Что такое биологические молекулы

Биомолекулы

Биомолекулы — это органические вещества, которые синтезируются живыми организмами. В состав биомолекул включают белки, полисахариды, нуклеиновые кислоты, а также более мелкие компоненты обмена веществ. Биомолекулы состоят из атомов углерода, водорода, азота, кислорода, а также фосфора и серы. Другие атомы входят в состав биологически значимых веществ значительно реже.

Содержание

Классификация

Среди биомолекул выделяют:

Нуклеозиды и нуклеотиды

Нуклеозиды образуются при присоединении азотистого основания к сахару рибозе, примерами нуклеозидов являются цитидин, уридин, аденозин, гуанозин, тимидин и инозин.

Нуклеозиды в клетках могут быть фосфорилированы киназами, при этом образуются нуклеотиды. ДНК и РНК являются линейными полимерами, состоящими из относительно низкомолекулярных мономеров — нуклеотидов, соединенных между собой фосфодиэфирными связями. [1]

Нуклеотиды могут быть источниками энергии, запасенной в химических связях (АТР), принимать участие в передаче сигнала внутри клетки (cGMP, cAMP), являться компонентами кофакторов ферментов (кофермент А, FAD, NAD). [2]

Сахара

Дисахариды образуются при соединении двух молекул простых сахаров, при этом отщепляется одна молекула воды. Дисахариды могут быть гидролизованы до соответствующих моносахаридов разбавленными растворами кислот или соответствующими ферментами. [1] Представителями дисахаридов являются сахароза, мальтоза и лактоза.

Полисахариды являются сложными сахарами, полимерами моносахаридов. Представителями полисахаридов является крахмал, целлюлоза и гликоген. Молекулы полисахаридов обычно имеют разветвленную структуру. Как правило, полисахариды нерастворимы или малорастворимы в воде, однако может происходить гидратация их гидроксильных групп, в таком случае при нагревании в водной среде полисахарид образует коллоид. [1] Более короткие полисахариды, состоящие из 2-10 мономеров, называют олигосахаридами. [4]

Лигнин

Лигнин — это нерегулярный биополимер, состоящий из ароматических колец, соединенных короткими (от одного до трех атомов углерода) углеродными цепями. Лигнин является вторым по значению биополимером после целлюлозы, и является одним из структурных компонентов растений. [5] Лигнин является рацематом, то есть не обладает оптической активностью, не поляризует свет. Эта особенность лигнина вызвана тем, что его полимеризация происходит по свободно-радикальному механизму.

Липиды

Липиды в основном представлены сложными эфирами жирных кислот и являются важными компонентами клеточных мембран. Также липиды выполняют функцию запаса энергии, например, триглицериды. Большинство молекул липидов состоит из гидрофильной головки и от одного до трех гидрофобных хвостов жирных кислот, поэтому липиды являются амфифильными веществами.

В клеточных мембранах представлены следующие классы липидов:

Также к липидам относят простагландины и лейкотриены, 20-углеродные молекулы, синтезируемые из арахидоновой кислоты.

Аминокислоты

Аминокислоты содержат амино- и карбоксильную группу и являются цвиттер-ионами. Биологически значимые аминокислоты представлены только α-аминокислотами, в которых функциональные группы соединены с одним атомом углерода, а также пролином, который является иминокислотой.

Аминокислоты являются мономерами пептидов (2-10 остатков аминокислот), полипептидов и белков. Белки выполняют различные функции в клетке.

Биологически значимы только 20 аминокислот, они закодированы в генетическом коде, всего известно более пятисот природных аминокислот. Известны как минимум две аминокислоты, которые также встраиваются в полипептиды в ходе трансляции у некоторых организмов:

Другие биологически значимые аминокислоты представлены в том числе карнитином, орнитином, гамма-аминомасляной кислотой и таурином.

Витамины

Витамины — вещества, которые организм не способен синтезировать самостоятельно, но необходимые для жизнедеятельности. Витаминами являются, например, многие коферменты. Витамины должны поступать в организм постоянно, обычно в очень малых количествах.

