Что такое блуждающие токи и как они возникают
Электрохимическая коррозия
Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.
Как мы знаем, наше окружение наполнено электричеством.
В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.
У процесса есть несколько важных отличий.
В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.
На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.
Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.
Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.
Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.
Если говорить о типах электрохимической коррозии, то называют 3 разновидности:
Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.
Какие механизмы отвечают за протекание электрохимической коррозии
Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.
У такого вида процесса есть несколько особенностей.
В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.
Схема электрохимической коррозии
В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.
Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.
Из-за чего начинает развиваться коррозия
После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.
Среди них три распространенные:
Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.
Главные внутренние факторы протекания электрохимической коррозии
На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.
Текущее состояние поверхности металла
Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.
Это может негативно повлиять на интенсивность распространения.
Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.
Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.
Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.
Степень термодинамической стойкости металла
Разные виды материалов отличаются разными показателями термодинамической устойчивости.
Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.
Чтобы понять, есть ли у металла склонность к коррозии под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.
Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.
К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.
Кристаллографическая структура
Оказывает прямое воздействие на металл.
Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.
Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.
В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.
Гетерогенность
Этот фактор рассматривается в непосредственной связи с величиной зерна металла.
Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.
Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.
Не стоит сбрасывать со счетов и механические факторы
Важно понимать, что многие конструкции из металла используются под постоянным напряжением.
К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.
Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.
Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.
Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.
Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.
Основные внешние факторы электрохимической коррозии
Кроме внутренних, на металл также влияют и внешние факторы.
Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.
К ним относятся следующие:
Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.
Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.
Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.
Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.
В некоторых случаях полярность электродов значительно меняется.
Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.
В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.
Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.
Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.
Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.
Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.
На них подобное поражение оказывает минимум влияния.
Чем отличаются анодный и катодный процессы
Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.
Рассмотрим их более подробно.
Анодный процесс
В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.
Катодный процесс
Может протекать по-разному.
В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.
Формула будет зависеть от того, в каких условиях протекает реакция.
Так при наличии водородной деполяризации можно записать процесс как 2 H+ + 2e → H2.
Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.
С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.
Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.
Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.
Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.
Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:
Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?
В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.
Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.
Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.
В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.
Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.
Потому далее мы рассмотрим другой важный показатель – поляризацию.
Поляризация и ее влияние на скорость протекания коррозии
Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.
Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.
Принято выделять три вида поляризации:
Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.
Обеспечиваем эффективную защиту от коррозии
Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.
В пользу работы с нами говорит сразу несколько факторов:
Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.
Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.
Блуждающие токи: причина возникновения и защита от них
Что такое блуждающий ток?
Металлические изделия, применяемые в электрике, быстро изнашиваются и теряют свои высокие технические характеристики из-за такого явления, как блуждающие токи.
Блуждающие токи: причина возникновения
Ежедневно и даже ежечасно люди в современном мире находятся в окружении различных электрических средств. Следовательно, объемы потребляемой электроэнергии неумолимо растут, что приводит к необходимости строительства большего количества КТП (комплектных трансформаторных подстанций) и распределительных установок, а также к монтажу все новых линий электропередач, электросетей для поездов, контактных рельсов метрополитенов и т.п. Известно, что земля не является электропроводной, а все вышеперечисленные объекты электроэнергии, так или иначе, взаимосвязаны с ней, и данная связь очень специфична.
В ситуации повреждения линий электропередач происходит практически аналогичная ситуация. То есть, земля является носителем разности потенциалов в случае возникновения замыканий. Как правило, львиная доля подобных повреждений ликвидируется при помощи автоматики. Важно, что устранение таким способом возможно лишь при масштабных утечках. Нейтрализация данной проблемы при небольших значения более проблематична.
Небольшие блуждающие токи появляются как раз из-за обилия электротранспорта. Например, троллейбус подключен к электросети при помощи специальных конструкций, которые называются «штанги». Они соединены с нулевыми и фазными проводниками и, как известно, находятся на самом троллейбусе. Именно поэтому данное транспортное средство характеризуется невозможностью производства больших блуждающих токов.
Электропитание поездов отличается от приведенного выше примера с троллейбусом. В данном случае, нулевой проводник имеет соединение с рельсами, фазный, в свою очередь, находится над путями. Специальные токосъемники (пантографы) подают электрическую энергию к двигателю данного транспортного средства. Располагается пантограф на крыше электровоза, электропоезда или трамвая и имеет прямой контакт с кабелем питания. Тяговые подстанции – основа электропитания данного типа электросетей. Расстояние между подстанциями одинаковое и неизменное. Блуждающие токи появляются из-за искривленности маршрутов. В данном случае заряженные частицы идут по траектории с наименьшим сопротивлением. То есть, при появлении возможности «срезать угол» заряд пройдет не через рельсы, а по земле.
Блуждающие ток: влияние на металл
Под землей расположено огромное число различных объектов и изделий из металла: трубопроводы, кабельные линии, железобетон и др. Известно, что металл – это хороший проводник электрического тока, следовательно, заряд в данной ситуации пройдет не через почву, а по имеющемуся в ней металлу. Зона, через которую электрический ток входит в грунт, называется «катодной зоной», а через которую выходит – «анодной зоной».
Относительно водопровода стоит поговорить подробнее. Известно, что процесс коррозии в них неизбежен, а подземные воды отличаются большим содержанием растворимых микроэлементов и служат отличным проводником электричества. Таким образом, в металлических трубах под землей из-за процесса электролиза происходят коррозийные процессы. Очень хорошо коррозия выражается в анодной зоне, а в катодной разрушения менее выражены.
Подводя итог, стоит отметить, что блуждающие токи оказывают разрушительное влияние на металлические изделия, являясь при этом причиной серьезных экономических потерь.
Как избежать пагубного влияния блуждающего тока?
Блуждающие токи устраняются таким способом, как катодная защита. Для того, что борьба с данным явлением происходила с минимумом препятствий, необходимо нейтрализовать вероятность возникновения анодной зоны на объекте защиты.
Катодная защита производит электроток постоянного характера и при этом подключается к металлическим объектам полюсом с отрицательным значением. Положительный полюс присоединяется к анодам («жертвенные аноды»), забирающим львиную долю разрушительного влияния на себя. Кроме того, объекты защиты покрываются специальными антикоррозийными покрытиями.
Минусы катодной защиты:
Как измерить блуждающий ток?
Прежде, чем осуществляется монтаж трубопровода под землей, происходит вычисление блуждающих токов путем измерения разности потенциалов, о которой говорилось выше. Измерение осуществляется через каждые 1000 метров.
Используемые измерительные приборы должны иметь степень точности не меньше 1,5, а минимальное собственное сопротивление равняется 1 МОм. Максимальный показатель разности потенциалов – 10 мВ. Продолжительность одного измерения должна быть не меньше 10 минут, а фиксация должна осуществляться каждые 10 секунд.
Стоит отметить, что измерения в области действия электрического транспорта необходимо осуществлять в период пиковых нагрузок. Разность потенциалов, превышающая 0,04 В, говорит от том, что присутствуют блуждающие токи.
Блуждающие токи таят в себе опасность даже при самых незначительных показателях и подразумевают под собой разрушительное воздействие подземных и других коммуникаций. Во избежание подобных ситуаций необходимо осуществлять профилактику по выявлению и последующему устранению данного явления.
Блуждающие токи и борьба с ними
Блуждающие токи, называемые также токами Фуко, являются одной из самых серьезных проблем для находящихся в земле металлоконструкций. Ещё совсем недавно, в XIX и начале XX века этого никогда не возникало. Причиной появления стали многочисленные мощнейшие источники постоянного тока, контактирующие с поверхностью земли. Метрополитен, троллейбусы и трамваи, различные электролитические установки, контуры заземления и прочие источники с электрическими полями порождают небольшие разряды, способные путешествовать на большие расстояния. Когда на их пути встречается металл, то происходит простейшая электролитическая коррозия.
