контура 1 и 2 с токами I1, и I2, расположенных достаточно близко друг от друга. При протекании в контуре 1 тока I1 магнитный поток пронизывает второй контур:
Коэффициенты пропорциональности L21 и L12равны друг другу L12 = L21 = Lи называются взаимной индуктивностью контуров.
При изменении силы тока в одном из контуров, в другом индуцируется ЭДС:
,
Взаимная индуктивность контуров зависит от геометрической формы,
размеров, взаимного расположения контуров и от магнитной проницаемости
окружающей контуры среды.
Для примера рассчитаем взаимную индуктивность двух катушек, намотанных на тороидальный сердечник.
|
Первая катушка с числом витков N1 и током I1, создает поле
. Магнитный поток сквозь один виток второй катушки
. Поскольку поток ψ создается током I1, то
Данное устройство является примером трансформатора.
35. Трансформаторы.
Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Переменный ток I1, создает в первичной обмотке переменное магнитное поле. Это вызывает во вторичной обмотке появление ЭДС взаимной
Отношение k=, показывающее, во сколько раз ЭДС во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.
Если k>1, то трансформатор — повышающий, если k
С данным контуром сцеплен магнитный поток Ф = LI.
При изменении тока на dl магнитный поток изменяется на с dФ=LdI.
Для такого изменения магнитного потока необходимо совершить работу
dA = IdФ = LIdl.
Тогда работа по созданию магнитного потока Ф будет равна
Энергия магнитного поля, связанного с контуром,
На примере однородного магнитного поля внутри длинного соленоидавыразим энергию магнитного поля через величины, характеризующие это полев окружающем пространстве.
Индуктивность соленоида: L =
Отсюда: W=.
Магнитная индукция поля соленоида: В = .
Отсюда: .
По определению вектора напряженности магнитного поля В=. Используя эти соотношения
Магнитное поле длинного соленоида однородно и сосредоточено внутри него,поэтому энергия заключена в объеме соленоида и распределена в нем с объемной плотностью
Эти соотношения носят общий характер и справедливы и для неоднородных полей, но только для сред, для которых связь между и
линейная (т.е. для пара- и диамагнетиков).
Выражение для объемной плотности энергии магнитного поля аналогично соответствующему выражению для объемной плотности энергии электростатического поля:
w =, с той разницей что электрические величины заменены в нем магнитными.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что такое взаимная индукция
Когда в одном из двух проводников меняются показатели тока или же меняется взаимное расположение этих проводников, то наблюдается изменение магнитного потока, возникающего под воздействием тока первого проводника и проходящего по второму проводнику. В результате во втором проводнике возникает электродвижущая сила (ЭДС). Под ее действием в этом проводнике образуется индуцированный ток, но при условии, что проводник замкнут. И, наоборот, изменение тока во втором контуре способствует возникновению ЭДС в первом. Это явление получило название взаимная индукция или взаимоиндукция. Именно на нем основана работа трансформаторов.
Взаимоиндукция — что это
Явление взаимной индукции — это частный случай электромагнитной индукции, открытой Фарадеем. Измеряется она в тех же единицах, что и индуктивность — Генри (Гн).
При прохождении тока по контуру ω1 возникает магнитный поток, который пронизывает витки контура ω2. Когда параметры тока на контуре ω1 меняются, на ω2 возникает ЭДС индукции. И наоборот, когда меняется ток на контуре ω2, возникает ЭДС в ω1. Это явление получило название взаимной индукции, а контуры называются связанными.
Электродвижущая сила, которая возникает во 2-м контуре под действием изменения тока в первом, вычисляется по следующей формуле:
Такое же влияние оказывает второй контур на величину ЭДС взаимоиндукции в первом. В этом случае для вычисления применяется аналогичная формула:
В формулах для определения взаимной индукции приняты такие обозначения:
Коэффициент взаимной индукции зависит от расположения контуров, их размеров, формы, а также от магнитной проницаемости среды.
