Что такое большая полуось орбиты
Большая полуось орбиты
Смотреть что такое «Большая полуось орбиты» в других словарях:
Большая полуось — это один из основных геометрических параметров объектов, образованных посредством конического сечения. Содержание 1 Эллипс 2 Парабола 3 Гипербола … Википедия
Орбиты небесных тел — траектории, по которым движутся небесные тела в космическом пространстве. Формы О. н. т. и скорости, с которыми по ним движутся небесные тела, определяются силой тяготения, а также силой светового давления, электромагнитными силами,… … Большая советская энциклопедия
Большая мартовская комета 1843 года — C/1843 D1 (Большая мартовская комета) Зарисовка Большой мартовской кометы 1843, сделанная в Тасмании. Открытие Дата открытия: 5 февраля 1843 Альтернативные обозначения: 1843 I 1843a Характеристики орбиты Афелий: 129 а. е … Википедия
Большая комета 1843 года — C/1843 D1 (Большая мартовская комета) Зарисовка Большой мартовской кометы 1843, сделанная в Тасмании. Открытие Дата открытия: 5 февраля 1843 Альтернативные обозначения: 1843 I 1843a Характеристики орбиты Афелий: 129 а. е … Википедия
Большая комета 1811 года — C/1811 F1 (Большая комета) Открытие Первооткрыватель: Оноре Флагерье Дата открытия: 25 марта 1811 Альтернативные обозначения: 1811 I 1811a Характеристики орбиты Афелий: 424 а. е. Перигелий: 1,035412 а. е. Большая полуось … Википедия
Большая комета 1965 года — C/1965 S1 (Икея Секи) Открытие Первооткрыватель: Каору Икея, Цуоми Секи Дата открытия: 18 сентября 1965 Альтернативные обозначения: 1965 VIII; 1965f Характеристики орбиты Эпоха: 7 октября 1965 … Википедия
Элементы орбиты — в астрономии, система величин (параметров), определяющих ориентацию орбиты небесного тела в пространстве, её размеры и форму, а также положение на орбите небесного тела в некоторый фиксированный момент. Невозмущённую орбиту, по которой… … Большая советская энциклопедия
Кеплеровы элементы орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) … Википедия
Наклон орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) Части эллипса (рис.2) Кеплеровы элементы шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел: большая полуось ( ), эксцентриситет ( … Википедия
Наклонение орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) Части эллипса (рис.2) Кеплеровы элементы шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел: большая полуось ( ), эксцентриситет ( … Википедия
Большая полуось
Большая полуось — это один из основных геометрических параметров объектов, образованных посредством конического сечения.
Содержание
Эллипс
Большой осью эллипса называется его наибольший диаметр, прямая проходящая через центр и два фокуса. А большая полуось составляет половину этого расстояния, и таким образом, идёт от центра, через фокус, и на край эллипса. А под углом в 90° к большой полуоси располагается малая полуось — это минимальное расстояние от центра эллипса до его края. Для частного случая круга, большая и малая полуоси равны и являются радиусами. Таким образом, можно думать о большой и малой полуосях как о, своего рода, радиусах эллипса.
Длина большой полуоси связана с длиной малой полуоси
через эксцентриситет
и коническое сечение
, следующим образом:
Большая полуось представляет собой среднее значение наибольшего и наименьшего расстояния от точки эллипса до его фокусов. Рассмотрим теперь уравнение в полярных координатах, с точкой в начале координат (полюс) и лучом, начинающейся из этой точки (полярная ось):
Получим средние значения и
и большую полуось
Парабола
Параболу можно получить как предел последовательности эллипсов, где один фокус остаётся постоянным, а другой отодвигается в назад, сохраняя постоянным. Таким образом
и
стремятся к бесконечности, причём
быстрее, чем
.
Гипербола
Большая полуось гиперболы составляет половину минимального расстояния между двумя ветвями гиперболы, на положительной и отрицательной сторонах оси (слева и справа относительно начала координат). Для ветви расположенной на положительной стороне, полуось будет равна:
Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:
.
Прямая, содержащая большую ось гиперболы, называется поперечной осью гиперболы. [1]
Астрономия
Орбитальный период
В небесной механике орбитальный период обращения малых тел по эллиптической или круговой орбите вокруг более крупного центрального тела рассчитывается по формуле:
— это размер большой полуоси орбиты
— это стандартный гравитационный параметр (en:standard gravitational parameter)
Следует обратить внимание, что в данной формуле для всех эллипсов период обращения определяется значением большой полуоси, независимо от эксцентриситета.
Для объектов Солнечной системы большая полуось связана с орбитальным периодом по третьему закону Кеплера.
— орбитальный период в годах;
— большая полуось в астрономических единицах.
Это выражение является частным случаем общего решения задачи двух тел Исаака Ньютона:
— гравитационная постоянная
— масса центрального тела
— масса обращающегося вокруг него спутника. Как правило, масса спутника настолько мала по сравнению с массой центрального тела, что ею можно пренебречь. Поэтому, сделав соответствующие упрощения в этой формуле, получим данную формулу в упрощённом виде, который приведён выше.
Орбита движения спутника вокруг общего с центральным телом центра масс (барицентра), представляет собой эллипс. Большая полуось используется в астрономии всегда применительно к среднему расстоянию между планетой и звездой, в результате орбиты планет Солнечной системы приведены к гелиоцентрической системе, а не к системе движения вокруг центра масс. Эту разницу удобнее всего проиллюстрировать на примере системы Земля-Луна. Отношение масс в этом случае составляет 81,30059. Большая полуось геоцентрической орбиты Луны составляет 384400 км. В то время как расстояние до Луны относительно центра масс системы Земля-Луна составляет 379700 км, из-за влияния массы Луны центр масс находится не в центре Земли, а в 4700 км от него. В итоге средняя орбитальная скорость Луны относительно центра масс составляет 1,010 км/с, а средняя скорость Земли 0,012 км/с. А общая сумма этих скоростей даёт орбитальную скорость Луны 1,022 км/с; тоже самое значение можно получить, рассматривая движение Луны относительно центра Земли, а не центра масс.
Среднее расстояние
Часто говорят, что большая полуось является средним расстоянием между центральным и орбитальным телом. Это не совсем верно, так как под средним расстоянием можно понимать разные значения – в зависимости от величины, по которой производят усреднение:
Энергия; расчёт большой полуоси методом векторов состояния
В небесной механике большая полуось может быть рассчитана методом векторов орбитального состояния:
для эллиптических орбит
для гиперболической траектории
(стандартный гравитационный параметр), где:
— орбитальная скорость спутника, на основе вектора скорости,
— вектор положения спутника в координатах системы отсчёта, относительно которой должны быть вычислены элементы орбиты (например, геоцентрический в плоскости экватора — на орбите вокруг Земли, или гелиоцентрический в плоскости эклиптики — на орбите вокруг Солнца),
— гравитационная постоянная,
и
— массы тел.
Большая полуось рассчитывается на основе общей массы и удельной энергии, независимо от значения эксцентриситета орбиты.
См. также
Примечания
Ссылки
Это заготовка статьи о науке. Вы можете помочь проекту, исправив и дополнив её. Это примечание по возможности следует заменить более точным. |
Орбиты | |||||||||
---|---|---|---|---|---|---|---|---|---|
Основные | Box-орбита • Орбита захвата • Эллиптическая орбита / Высокая эллиптическая орбита • Орбита ухода • Орбита захоронения • Гиперболическая траектория • Наклонная орбита / Ненаклонная орбита • Оскулирующая орбита • Параболическая траектория • Опорная орбита (в т.ч. низкая) • Синхронная орбита • (Полусинхронная • Субсинхронная) • Стационарная орбита |
Геоцентрические | Геосинхронная орбита • Геостационарная орбита • Солнечно-синхронная орбита • Низкая околоземная орбита • Средняя околоземная орбита • Высокая околоземная орбита • Молния-орбита • Околоэкваториальная орбита • Орбита Луны • Полярная орбита • Тундра-орбита • TLE |
Вокруг других небесных тел и точек | Ареосинхронная орбита • Ареостационарная орбита • Гало-орбита • Орбита Лиссажу • Окололунная орбита • Гелиоцентрическая орбита • Солнечно-синхронная орбита |
Классические | |
Другие | |
Законы и задачи | Законы Ньютона • Закон всемирного тяготения • Законы Кеплера • Задача двух тел • Задача трёх тел • Гравитационная задача N тел • Задача Бертрана • Уравнение Кеплера |
---|---|
Небесная сфера | Система небесных координат: галактическая • горизонтальная • первая экваториальная • вторая экваториальная • эклиптическая • Международная небесная система координат • Сферическая система координат • Ось мира • Небесный экватор • Прямое восхождение • Склонение • Эклиптика • Равноденствие • Солнцестояние • Фундаментальная плоскость |
Параметры орбит | Кеплеровы элементы орбиты: эксцентриситет • большая полуось • средняя аномалия • долгота восходящего узла • аргумент перицентра • Апоцентр и перицентр • Орбитальная скорость • Узел орбиты • Эпоха |
Движение небесных тел | Движение Солнца и планет по небесной сфере • Эфемериды Конфигурации планет: противостояние • квадратура • парад планет • Кульминация • Сидерический период • Орбитальный резонанс • Период вращения • Предварение равноденствий • Синодический период • Сближение Затмение: солнечное затмение • лунное затмение • сарос • Метонов цикл • Покрытие • Прохождение • Либрация • Элонгация • Эффект Козаи • Эффект Ярковского • Эффект Джанибекова |
Астродинамика | |