Необходимо привести пример, для полного понимания этого явления. В одном из гаражей города, семья решила использовать недавно приобретенную бочку из нержавеющей стали для засолки овощей. Весной ёмкость дала сильную течь, а вскоре дно, которое от 2 мм истончилось до толщины фольги, полностью выпало. Эту работу проделали блуждающие токи. Это явление являются одним из самых каверзных, потому что оно не щадит ни один металл. Алюминий, медь, цинк и прочие элементы быстро разлагаются под действием сильнейшей коррозии.
Методы защиты от токов Фуко
Сделать это очень сложно, но многочисленные компании постоянно разрабатывают средства защиты. Они обладают определенной эффективностью, но также имеют большое количество нюансов, которые необходимо учитывать при использовании:
Какие условия являются наиболее благоприятными
Наличие солей в почве способствует распространению токов с огромной скоростью. Как показывает практика, распространение практически не происходит в песках. Это обусловлено сухостью грунта, где токи сразу же теряются. Поэтому проблема практически не актуальна для стран Ближнего Востока, где конструкции в грунтах почти не страдают. Также токи не могут распространяться в условиях сухого климата. Заболоченные просоленные почвы, которыми изобилуют Карелия и Финляндия — это идеальный вариант.
Где нет блуждающих токов?
Они практически полностью отсутствуют в сельской местности, а также на различных удаленных объектах. Но если будет использован заземленный трансформатор, то тогда повреждений не избежать. Правда они будут значительно меньше, чем в условиях города. Сейчас борьба с этим явлением является одним из приоритетных направлений в своде наук, изучающих коррозию металлов. Особенно подвержены таким явлениям комплексные сплавы. В чистом виде не используется ни один металл, поэтому вопрос остаётся открытым.
Блуждающие токи: причина возникновения и защита от них
Отправим материал на почту
Электрическая энергия активно используется на каждом шагу. Однако в некоторых случаях её действие происходит скрыто. Поскольку почва способна проводить ток, то он возникает каждый раз, когда имеется разность потенциалов. В некоторых ситуациях блуждающие токи могут приводить к разрушительным последствиям. Чтобы этого избежать, важно знать, что такое блуждающий ток и эффективные методы защиты, применяемые в таких случаях.
Что представляют собой блуждающие токи
Люди используют электроэнергию для различных целей:
Повсеместное использование электричества порождает дополнительные проблемы для человека. Одной из них является появление блуждающих токов. Каждый раз, когда электричество попадает в почву, оно создаёт возможность для их возникновения и разрушительного воздействия.
Обычно в грунте присутствует влага с растворёнными в ней веществами. Она является хорошим проводником. Как только на участке земли образуется в силу тех или иных причин разность потенциалов, то через землю начинает течь ток. Его силу и направление предугадать трудно, так как он носит случайный характер.
Как известно из курса физики, ток протекает там, где сопротивление минимально. Поскольку в земле находится большое количество металлических труб различного назначения, то ток часто протекает через их различные участки. Это способно привести к существенному разрушению трубопроводных магистралей. Например, за год может неожиданно образоваться дыра размером с ладонь даже в крепкой и качественной трубе.
Блуждающие токи так называются потому, что они протекают по случайным участкам грунта. Сложно заранее предвидеть, где именно пройдёт их путь. Схема прохождения выглядит следующим образом.
Существуют разного рода источники электрической энергии, непосредственно контактирующие с грунтом. Если в непосредственной близости имеется трубопровод, то ток сначала пройдёт через почву, затем через трубу и после этого в определённой точке выйдет из неё. Далее по почве он пройдёт к предмету с меньшим потенциалом, установленному на земле.
Нужно учитывать, что ток проходит от более высокого к меньшему потенциалу. В описанной схеме начало и окончание пути — это места, где произошла протечка электроэнергии.
Особое внимание нужно обратить на участки, где блуждающие токи входят в трубу и выходят из неё. Первый называют анодным, второй — катодным. В этих местах к процессу коррозии добавляется электролитическое воздействие тока.
При этом нужно помнить, что анодный участок является более опасным для трубы по сравнению с катодным. Дело в том, что на нём из-за блуждающего тока произойдёт перенос молекул металла в окружающий грунт. В результате оболочка быстро станет более тонкой, а затем образуется отверстие.
Предвидеть, в каком конкретно месте образуется анодный участок, практически невозможно. Это существенно зависит от химического состава и влажности почвы. На практике для борьбы с этим явлением применяются различные методы пассивного или активного характера. Вред, который приносят блуждающие токи, состоит также в том, что они представляют собой утечки электроэнергии, которые иногда могут достигать значительных размеров.
О каких утечках электроэнергии идёт речь
В сетях электропитания используются фазный и нулевой провод. Последний многими рассматривается как заземление, но на самом деле он устроен более сложно. Этот провод соединён не с грунтом, а с питающей подстанцией. На ней он в конечном счёте подключается к заземлению. К нему подсоединены нулевые провода всех потребителей подстанции.
Такое заземление имеет ненулевой потенциал и непосредственно соединено с грунтом. Оно может стать одним из источников блуждающих токов.
Другой широко распространённый вариант — это электротранспорт. При его движении вверху расположен фазный провод. Разность потенциалов создаётся между ним и рельсами, непосредственно контактирующими с землёй. Этот грунт является ещё одним источником электроэнергии для блуждающих токов.
Если потенциал нулевого проводника одинаковый на всём протяжении пути, то разность потенциалов не возникнет. Когда это не так, возникает блуждающий ток. На рельсах образуются анодные и катодные участки. В первых из них активно разрушаются рельсы вследствие электролитических реакций. Если не контролировать такие ситуации, они могут приводить к катастрофам.
В земле проходят кабели электропитания. Они имеют мощную изоляцию. Однако с течением времени она может начать разрушаться. В результате через оголённые участки энергия станет уходить в почву. Иногда в таких кабелях имеется очень высокое напряжение, которое может достигать нескольких тысяч вольт.
Здесь рассказано о наиболее важных видах утечек. Однако существуют также и другие варианты.
Блуждающие токи в быту
Это явление обладает сходным действием, но имеет другие причины появления. В квартире или частном доме обязательно используется водопроводная система и отопление. Случайным образом в трубах и окружающих их стенах может накапливаться статическое электричество. Здесь также существуют блуждающие токи, и могут возникать анодные и катодные зоны, которые приводят к разрушению труб.
Возникновение таких проблем связано с отсутствием заземления в некоторых случаях. Если используются металлопластиковые трубы, то они изолируют металлическую часть системы от контакта с почвой. При этом статическое электричество не уходит, а оказывает разрушительное воздействие. Для защиты от блуждающих токов необходимо принимать соответствующие меры.
Иногда такие трубы появляются у соседей вследствие проведённого ими ремонта. В некоторых случаях в подъезде с самого начала установлены металлопластиковые стояки. В таком случае образование блуждающих токов — это вопрос времени. В таких ситуациях важно обеспечить заземление всех труб, используемых в квартире или частном доме. При этом соединяют все имеющиеся металлические элементы таких систем: батареи, полотенцесушители, краны, смесители и другие. Блуждающие токи — это может стать серьёзной проблемой, если с ними не бороться.
Какие объекты подвергаются максимальной опасности
Полностью контролировать образование блуждающих токов невозможно. Для защиты от их воздействия необходимо в первую очередь обращать внимание на наиболее уязвимые для них объекты:
Фактически рассматриваемая опасность может угрожать любым металлическим элементам, непосредственно контактирующим с землёй. Понимание того, что же такое «блуждающие токи», поможет понять, как избежать их появления.
Способы защиты
Для защиты могут применяться различные методы Их разделяют на две основных разновидности: пассивные и активные. В первом случае речь идёт о надёжной изоляции труб от окружающего грунта. Для этого можно использовать несколько слоёв защиты.
Когда нужно исключить блуждающие токи в водопроводных трубах, могут применяться битумные мастики, специальные оболочки, изоляционные ленты. Работы нужно проводить с осторожностью, так как механические повреждения защитного слоя могут стать местами, где происходит активное разрушение объекта.
Эффективным способом защиты является замена металлических труб на пластиковые. После этого они перестанут быть местом, где протекает ток. В результате прекратятся электролитические процессы, разрушающие конструкцию.
Для изоляции рельсов от грунта прокладывают специальную защиту. В результате пути располагаются выше, чем обычно. Обычно для этой цели используются насыпи из не проводящего электричество материала. Это приводит к увеличению затрат и не всегда приемлемо для электротранспорта, маршрут которого находится в городской черте.
При проектировании трубопроводов, расположения электрических кабелей, маршрутов электротранспорта стараются по возможности разнести их на значительное расстояние.
На практике редко удаётся сделать пассивную защиту от блуждающих токов достаточно надёжной. Поэтому наибольшее распространение получили активные методы. Их использование требует установки дополнительных рабочих конструкций и связано с дополнительными затратами электроэнергии. Действие такой защиты охватывает всего несколько десятков метров.
Принцип работы таких методов связан с ликвидацией анодных зон на защищаемых объектах. При этом разрушительное воздействие тока переключается на специальные объекты, разрушение которых не причинит вреда защищаемой конструкции. Для этого в нужных местах устанавливают станции катодной защиты. Знание того, что такое блуждающие токи, позволяет выстроить эффективную защиту от них.
Стоимость их использования пренебрежимо мала по сравнению с возможными проблемами. Поэтому их применение считается очень выгодным.
При использовании катодных станций подают положительный потенциал на защищаемый объект. Недалеко от него располагают катоды. На них дают отрицательный. Вследствие перераспределения энергии анодные зоны создаются на дополнительно установленных катодах. Металлические молекулы с них активно испарятся, постепенно приводя детали в негодность. В этом случае их сразу заменяют.
На объекте из-за блуждающих токов исключается образование анодных зон и разрушение не происходит. При установке защиты важно правильно произвести расчёты. При ошибке конструкция станет действовать противоположным образом — станет источником разрушения защищаемого объекта. Поэтому для каждого объекта планирование нужно производить с учётом его особенностей.
Защита от блуждающих токов может быть создана следующим образом. Для этого нужно подать определённый потенциал на защищаемый объект. В результате прекратится протекание через него блуждающих токов.
Для защиты может быть использован электродренажный метод. В этом случае в месте, где ожидается появление анодной зоны трубу соединяют проводником с местом, которой является источником проблемы и создаёт соответствующий потенциал. В этом месте исчезает разность потенциалов, которая была причиной для образования анодной зоны.
Методы измерения
Для того чтобы определить места, где наиболее вероятно образование блуждающих токов, необходимо выполнять измерения. Полученная информация о блуждающих постоянных токах позволяет более эффективно построить защитные мероприятия. Измерения представляют собой систему мероприятий, включающую такие элементы:
При выполнении замеров на путях электротранспорта нужно выбирать время наибольшей активности. Используемые приборы должны иметь класс точности не менее 1,5.
При прокладке подземных трубопроводов измерения блуждающих токов проводят через каждые 1000 м. Если аналогичные конструкции расположены параллельно, то измерения выполняют с промежутком 200 м. В этом случае проводят сравнение показателей вдоль каждого трубопровода. Дополнительно проводят измерение разности потенциалов между ними.
Заключение
Образование блуждающих токов приводит к ускоренному разрушению металлических конструкций. Для того, чтобы их защитить, необходимо комплексно применять методы пассивной или активной защиты. Необходимо регулярно проводить измерения для определения степени опасности рассматриваемой проблемы.