В формулах присутствует еще такая величина, как потокосцепление. Его можно пояснить на примере катушки. Она состоит из определенного количества витков. Каждый из них создает магнитное поле, которое характеризуется величиной магнитного потока. Общее магнитное поле имеет потокосцепление, численно равное сумме магнитных потоков, протекающих сквозь каждый виток катушки. При использовании двухпроводной линии магнитные потоки также суммируются.
Величина потокосцепления определяется по формуле:
На самом деле потокосцепление — величина виртуальная, поскольку не существует суммы отдельных потоков, а имеется лишь магнитный поток. Тем не менее, когда нет возможности узнать реальное распределение магнитного потока по виткам, а потокосцепление известно, то можно легко вычислить количество витков, чтобы заменить катушку эквивалентной.
Практическое применение взаимной индукции
Взаимная индукция весьма важна на практике. Она взята за основу действия индукционной катушки в двигателе внутреннего сгорания. Типичным примером двух катушек, связанных магнитным полем, является трансформатор. Он широко применяется в электротехнике с целью изменения силы переменного тока и напряжения.
Изобретен трансформатор Яблочковым в 1876 году. Его основная характеристика — коэффициент трансформации. Он показывает во сколько раз ЭДС во вторичном контуре меньше (или больше) ЭДС в первом. Рассчитывается по формуле:
Как видно из формулы, сила тока в обмотках находится в обратно пропорциональной зависимости от количества витков этих обмоток и ЭДС. Следовательно, применение трансформатора с соответствующим коэффициентом трансформации позволяет повышать или понижать значение электродвижущей силы и, соответственно, повышать или понижать силу тока.
Трансформаторы повышающего действия применяются в линиях передачи электроэнергии на большие расстояния, а с понижающим — в устройствах для электросварки и прочих, где требуется высокое значение тока при низком напряжении.
В радиотехнике используются приборы, действие которых основывается на взаимной индуктивности. Они называются вариометрами и применяются там, где необходимо плавно изменять индуктивность цепи. Например, две телефонные линии оказывают влияние друг на друга, что мешает их работе.
Видео по теме
Лекция №7. 2. Взаимная индукция и самоиндукция
1. Электромагнитная индукция. Закон Фарадея. Правило Ленца.
2. Взаимная индукция и самоиндукция. Энергия магнитного поля.
3. Переменный ток. Работа и мощность переменного тока.
4. Емкостное и индуктивное сопротивление.
5. Использование переменного тока в медицинской практике, его воздействие на организм.
1.Ток, возбуждаемый магнитным полем в замкнутом контуре, называется индукционным током, а само явление возбуждения тока посредством магнитного поля – электромагнитной индукцией.
Электродвижущая сила, обуславливающая индукционный ток, называется электродвижущей силой индукции.
В замкнутом контуре индуцируется ток во всех случаях, когда происходит изменение потока магнитной индукции через площадь, ограниченную контуром- закон Фарадея.
Величина ЭДС индукции пропорциональна скорости изменения потока магнитной индукции:
(1)
Направление индукционного тока определяется правилом Ленца:
Индукционный ток имеет такое направление, что его собственное магнитное поле компенсирует изменение потока магнитной индукции, вызывающей этот ток.
=-
(2)
[]
2.Взаимная индукция и самоиндукция являются частным случаем электромагнитной индукции.
Взаимной индукцией называется возбуждение тока в контуре при изменении тока в другом контуре.
Предположим, что в контуре 1 идет ток I1. Магнитный поток Ф2, связанный с контуром 2, пропорционален магнитному потоку, связанному с контуром 1.
В свою очередь магнитный поток, связанный с контуром 1,
(3)
Где M-коэффициент взаимной индукции. Предположим, что за время dt ток в контуре 1 изменяется на величину d I1. Тогда, согласно формуле (3), магнитный поток, связанный с контуром (2), изменится на величину , в результате чего в этом контуре появится ЭДС взаимной индукции (по закону Фарадея)
=-
(4)
Формула (4) показывает, что электродвижущая сила взаимной индукции, возникающая в контуре, пропорциональна скорости изменения тока в соседнем контуре и зависит от взаимной индуктивности этих контуров.