Примечания

Полезное

Смотреть что такое «Биомолекулы» в других словарях:

Химическая эволюция — или пребиотическая эволюция этап предшествовавший появлению жизни[1][2][3], в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия

Первичный суп — Химическая эволюция или пребиотическая эволюция первый этап эволюции жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия

Пребиотическая эволюция — Химическая эволюция или пребиотическая эволюция первый этап эволюции жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия

Биоортогональные реакции — К биоортогональным реакциям относятся любые химические реакции, которые могут протекать внутри живых систем, не мешая естественным биохимическим процессам.[1][2][3] Термин был предложен Каролин Бертоцци (Carolyn R. Bertozzi) в 2003 году.[4] Уже к … Википедия

Биополимеры — Биополимеры класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев мономеров. Мономеры … Википедия

Фосфор — I Фосфор (Phosphorus, Р) химический элемент главной подгруппы V группы периодической системы элементов Д.И. Менделеева. Элементарный Ф. известен в нескольких аллотропных модификациях: белый (желтый), красный и черный Ф. Многие соединения Ф.… … Медицинская энциклопедия

РАСПЫЛЕНИЕ — твёрдых тел разрушение твёрдых тел под действием бомбардировки их поверхности заряженными и нейтральными частицами (атомами, ионами, нейтронами, электронами и др.) и фотонами. Впервые наблюдалось как разрушение катода в газовом разряде (отсюда… … Физическая энциклопедия

ХИРАЛЬНОСТЬ — св во объекта быть несовместимым со своим отображением в идеальном плоском зеркале. В химии рассматривается X. индивидуальных молекул и их агрегатов. Противоположное X. св во ахиральность, когда отображение в плоском зеркале совместимо с исходной … Химическая энциклопедия

Платидиам — Действующее вещество ›› Цисплатин* (Cisplatin*) Латинское название Platidiam АТХ: ›› L01XA01 Цисплатин Фармакологическая группа: Алкилирующие средства Нозологическая классификация (МКБ 10) ›› C15 C26 Злокачественные новообразования органов… … Словарь медицинских препаратов

кварцевые микровесы — Термин кварцевые микровесы Термин на английском quartz crystal microbalance Синонимы quartz crystal nanobalance, метод пьезоэлектрического микровзвешивания Аббревиатуры QCM, QCN Связанные термины антитело, биосенсор, иммобилизация, пьезоэффект,… … Энциклопедический словарь нанотехнологий

Источник

Молекулярная биология

Молекулярный биолог Пробирочка

Автор
Редакторы

Комикс на конкурс «био/мол/текст»: Сегодня молекулярный биолог Пробирочка проведет вас по миру удивительной науки — молекулярной биологии! Мы начнем с исторического экскурса по этапам ее развития, опишем главные открытия и эксперименты, начиная с 1933 года. А также наглядно расскажем о главных методах молекулярной биологии, которые позволили манипулировать генами, изменять и выделять их. Появление этих методов послужило сильным толчком в развитии молекулярной биологии. А еще вспомним о роли биотехнологии и затронем одну из популярнейших тем в этой области — редактирование генома с помощью CRISPR/Cas-систем.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Конкурс «био/мол/текст»-2019

Эта работа опубликована в номинации «Наглядно о ненаглядном» конкурса «био/мол/текст»-2019.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Спонсором приза зрительских симпатий выступила компания BioVitrum.

1. Введение. Сущность молекулярной биологии

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Молекулярная биология изучает основы жизнедеятельности организмов на уровне макромолекул. Целью молекулярной биологии является установление роли и механизмов функционирования этих макромолекул на основе знаний об их структурах и свойствах.

Исторически молекулярная биология сформировалась в ходе развития направлений биохимии, изучающих нуклеиновые кислоты и белки. В то время как биохимия исследует обмен веществ, химический состав живых клеток, организмов и осуществляемые в них химические процессы, молекулярная биология главное внимание сосредоточивает на изучении механизмов передачи, воспроизведения и хранения генетической информации.

А объектом изучения молекулярной биологии являются сами нуклеиновые кислоты — дезоксирибонуклеиновые (ДНК), рибонуклеиновые (РНК) — и белки, а также их макромолекулярные комплексы — хромосомы, рибосомы, мультиферментные системы, обеспечивающие биосинтез белков и нуклеиновых кислот. Молекулярная биология также граничит по объектам исследования и частично совпадает с молекулярной генетикой, вирусологией, биохимией и рядом других смежных биологических наук.

2. Исторический экскурс по этапам развития молекулярной биологии

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Как отдельное направление биохимии, молекулярная биология начала развиваться в 30-х годах прошлого века. Еще тогда возникла необходимость понимания феномена жизни на молекулярном уровне для исследований процессов передачи и хранения генетической информации. Как раз в то время установилась задача молекулярной биологии в изучении свойств, структуры и взаимодействия белков и нуклеиновых кислот.

Впервые термин «молекулярная биология» применил в 1933 году Уильям Астбери в ходе исследования фибриллярных белков (коллагена, фибрина крови, сократительных белков мышц). Астбери изучал связь между молекулярной структурой и биологическими, физическими особенностями данных белков. На первых порах возникновения молекулярной биологии РНК считалась составляющей только растений и грибов, а ДНК — только животных. А в 1935 году открытие ДНК гороха Андреем Белозерским привело к установлению факта, что ДНК содержится в каждой живой клетке.

В 1940 году колоссальным достижением стало установление Джорджем Бидлом и Эдуардом Тэйтемом причинно-следственной связи между генами и белками. Гипотеза ученых «Один ген — один фермент» легла в основу концепции о том, что специфичное строение белка регулируется генами. Полагается, что генетическая информация закодирована специальной последовательностью нуклеотидов в ДНК, которая регулирует первичную структуру белков. Позже было доказано, что многие белки имеют четвертичную структуру. В образовании таких структур принимают участие различные пептидные цепи. Исходя из этого, положение о связи между геном и ферментом было несколько преобразовано, и теперь звучит как «Один ген — один полипептид».

В 1944 году американский биолог Освальд Эвери с коллегами (Колином Маклеодом и Маклином Маккарти) доказал, что веществом, вызывающим трансформацию бактерий, является ДНК, а не белки. Эксперимент послужил доказательством роли ДНК в передаче наследственной информации, перечеркнув устаревшие знания о белковой природе генов.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

В начале 50-х годов Фредерик Сенгер показал, что белковая цепь — уникальная последовательность аминокислотных остатков. В 1951 и 1952 годах ученый определил полную последовательность двух полипептидных цепей — бычьего инсулина В (30 аминокислотных остатков) и А (21 аминокислотный остаток) соответственно.

Примерно в то же время, в 1951–1953 гг., Эрвин Чаргафф сформулировал правила о соотношении азотистых оснований в ДНК. Согласно правилу, вне зависимости от видовых различий живых организмов в их ДНК количество аденина (A) равно количеству тимина (T), а количество гуанина (G) равно количеству цитозина (C).

В 1953 году доказана генетическая роль ДНК. Джеймс Уотсон и Фрэнсис Крик на основе рентгенограммы ДНК, полученной Розалинд Франклин и Морисом Уилкинсом, установили пространственную структуру ДНК и выдвинули подтвердившееся позднее предположение о механизме ее репликации (удвоении), лежащем в основе наследственности.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

1958 год — формирование центральной догмы молекулярной биологии Фрэнсисом Криком: перенос генетической информации идет в направлении ДНК → РНК → белок.

Суть догмы состоит в том, что в клетках имеется определенный направленный поток информации от ДНК, которая, в свою очередь, представляет собой исходный генетический текст, состоящий из четырех букв: A, T, G и C. Он записан в двойной спирали ДНК в виде последовательностей этих букв — нуклеотидов.

Этот текст транскрибируется. А сам процесс называется транскрипцией. В ходе данного процесса происходит синтез РНК, которая является идентичной генетическому тексту, но с отличием: в РНК вместо T стоит U (урацил).

Данная РНК называется информационной РНК (иРНК), или матричной (мРНК). Трансляция иРНК осуществляется при помощи генетического кода в виде триплетных последовательностей нуклеотидов. В ходе этого процесса происходит перевод текста нуклеиновых кислот ДНК и РНК из четырехбуквенного текста в двадцатибуквенный текст аминокислот.