Космический полёт | Космическая скорость: первая (круговая) • вторая (параболическая) • третья • четвёртая Формула Циолковского • Гравитационный манёвр • Гомановская траектория • Метод оскулирующих элементов • Приливное ускорение • Изменение наклонения орбиты • Стыковка • Точки Лагранжа • Эффект «Пионера» |
Орбиты КА | Геостационарная орбита • Гелиоцентрическая орбита • Геосинхронная орбита • Геоцентрическая орбита • Геопереходная орбита • Низкая опорная орбита • Полярная орбита • Тундра-орбита • Солнечно-синхронная орбита • Молния-орбита • Оскулирующая орбита |
Полезное
Смотреть что такое «Большая полуось» в других словарях:
большая полуось — didysis pusašis statusas T sritis fizika atitikmenys: angl. semi major axis vok. große Halbachse, f rus. большая полуось, f pranc. demi grand axe, m … Fizikos terminų žodynas
большая полуось а — 3.2 большая полуось а: Максимальный радиус эллипсоида. Примечание Для эллипсоида, представляющего Землю, это радиус экватора. Источник: ГОСТ Р 52572 2006: Географические информационные системы. Координатная основа. Общие требования … Словарь-справочник терминов нормативно-технической документации
большая полуось эллипсоида — 2.1.1 большая полуось эллипсоида : Параметр, характеризующий размер эллипсоида. Источник … Словарь-справочник терминов нормативно-технической документации
Большая полуось орбиты — величина (элемент орбиты (См. Элементы орбиты)), определяющая вместе с эксцентриситетом орбиты (См. Эксцентриситет орбиты) её размеры … Большая советская энциклопедия
Большая — постоянное или часто повторяющееся воздействие жидкостей на покрытие пола. Источник: МДС 31 12.2007: Полы жилых, общественных и производственных зданий с применением материалов фирмы «Хенкель Баутехник» … Словарь-справочник терминов нормативно-технической документации
Большая комета 1811 года — C/1811 F1 (Большая комета) Открытие Первооткрыватель: Оноре Флагерье Дата открытия: 25 марта 1811 Альтернативные обозначения: 1811 I 1811a Характеристики орбиты Афелий: 424 а. е. Перигелий: 1,035412 а. е. Большая полуось … Википедия
Большая мартовская комета 1843 года — C/1843 D1 (Большая мартовская комета) Зарисовка Большой мартовской кометы 1843, сделанная в Тасмании. Открытие Дата открытия: 5 февраля 1843 Альтернативные обозначения: 1843 I 1843a Характеристики орбиты Афелий: 129 а. е … Википедия
Большая комета 1843 года — C/1843 D1 (Большая мартовская комета) Зарисовка Большой мартовской кометы 1843, сделанная в Тасмании. Открытие Дата открытия: 5 февраля 1843 Альтернативные обозначения: 1843 I 1843a Характеристики орбиты Афелий: 129 а. е … Википедия
Большая комета 1965 года — C/1965 S1 (Икея Секи) Открытие Первооткрыватель: Каору Икея, Цуоми Секи Дата открытия: 18 сентября 1965 Альтернативные обозначения: 1965 VIII; 1965f Характеристики орбиты Эпоха: 7 октября 1965 … Википедия
Малая полуось — Не следует путать с термином «Эллипсис». Эллипс и его фокусы Эллипс (др. греч. ἔλλειψις недостаток, в смысле недостатка эксцентриситета до 1) геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний от двух данных точек F1… … Википедия
Кеплеровы элементы орбиты
Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:
Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию плоскости орбиты по отношению к базовой системе координат, шестой — положение тела на орбите.
Содержание
Большая полуось
Большая полуось — это половина главной оси эллипса (обозначена на рис.2 как
). В астрономии характеризует среднее расстояние небесного тела от фокуса
Эксцентриситет
Эксцентрисите́т (обозначается «» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия. [1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле:
, где
— малая полуось (см. рис.2)
Можно разделить внешний вид орбиты на пять групп:
Наклонение
Наклонение орбиты (накло́н орбиты, накло́нность орбиты, наклоне́ние) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).
Обычно обозначается буквой i (от англ. inclination ). Наклонение измеряется в угловых градусах, минутах и секундах.
Зная наклонение двух орбит к одной плоскости отсчёта и долготы их восходящих узлов, можно вычислить угол между плоскостями этих двух орбит — их взаимное наклонение, по формуле косинуса угла.
Аргумент перицентра
Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.
При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.
Обозначается ().
Долгота восходящего узла
Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемый для математического описания ориентации плоскости орбиты относительно базовой плоскости. Определяет угол в базовой плоскости, образуемый между базовым направлением на нулевую точку и направлением на точку восходящего узла орбиты, в которой орбита пересекает базовую плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, базовая плоскость — эклиптика, а нулевая точка — Первая точка Овна (точка весеннего равноденствия); угол измеряется от направления на нулевую точку против часовой стрелки.