Из формулы (3) следует, что
(5)
Т.е. взаимная индуктивность двух контуров равна магнитному потоку, связанному с одним из контуров, когда в другом контуре идет ток, равный единице. M измеряется в Генри[Г=Вб/А]
Взаимная индуктивность зависит от формы размеров и взаимного расположения контуров и от магнитной проницаемости среды, но не зависит от силы тока в контуре.
Конур, в котором изменяется ток, индуцирует ток не только в других, соседних, контурах, но и в себе самом: это явление называется самоиндукцией.
Магнитный поток Ф, связанный с контуром пропорционален току I в контуре, поэтому
(6)
Где L— коэффициент самоиндукции, или индуктивность контура
Предположим, что за время dt ток в контуре изменяется на величину dI. Тогда из (6)
,
В результате чего в этом контуре появится ЭДС самоиндукции
=-
(7)
Из (6) следует, что . Т.е. индуктивность контура равна связанному с ним магнитному потоку, если в контуре идет ток, равный единице.
Явление электромагнитной индукции основано на взаимных превращениях энергий электрического тока и магнитного поля
Пусть в некотором контуре с индуктивностью L включается ток. Возрастая от 0 до I, он создает магнитный поток .
Изменение на малую величину dI сопровождается изменением магнитного потока на малую величину
(8)
При этом ток совершает работу dA=IdФ, т.е. . Тогда
(9)
3.Синусоидальная ЭДС возникает в рамке, которая вращается с угловой скоростью в однородном магнитном поле индукцией В
Поскольку магнитный поток
(10)
где-угол между нормалью к рамке n и вектором магнитной индукции В, прямо пропорционален времени t.
По закону электромагнитной индукции Фарадея
=-
(11)
Где — скорость изменения потока электромагнитной индукции. Тогда
(12)
Где амплитудное значение ЭДС индукции.
Эта ЭДС создает в контуре синусоидальный переменный ток силой
(13)
Где (13)
Где максимальное значение силы тока
R0-омическое сопротивление контура
Изменение ЭДС и силы тока совершаются в одинаковых фазах.
Эффективная сила переменного тока равна силе такого постоянного тока, который имеет ту же мощность, что и данный переменный ток.
(14)
Аналогично рассчитывается эффективное (действующее) значение напряжения:
(15)
Работа и мощность переменного тока рассчитываются с помощью следующих выражений::
(16)
(17)
(18)
Где -круговая частота переменного тока, С-емкость конденсатора
Индуктивное сопротивление. Из опыта известно, что сила переменного тока в проводнике, свернутом в виде катушки, значительно меньше, чем в прямом провонике той же длины. Это означает, что помимо омического сопротивления проводник имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл его состоит в возникновении в катушке ЭДС самоиндукции, препятствующей изменениям тока в проводнике, а, следовательно, уменьшающей эффективный ток. Это равносильно появлению дополнительного (индуктивного) сопротивления. Его величина определяется выражением:
(19)
Где L-индуктивность катушки. Емкостное и индуктивное сопротивления называются реактивными сопротивлениями. На реактивном сопротивлении электроэнергия не расходуется, эти оно существенно отличается от активного сопротивления. Организм человека обладает только емкостными свойствами.
Полное сопротивление цепи, содержащей активное, индуктивное и емкостное сопротивления, равно
5.Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах переменный ток, как и постоянный, вызывает раздражающее действие на биологические ткани. Это обусловлено смещением ионов растворов электролитов, их разделением, изменением их концентрации в разных частях клетки и межклеточного пространства. Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды.
Так как специфическое физиологическое действие электрического тока зависит от формы импульсов, то в медицине для стимуляции нервной системы (электросон, электронаркоз), нервно-мышечной системы (кардио-стимуляторы, дефибрилляторы) и т.д. используют токи с различной временной зависимостью.
Воздействуя на сердце, ток может вызвать фибрилляцию желудочков, которая приводит к гибели человека. Пропускание тока высокой частоты через ткань используют в физиотерапевтических процедурах, называемых диатермией и местной дарсонвализацией.
Токи высокой частоты используются также и для хирургических целей (электрохирургия). Они позволяют прижигать «сваривать», ткани (диатермокоагуляция) или рассекать их (диатермотомия)