Природных аминокислот существует всего двадцать, а букв в тексте нуклеиновых кислот четыре. Из-за этого происходит перевод из четырехбуквенного алфавита в двадцатибуквенный посредством генетического кода, в котором каждым трем нуклеотидам соответствует какая-либо аминокислота. Так можно сделать из четырех букв целые 64 трехбуквенные комбинации, притом что аминокислот 20. Из этого следует, что генетический код обязательно должен иметь свойство вырожденности. Однако в то время генетический код не был известен, к тому же его даже не начали расшифровывать, но Крик уже сформулировал свою центральную догму.

Тем не менее была уверенность в том, что код должен существовать. К тому времени было доказано, что этот код обладает триплетностью. Это означает, что конкретно три буквы в нуклеиновых кислотах (кодóны) отвечают какой-либо аминокислоте. Этих кодонов всего 64, они кодируют 20 аминокислот. Это означает, что каждой аминокислоте отвечает сразу несколько кодонов.

Таким образом, можно сделать вывод, что центральная догма является постулатом, который гласит о том, что в клетке происходит направленный поток информации: ДНК → РНК → белок. Крик сделал акцент на главном содержании центральной догмы: обратного потока информации происходить не может, белок не способен изменять генетическую информацию.

В этом и заключается основной смысл центральной догмы: белок не в состоянии изменять и преобразовывать информацию в ДНК (или РНК), поток всегда идет лишь в одну сторону.

Спустя время после этого был открыт новый фермент, который не был известен во времена формулировки центральной догмы, — обратная транскриптаза, которая синтезирует ДНК по РНК. Фермент был открыт в вирусах, у которых генетическая информация закодирована в РНК, а не в ДНК. Такие вирусы называют ретровирусами. Они имеют вирусную капсулу с заключенными в нее РНК и специальным ферментом. Фермент и есть обратная транскриптаза, которая синтезирует ДНК по матрице этой вирусной РНК, а эта ДНК потом уже служит генетическим материалом для дальнейшего развития вируса в клетке.

Конечно, данное открытие вызвало большой шок и множество споров среди молекулярных биологов, поскольку считалось, что, исходя из центральной догмы, этого быть не может. Однако Крик сразу объяснил, что он никогда не говорил, что это невозможно. Он говорил лишь то, что никогда не может происходить поток информации от белка к нуклеиновым кислотам, а уже внутри нуклеиновых кислот любого рода процессы вполне возможны: синтез ДНК на ДНК, ДНК на РНК, РНК на ДНК и РНК на РНК.

После формулирования центральной догмы по-прежнему оставался ряд вопросов: как алфавит из четырех нуклеотидов, составляющих ДНК (или РНК), кодирует 20-буквенный алфавит аминокислот, из которых состоят белки? В чем состоит сущность генетического кода?

Первые идеи о существовании генетического кода сформулировали Александр Даунс (1952 г.) и Георгий Гамов (1954 г.). Ученые показали, что последовательность нуклеотидов должна включать в себя не менее трех звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном (триплетом). Тем не менее вопрос о том, какие нуклеотиды ответственны за включение какой аминокислоты в белковую молекулу, оставался открытым до 1961 года.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

А в 1961 году Маршалл Ниренберг вместе с Генрих Маттеи использовали систему для трансляции in vitro. В роли матрицы взяли олигонуклеотид. В его состав входили только остатки урацила, а пептид, синтезированный с него, включал только аминокислоту фенилаланин. Таким образом впервые было установлено значение кодона: кодон UUU кодирует фенилаланин. Поле них Хар Корана выяснил, что последовательность нуклеотидов UCUCUCUCUCUC кодирует набор аминокислот серин—лейцин—серин—лейцин. По большому счету, благодаря работам Ниренберга и Кораны, к 1965 году генетический код был полностью разгадан. Выяснилось, что каждый триплет кодирует определенную аминокислоту. А порядок кодонов определяет порядок аминокислот в белке.

Главные принципы функционирования белков и нуклеиновых кислот сформулировали к началу 70-х годов. Было зафиксировано, что синтез белков и нуклеиновых кислот осуществляется по матричному механизму. Молекула-матрица несет закодированную информацию о последовательности аминокислот или нуклеотидов. При репликации или транскрипции матрицей служит ДНК, при трансляции и обратной транскрипции — иРНК.

Так были созданы предпосылки для формирования направлений молекулярной биологии, в том числе и генной инженерии. А в 1972 году Пол Берг с коллегами разработал технологию молекулярного клонирования. Ученые получили первую рекомбинантную ДНК in vitro. Эти выдающиеся открытия легли в основу нового направления молекулярной биологии, а 1972 год с тех пор считается датой рождения генной инженерии.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

3. Методы молекулярной биологии

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Колоссальные успехи в изучении нуклеиновых кислот, строении ДНК и биосинтеза белка привели к созданию ряда методов, имеющих большое значение в медицине, сельском хозяйстве и науке в целом.

После изучения генетического кода и основных принципов хранения, передачи и реализации наследственной информации для дальнейшего развития молекулярной биологии стали необходимы специальные методы. Эти методы позволили бы проводить манипуляции с генами, изменять и выделять их.

Появление таких методов произошло в 1970–1980-х годах. Это дало огромный толчок развитию молекулярной биологии. В первую очередь, эти методы напрямую связаны с получением генов и их внедрением в клетки других организмов, а еще с возможностью определения последовательности нуклеотидов в генах.

3.1. Электрофорез ДНК

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Электрофорез ДНК является базовым методом работы с ДНК. Электрофорез ДНК применяется вместе почти со всеми остальными методами для выделения нужных молекул и дальнейшего анализа результатов. Сам метод электрофореза в геле используется для разделения фрагментов ДНК по длине.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Предварительно или после электрофореза гель обрабатывается красителями, которые способны связаться с ДНК. Красители флуоресцируют в ультрафиолетовом свете, получается картина из полос в геле. Для определения длин фрагментов ДНК их можно сравнить с мáркерами — наборами фрагментов стандартных длин, которые наносятся на тот же гель.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Флуоресцентные белки

При исследовании эукариотических организмов в качестве генов-мáркеров сподручно использовать флуоресцентные белки. Ген первого зеленого флуоресцентного белка (green fluorescent protein, GFP) выделили из медузы Aqeuorea victoria, после чего внедрили в различные организмы. После выделяли гены флуоресцентных белков других цветов: синих, желтых, красных. Чтобы получить белки с интересующими свойствами, такие гены были модифицированы искусственно.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Вообще, важнейшими инструментами для работы с молекулой ДНК являются ферменты, осуществляющие ряд превращений ДНК в клетках: ДНК-полимеразы, ДНК-лигазы и рестриктазы (рестрикционные эндонуклеазы).

Трансгенез

Трансгенезом называется перенос генов из одного организма в другой. А такие организмы называются трансгенными.

Рекомбинантные белковые препараты как раз получают методом переноса генов в клетки микроорганизмов. В основном такими белковыми препаратами являются интерфероны, инсулин, некоторые белковые гормоны, а также белки для производства ряда вакцин.

В иных случаях применяют клеточные культуры эукариот или трансгенных животных, по большей степени, скот, который выделяет нужные белки в молоко. Таким образом получают антитела, факторы свертывания крови и другие белки. Метод трансгенеза используют для получения культурных растений, устойчивых к вредителям и гербицидам, а при помощи трансгенных микроорганизмов очищают сточные воды.

Помимо всего перечисленного, трансгенные технологии незаменимы в научных исследованиях, ведь развитие биологии происходит быстрее с применением методов модификации и переноса генов.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Рестриктазы

Распознаваемые рестриктазами последовательности являются симметричными, поэтому всякого рода разрывы могут происходить либо в середине такой последовательности, либо со сдвигом в одной или обеих нитях молекулы ДНК.

При расщеплении любой ДНК рестриктазой, последовательности на концах фрагментов будут одинаковыми. Они смогут снова соединяться, поскольку имеют комплементарные участки.

Получить единую молекулу можно, сшив данные последовательности при помощи ДНК-лигазы. За счет этого возможно объединять фрагменты двух разных ДНК и получать рекомбинантные ДНК.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

3.2. ПЦР

В основе метода лежит способность ДНК-полимераз достраивать вторую нить ДНК по комплементарной нити так же, как при процессе репликации ДНК в клетке.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

3.3. Секвенирование ДНК

Стремительное развитие метода секвенирования позволяет эффективно определять особенности исследуемого организма на уровне его генома. Главным преимуществом таких геномных и постгеномных технологий является увеличение возможностей исследования и изучения генетической природы заболеваний человека, для того чтобы заранее принять необходимые меры и избежать болезней.

За счет крупных исследований возможно получать необходимые данные о различных генетических характеристиках разных групп людей, тем самым развивая методы медицины. Из-за этого выявление генетической расположенности к различным заболеваниям сегодня пользуется огромной популярностью.

Подобные методы широко применимы практически во всем мире, в том числе и в России. Из-за научного прогресса происходит внедрение таких методов в медицинские исследования и медицинскую практику в целом.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

4. Биотехнология

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Биотехнология — дисциплина, изучающая возможности использования живых организмов или их систем для решения технологических задач, а еще создания живых организмов с нужными свойствами путем генной инженерии. Биотехнология применяет методы химии, микробиологии, биохимии и, конечно же, молекулярной биологии.

Основные направления развития биотехнологии (принципы биотехнологических процессов внедряют в производство всех отраслей):

Крупным достижением биотехнологии является генная инженерия.

Генная инженерия — совокупность технологий и методов получения рекомбинантных молекул РНК и ДНК, выделения отдельных генов из клеток, осуществление манипуляций с генами и введение их в другие организмы (бактерий, дрожжи, млекопитающих). Такие организмы способны производить конечные продукты с нужными, измененными свойствами.

Методы генной инженерии направлены на конструирование новых, ранее не существовавших сочетаний генов в природе.

Говоря о достижениях генной инженерии, невозможно не затронуть тему клонирования. Клонирование — это один из методов биотехнологии, применяемый для получения идентичных потомков различных организмов при помощи бесполого размножения.

Иными словами, клонирование можно представить как процесс создания генетически идентичных копий организма или клетки. А клонированные организмы похожи или вовсе идентичны не только по внешним признакам, но и по генетическому содержанию.

Небезызвестная овечка Долли в 1966 году стала первым клонированным млекопитающим. Она была получена за счет пересадки ядра соматической клетки в цитоплазму яйцеклетки. Долли являлась генетической копией овцы-донора ядра клетки. В естественных условиях особь формируется из одной оплодотворенной яйцеклетки, получив по половине генетического материала от двух родителей. Однако при клонировании генетический материал взяли из клетки одной особи. Сначала из зиготы удалили ядро, в котором находится сама ДНК. После чего извлекли ядро из клетки взрослой особи овцы и имплантировали его в ту лишенную ядра зиготу, а затем ее пересадили в матку взрослой особи и предоставили возможность для роста и развития.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Тем не менее не все попытки клонирования оказывались удачными. Параллельно с клонированием Долли эксперимент по замене ДНК был проведен на 273 других яйцеклетках. Но только в одном случае смогло полноценно развиться и вырасти живое взрослое животное. После Долли ученые пробовали клонировать и другие виды млекопитающих.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Одним их видов генной инженерии является редактирование генома.

Инструмент CRISPR/Cas базируется на элементе иммунной защитной системы бактерий, который ученые приспособили для внедрения каких-либо изменений в ДНК животных или растений.

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

Что такое биологические молекулы. Смотреть фото Что такое биологические молекулы. Смотреть картинку Что такое биологические молекулы. Картинка про Что такое биологические молекулы. Фото Что такое биологические молекулы

CRISPR/Cas является одним из биотехнологических методов манипулирования отдельными генами в клетках. Существует огромное множество применений такой технологии. CRISPR/Cas позволяет исследователям выяснять функцию разных генов. Для этого нужно просто вырезать исследуемый ген из ДНК и изучить, какие функции организма были затронуты.

Некоторые практические применения системы:

Швейцарские ученые значительно усовершенствовали и модернизировали метод редактирования генома CRISPR/Cas, тем самым расширив его возможности. Тем не менее ученые могли модифицировать только один ген за раз, используя CRISPR/Cas-систему. Но сейчас исследователи Швейцарской высшей технической школы Цюриха разработали метод, с помощью которого возможно одновременно модифицировать 25 генов в клетке.

Для новейшей методики специалисты использовали фермент Cas12a, а не фермент Cas9, применяемый в большинстве методов CRISPR/Cas.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *