Что такое взаимосвязь органов в организме

Как различные системы организма взаимодействуют между собой

Внутренний диалог

Окольный путь

По умолчанию считается, что различные сигналы поступают в мозг напрямую. Например, вы укололи палец, и болевой центр тут же реагирует на это. Однако то, что все устроено несколько сложнее, хорошо видно на примере человека с переломом позвоночника. При полном параличе — закономерной реакции на такую травму — у пострадавшего остаются в рабочем состоянии только зрение и слух. Происходит это потому, что вся информация, кроме визуальной и слуховой, идет в соответствующие обрабатывающие центры головного мозга через спинной. Последний представляет собой нечто вроде толстого телефонного кабеля с огромным количеством «жил» внутри, каждая из которых соединена с рецепторами на конечностях и в органах. Как известно, если перебит провод — связи не будет. При повреждении спинного мозга человек не может двигаться и не ощущает свое тело, поскольку обратные сигналы от головного мозга (например, к движению рук и ног и так далее) передаются через этот же канал. В результате паралитик не может пошевелиться, но при этом видит и слышит, так как у глазных и слуховых рецепторов есть эксклюзивное право прямого общения с «командным пунктом», минуя посредников.

Сначала вся информация обрабатывается в сером веществе, находящемся на поверхности полушарий. При кажущейся запутанности схемы скорость передачи импульса и ответная реакция (к примеру, когда мы отдергиваем руку от огня, чувствуя его жар) настолько высока, что весь процесс занимает какие-то доли секунды. Если использовать простые аналогии, серое вещество — неокортекс — напоминает торт «Наполеон» и состоит из шести горизонтальных слоев нейронов, отличающихся друг от друга по типу и характеру связей. Новая кора (так расшифровывается название неокортекс) у низших млекопитающих только намечена, у высших присутствует в большем объеме, но развита только у человека. Например, у животных неокортекс отвечает за сенсорное восприятие и выполнение моторных команд, а у нас еще и за осознанное мышление и речь.

Здоровый человеческий мозг включает около 200 миллиардов нервных клеток, которые соединяются друг с другом сотнями триллионов синапсов (их от каждой клетки отходят десятки тысяч). Каждый синапс содержит около тысячи молекулярных «переключателей» — своего рода аналоговых транзисторов, и его можно сравнить с микропроцессором компьютера. Как утверждают ученые, один человеческий мозг по сложности примерно равен всей мировой ИТ-инфраструктуре. Тем не менее процесс общения мозга с различными системами организма уже достаточно хорошо изучен. Что же он собой представляет?

Делегирование ответственности

Скорость передачи нервного импульса между нейронами составляет около 300 км/ч. В принципе, это не слишком быстро. Например, гоночный болид «Формулы-1» развивает максимальную скорость до 340 км/ч, а информация в современном компьютере летит в разы быстрее. Однако до живого мозга ему все равно далеко. Возможно, секрет кроется в грамотном распределении функций.

У каждого отдела мозга есть своя сфера ответственности. Например, информация, полученная при помощи зрения, анализируется в затылочной области, а двигательная активность контролируется узкой полосой нервной ткани, протянувшейся от верхней части головы к уху. Рядом с двигательной областью располагается район, где концентрируются и обрабатываются тактильные ощущения. Поэтому нередко при повреждении мозга человек одновременно утрачивает и способность двигаться, и возможность чувствовать. Восприятие слуховой информации происходит в височной области — левая височная доля отвечает за понимание слов и выражение мыслей, правая помогает слышать музыку и идентифицировать различные шумы. Область мозга, где зрительные и слуховые области встречаются, отвечает за функцию чтения — преобразование визуальных образов в звуки. При этом различные отделы большей частью способны на дублирование функций. Это своего рода страховка, которая выработана эволюцией для максимальной выживаемости нашего биологического вида. Так, мозжечок контролирует рефлекторные движения, связан с вестибулярным аппаратом, корой головного мозга и продолговатым мозгом. Но при его поражении функцию координатора может взять на себя зрительный аппарат.

Тема «дружеской поддержки» лучше всего видна на примере зрения и слуха. Известно, что у слабовидящих и слепых людей усиливается восприятие звука — так мозг компенсирует потерю источника важной информации. Более того, недавние исследования ученых из ведущих университетов Великобритании и Нидерландов позволили сделать вывод, что «видеть» обстановку вокруг себя слепым людям помогает еще и эхолокация. И речь тут не столько о постукивании палочкой, а о способности ориентироваться в пространстве, улавливая отраженное эхо. В качестве исходного сигнала добровольцы использовали пощелкивания языком. Ученые были поражены — люди слышали такое слабое эхо, которое, как считается, человеческое ухо воспринимать неспособно. Конечно, до летучих мышей и дельфинов нам далеко, но это лишний раз демонстрирует, насколько пластичен наш мозг и насколько он может приспособиться к таким условиям, к которым, казалось бы, приспособиться просто невозможно.

Популярности френологии способствовала общая атмосфера интеллектуальных кругов того времени. Жители Западной Европы начиная с XVIII века повально увлекались еще и физиогномикой — теорией о том, что темперамент и психологические особенности человека «зашифрованы» в строении его тела и чертах лица. Например, Чарльз Дарвин, совершивший в первой половине XIX века кругосветное плавание на корабле «Бигль», вспоминал, что его капитан, яростный приверженец физиогномики, не хотел брать ученого на борт. Он сомневался, что нос Дарвина соответствует внешности человека, обладающего необходимыми психологическими качествами для трудного и опасного путешествия.

Источник

Биология. 6 класс

Конспект урока

Урок 17. Организм – единое целое

Перечень вопросов, рассматриваемых на уроке

Клетка – структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов.

Ткани – совокупность клеток и межклеточного вещества, объединённых общим происхождением, строением и выполняемыми функциями.

Органы – это часть тела, выполняющие общие физиологические функции.

Система органов – органы, сходные по своему строению, происхождению и выполняемой функции.

Организм – живое тело, обладающее совокупностью свойств, отличающих его от неживой материи, в том числе обменом веществ, само поддерживанием своего строения и организации, способностью воспроизводить их при размножении, сохраняя наследственные признаки.

Основная и дополнительная литература по теме урока

Теоретический материал для самостоятельного изучения

Тема нашего сегодняшнего урока – организм – единое целое. По данным науки, первые существа на нашей планете появились примерно три с половиной миллиарда лет назад. С момента появления примитивной жизни, благодаря эволюции, на земле появилось огромное многообразие живых форм. Бактерии, водоросли, простейшие животные, многоклеточные животные и человек, любое существо, возникшее из семени, споры или зиготы является организмом. В условиях лаборатории могут существовать отдельные клетки. В естественных условиях, то есть в природе, самостоятельно могут существовать только живые организмы. Организмы – это реальные носители жизни.

В живом организме все жизненные процессы взаимосвязаны. Это обеспечивается согласованным действием клеток, тканей, органов и систем органов. Поэтому любой организм – единое целое.

Взаимосвязь клеток и тканей

Взаимосвязь всех жизненных процессов одноклеточных организмов обеспечивается взаимодействием органоидов клетки. У многоклеточных организмов контакт и взаимодействие клеток происходят через клеточную мембрану. У высших растений связь между клетками обеспечивают тончайшие нити цитоплазмы, которые проходят через поры в клеточной оболочке и соединяют содержимое соседних клеток.

Сходные по строению и действующие совместно клетки образуют ткани, которые, в свою очередь, взаимосвязаны между собой. Взаимосвязь растительных тканей особенно ярко проявляется в процессе питания растений.

Взаимосвязь органов и систем органов

Из тканей формируются органы и системы органов, специализирующиеся на выполнении определенных функций. Они не способны существовать самостоятельно вне целостного организма и тесно связаны друг с другом.

Лист – орган, в котором происходит фотосинтез, он обеспечивает углеводами не только себя, но и другие органы растения. Перемещение воды и минеральных веществ от корней к листьям, а органических веществ в обратном направлении. осуществляется по стеблю. Он же служит опорой для листьев, цветков и плодов.

Органы и системы органов животных тоже взаимосвязаны между собой. Наш организм состоит из огромного числа разнообразных по форме, размерам и функциям клеток. Несмотря на высокую специализацию (структурные изменения клеточных элементов в соответствии с выполняемой функцией), все они имеют общий принцип строения (плазматическая мембрана, цитоплазма, ядро, органоиды) и обладают основными свойствами живого (обмен веществ и энергии, раздражимость, возбудимость, проводимость, секреция, деление и др.), включая поддержание постоянства внутренней среды клетки. Сходные по строению, функциям и происхождению клетки формируют ткани. По характеру деятельности (специализации) все ткани подразделяются на четыре группы: нервную, мышечную, эпителиальную и ткани внутренней среды. Из тканей образованы органы – анатомически обособленные части организма. Органы, совместно обеспечивающие выполнение одной или нескольких функций, объединяются в системы органов (дыхательную, кровеносную, пищеварительную и др.). Из систем органов образован целостный организм, способный противостоять неблагоприятным воздействиям внешней среды, которые несовместимы с жизнью отдельной клетки или системы.

Примеры и разбор решения заданий тренировочного модуля

Источник

Основные закономерности метаболических процессов в организме человека. Часть 1.

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Метаболизм – обмен веществ и энергии представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.

Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.

Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.

Статья добавлена 31 мая 2016 г.

Источник

Основные закономерности метаболических процессов в организме человека. Часть 2.

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Что такое взаимосвязь органов в организме. Смотреть фото Что такое взаимосвязь органов в организме. Смотреть картинку Что такое взаимосвязь органов в организме. Картинка про Что такое взаимосвязь органов в организме. Фото Что такое взаимосвязь органов в организме

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.

При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

2. Частично заменимые

3. Условно заменимые

4. Заменимые

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

3. Минорные липиды.

4. Стероиды.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

Статья добавлена 31 мая 2016 г.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *