Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ свойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. УсСчСнная ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠΎΠ΄ Π½Π΅ΠΉ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΠ±ΡŠΠ΅ΠΌΠ½ΡƒΡŽ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ, Ссли ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ всС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ плоского ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с ΠΎΠ΄Π½ΠΎΠΉ СдинствСнной Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΉ плоскости, Ρ‡Π΅ΠΌ этот ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Рисунок Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ 4 Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π’Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ интСрСсно: ЛитовскиС статуты: Π΄Π°Ρ‚Ρ‹ ΠΈ история ΠΈΠ·Π΄Π°Π½ΠΈΠΉ, Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚, хронология принятия статутов

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠžΡΠΎΠ±Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΈΡ† класса ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ идСальной симмСтриСй, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π§Ρ‚ΠΎΠ±Ρ‹ Ρ„ΠΈΠ³ΡƒΡ€Π° Π±Ρ‹Π»Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π²Π° ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… условия:

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ условиС ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‹ΠΌ: пСрпСндикуляр, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΊ основанию ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ (Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²), Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒ это основаниС Π² Π΅Π³ΠΎ гСомСтричСском Ρ†Π΅Π½Ρ‚Ρ€Π΅.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ΅Ρ€Π΅ΠΉΠ΄Π΅ΠΌ ΠΊ Ρ‚Π΅ΠΌΠ΅ ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΈ рассмотрим, ΠΊΠ°ΠΊΠΈΠ΅ свойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ Π΅Π΅. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ Π½Π° рисункС, ΠΊΠ°ΠΊ выглядит эта Ρ„ΠΈΠ³ΡƒΡ€Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π•Π΅ основаниС являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠΌ. Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ стороны ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 4 ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (ΠΎΠ½ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ равносторонними ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π΄Π»ΠΈΠ½Ρ‹ стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈ высоты Ρ„ΠΈΠ³ΡƒΡ€Ρ‹). ΠžΠΏΡƒΡ‰Π΅Π½Π½Π°Ρ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ высота пСрСсСчСт ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π² Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π΅ (Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ).

Π­Ρ‚Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° ΠΈΠΌΠ΅Π΅Ρ‚ 5 Π³Ρ€Π°Π½Π΅ΠΉ (ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°), 5 Π²Π΅Ρ€ΡˆΠΈΠ½ (Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΈΠ· Π½ΠΈΡ… ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ основанию) ΠΈ 8 Ρ€Π΅Π±Π΅Ρ€. Ось симмСтрии Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠ³ΠΎ порядка, проходящая Ρ‡Π΅Ρ€Π΅Π· высоту ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΡ‚ Π΅Π΅ Π² саму сСбя ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π½Π° 90o.

ЕгипСтскиС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π² Π“ΠΈΠ·Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π”Π°Π»Π΅Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ всС характСристики этой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

Π§Π΅Ρ‚Ρ‹Ρ€Π΅ основных Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°

НачнСм рассмотрСниС матСматичСских свойств ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ с Ρ„ΠΎΡ€ΠΌΡƒΠ» высоты, Π΄Π»ΠΈΠ½Ρ‹ стороны основания, Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° ΠΈ Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹. Π‘Ρ€Π°Π·Ρƒ скаТСм, Ρ‡Ρ‚ΠΎ всС эти Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ связаны Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ, поэтому достаточно Π·Π½Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ ΠΈΠ· Π½ΠΈΡ…, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΎΡΡ‚Π°Π²ΡˆΠΈΠ΅ΡΡ Π΄Π²Π΅.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ извСстна высота h ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ Π΄Π»ΠΈΠ½Π° a стороны ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ основания, Ρ‚ΠΎΠ³Π΄Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ b Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для Π΄Π»ΠΈΠ½Ρ‹ ab Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ (высота Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, опущСнная Π½Π° сторону основания):

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ b всСгда большС Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ ab.

Оба выраТСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ для опрСдСлСния всСх Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… характСристик, Ссли извСстны Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π΄Π²Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ab ΠΈ h.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΈ объСм Ρ„ΠΈΠ³ΡƒΡ€Ρ‹

Π­Ρ‚Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π·Π½Π°Π΅Ρ‚ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ школьник. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности, которая ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π°ΠΏΠΎΡ„Π΅ΠΌΡƒ ab ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Π°ΠΊ:

Если ab являСтся нСизвСстной, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ ΠΈΠ· ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΏΡƒΠ½ΠΊΡ‚Π° Ρ‡Π΅Ρ€Π΅Π· высоту h ΠΈΠ»ΠΈ Ρ€Π΅Π±Ρ€ΠΎ b.

ΠžΠ±Ρ‰Π°Ρ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности рассматриваСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ складываСтся ΠΈΠ· ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ So ΠΈ Sb:

S = So + Sb = a2 + 2 Γ— a Γ— ab = a (a + 2 Γ— ab)

Рассчитанная ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ всСх Π³Ρ€Π°Π½Π΅ΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½Π° рисункС Π½ΠΈΠΆΠ΅ Π² Π²ΠΈΠ΄Π΅ Π΅Π΅ Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ОписаниС свойств ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»Π½Ρ‹ΠΌ, Ссли Π½Π΅ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для опрСдСлСния Π΅Π΅ объСма. Π­Ρ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° для рассматриваСмой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ вычисляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’ΠΎ Π΅ΡΡ‚ΡŒ V Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ части произвСдСния высоты Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΅Π΅ основания.

Бвойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ усСчСнной Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ эту Ρ„ΠΈΠ³ΡƒΡ€Ρƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ· исходной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΡ€Π΅Π·Π°Ρ‚ΡŒ Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠžΡΡ‚Π°Π²ΡˆΠ°ΡΡΡ ΠΏΠΎΠ΄ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ срСза Ρ„ΠΈΠ³ΡƒΡ€Π° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ усСчСнной.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Боковая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ усСчСнной Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Π½Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, Π° Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ трапСциями.

Одним ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… свойств этой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся Π΅Π΅ объСм, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ рассчитываСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

V = 1/3 Γ— h Γ— (So1 + So2 + √(So1 Γ— So2))

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ β€” Ρ‚ΠΎΡ‡ΠΊΠ°, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π°Ρ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π° ΠΈ Π½Π΅ лСТащая Π² плоскости основания.

ОснованиС β€” ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

АпофСма β€” высота Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, провСдСнная ΠΈΠ· Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Высота β€” ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ пСрпСндикуляра, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΊ плоскости Π΅Ρ‘ основания (ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ основаниС пСрпСндикуляра).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ β€” сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, проходящСС Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΈ диагональ основания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

НСкоторыС свойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

1) Если всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ

– ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ проСцируСтся Π² Π΅Ρ‘ Ρ†Π΅Π½Ρ‚Ρ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

– Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ основания Ρ€Π°Π²Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Если Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ основания Ρ€Π°Π²Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹, Ρ‚ΠΎ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Если ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ проСцируСтся Π² Π΅Ρ‘ Ρ†Π΅Π½Ρ‚Ρ€, Ρ‚ΠΎ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π’ΠΈΠ΄Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ справСдливо:

– Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹;

– Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π΅ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ β€” Ρ€Π°Π²Π½Ρ‹Π΅ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ;

– Π² Π»ΡŽΠ±ΡƒΡŽ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру;

– ΠΎΠΊΠΎΠ»ΠΎ любой ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру;

– ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° основания Π½Π° Π°ΠΏΠΎΡ„Π΅ΠΌΡƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

УсСчённой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ называСтся ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Π·Π°ΠΊΠ»ΡŽΡ‡Ρ‘Π½Π½Ρ‹ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ основаниСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ сСкущСй ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΅Ρ‘ основанию.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ВСтраэдр – Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°. Π’ тСтраэдрС любая ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ принята Π·Π° основаниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, элСмСнты, Π²ΠΈΠ΄Ρ‹, Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΡ‹ рассмотрим ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, основныС элСмСнты, Π²ΠΈΠ΄Ρ‹ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Π°Ρ информация сопровоТдаСтся наглядными рисунками для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ восприятия.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° – это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π° Π² пространствС; ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ состоит ΠΈΠ· основания ΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ (с ΠΎΠ±Ρ‰Π΅ΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ), количСство ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… зависит ΠΎΡ‚ количСства ΡƒΠ³Π»ΠΎΠ² основания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° – это частный случай конуса.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π Π°Π·Π²Ρ‘Ρ€Ρ‚ΠΊΠ° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ – Ρ„ΠΈΠ³ΡƒΡ€Π°, получСнная ΠΏΡ€ΠΈ β€œΡ€Π°Π·Ρ€Π΅Π·Π΅β€ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ρ‚.Π΅. ΠΏΡ€ΠΈ совмСщСнии всСх Π΅Π΅ Π³Ρ€Π°Π½Π΅ΠΉ Π² плоскости ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ…. Для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° Π² плоскости основания выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: свойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ прСдставлСны Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

Π’ΠΈΠ΄Ρ‹ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

1. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ сСчСниС – сСкущая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΈ диагональ основания. Π£ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Π°ΠΊΠΈΡ… сСчСния Π΄Π²Π° (ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ Π½Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ диагональ):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

2. Если сСкущая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° основанию ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΎΠ½Π° Π΄Π΅Π»ΠΈΡ‚ Π΅Π΅ Π½Π° Π΄Π²Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹: ΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ (считая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹) ΠΈ ΡƒΡΠ΅Ρ‡Π΅Π½Π½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ (считая ΠΎΡ‚ основания). Π‘Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ являСтся ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ основанию ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ‹ сСчСния, Π½ΠΎ ΠΎΠ½ΠΈ Π½Π΅ Ρ‚Π°ΠΊ распространСны.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ свойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. УсСчСнная Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

ГСомСтричСскиС прСдставлСния ΠΎ Ρ„ΠΈΠ³ΡƒΡ€Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Π½ΠΈΡŽ свойств ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, разбСрСмся ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅, ΠΎ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Π΅ ΠΈΠ΄Π΅Ρ‚ Ρ€Π΅Ρ‡ΡŒ.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ имССтся ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ Π² этом пространствС Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ, которая Π² плоскости Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π΅ Π»Π΅ΠΆΠΈΡ‚, ΠΈ соСдиним Π΅Π΅ с трСмя Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ сторонами, Π΅Π΅ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ тСтраэдром.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°

Π’Ρ‹ΡˆΠ΅ Π±Ρ‹Π»Π° рассмотрСна ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Π°Ρ Ρ„ΠΈΠ³ΡƒΡ€Π° с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ основаниСм. Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅Π»ΠΈ пСрпСндикулярный ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΊ Π΅Π΅ основанию. Π­Ρ‚ΠΎΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ называСтся высотой. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ провСсти 4 Ρ€Π°Π·Π½Ρ‹Π΅ высоты для Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Если высота пСрСсСкаСт Π² гСомСтричСском Ρ†Π΅Π½Ρ‚Ρ€Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ΅ основаниС, Ρ‚ΠΎ такая ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° называСтся прямой.

ΠŸΡ€ΡΠΌΠ°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°, основаниСм ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ равносторонний, называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ. Для Π½Π΅Π΅ всС Ρ‚Ρ€ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Π±ΠΎΠΊΠΎΠ²ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Π²Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ. Частным случаСм ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ являСтся ситуация, ΠΊΠΎΠ³Π΄Π° всС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ стороны ΡΠ²Π»ΡΡŽΡ‚ΡΡ равносторонними ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ.

Рассмотрим свойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для вычислСния Π΅Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Π‘Ρ‚ΠΎΡ€ΠΎΠ½Π° основания, высота, Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ ΠΈ Π°ΠΏΠΎΡ‚Π΅ΠΌΠ°

Π›ΡŽΠ±Ρ‹Π΅ Π΄Π²Π° ΠΈΠ· пСрСчислСнных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π²Π΅ характСристики. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ Π½Π°Π·Π²Π°Π½Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ сторона основания Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π²Π½Π° a. Π”Π»ΠΈΠ½Π° Π΅Π΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° Ρ€Π°Π²Π½Π° b. Π§Π΅ΠΌΡƒ Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹ высота ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ Π΅Π΅ Π°ΠΏΠΎΡ‚Π΅ΠΌΠ°.

Для высоты h ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅:

Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° слСдуСт ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, сторонами ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ, высота ΠΈ 2/3 высоты основания.

АпотСмой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ называСтся высота для любого Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π”Π»ΠΈΠ½Π° Π°ΠΏΠΎΡ‚Π΅ΠΌΡ‹ ab Ρ€Π°Π²Π½Π°:

Из этих Ρ„ΠΎΡ€ΠΌΡƒΠ» Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠΌΠΈ Π±Ρ‹ Π½ΠΈ Π±Ρ‹Π»ΠΈ сторона основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈ Π΄Π»ΠΈΠ½Π° Π΅Π΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π°, Π°ΠΏΠΎΡ‚Π΅ΠΌΠ° всСгда Π±ΡƒΠ΄Π΅Ρ‚ большС высоты ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π΄Π²Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ содСрТат всС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ характСристики рассматриваСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠΎ извСстным Π΄Π²ΡƒΠΌ ΠΈΠ· Π½ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅, Ρ€Π΅ΡˆΠ°Ρ систСму ΠΈΠ· записанных равСнств.

ОбъСм Ρ„ΠΈΠ³ΡƒΡ€Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Для Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ любой ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ (Π² Ρ‚ΠΎΠΌ числС Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ объСма пространства, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Сю, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, зная высоту Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΅Π΅ основания. Π‘ΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для рассматриваСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

НС слоТно ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для объСма тСтраэдра, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всС стороны Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ равносторонниС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС объСм Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ опрСдСлится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½ опрСдСляСтся Π΄Π»ΠΈΠ½ΠΎΠΉ стороны a ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности

ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ свойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ. ΠžΠ±Ρ‰Π°Ρ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ всСх Π³Ρ€Π°Π½Π΅ΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ называСтся ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ Π΅Π΅ повСрхности. ПослСднюю ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ, рассматривая ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΡƒ. На рисункС Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΠΊΠ°ΠΊ выглядит Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π½Π°ΠΌ извСстны высота h ΠΈ сторона основания a Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. Π’ΠΎΠ³Π΄Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΅Π΅ основания Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π°:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ школьник, Ссли вспомнит, ΠΊΠ°ΠΊ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΡ‡Ρ‚Π΅Ρ‚, Ρ‡Ρ‚ΠΎ высота равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ‚Π°ΠΊΠΆΠ΅ являСтся биссСктрисой ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ трСмя ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, составляСт:

Π”Π°Π½Π½ΠΎΠ΅ равСнство слСдуСт ΠΈΠ· выраТСния Π°ΠΏΠΎΡ‚Π΅ΠΌΡ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‡Π΅Ρ€Π΅Π· высоту ΠΈ Π΄Π»ΠΈΠ½Ρƒ основания.

Полная ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Ρ€Π°Π²Π½Π°:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h2)*a

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ для тСтраэдра, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всС Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ стороны ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ равносторонними Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ S Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π°:

Бвойства ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ

Если Ρƒ рассмотрСнной Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ основанию, ΡΡ€Π΅Π·Π°Ρ‚ΡŒ Π²Π΅Ρ€Ρ…, Ρ‚ΠΎ ΠΎΡΡ‚Π°Π²ΡˆΠ°ΡΡΡ ниТняя Ρ‡Π°ΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ΠΎΠΉ.

Π’ случаС ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ основаниСм Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ описанного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° сСчСния получаСтся Π½ΠΎΠ²Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Π°ΠΊΠΆΠ΅ являСтся равносторонним, Π½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΌΠ΅Π½ΡŒΡˆΡƒΡŽ Π΄Π»ΠΈΠ½Ρƒ стороны, Ρ‡Π΅ΠΌ сторона основания. УсСчСнная Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π½ΠΈΠΆΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ эта Ρ„ΠΈΠ³ΡƒΡ€Π° ΡƒΠΆΠ΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° двумя Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ основаниями ΠΈ трСмя Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ трапСциями.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ высота ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Ρ€Π°Π²Π½Π° h, Π΄Π»ΠΈΠ½Ρ‹ сторон Π½ΠΈΠΆΠ½Π΅Π³ΠΎ ΠΈ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ оснований ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ a1 ΠΈ a2 соотвСтствСнно, Π° Π°ΠΏΠΎΡ‚Π΅ΠΌΠ° (высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ) Ρ€Π°Π²Π½Π° ab. Π’ΠΎΠ³Π΄Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

ОбъСм Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ рассчитываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

V = √3/12*h*(a12 + a22 + a1*a2)

Для ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ³ΠΎ опрСдСлСния характСристик усСчСнной ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ Ρ‚Ρ€ΠΈ Π΅Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Ρ‡Ρ‚ΠΎ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтричСскиС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹. ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π°.

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° β€” ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, Π² основании ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π° ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΡƒΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ. ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° – это частный случай конуса.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

Бвойства ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

1. Когда всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ‚ΠΎΠ³Π΄Π°:

2. Когда Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ плоскости основания ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Ρ‚ΠΎΠ³Π΄Π°:

3. Около ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру Π² Ρ‚ΠΎΠΌ случаС, Ссли Π² основании ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС). Π¦Π΅Π½Ρ‚Ρ€ΠΎΠΌ сфСры станСт Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния плоскостСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ проходят Ρ‡Π΅Ρ€Π΅Π· сСрСдины Ρ€Π΅Π±Π΅Ρ€ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ пСрпСндикулярно ΠΈΠΌ. Из этой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ Π΄Π΅Π»Π°Π΅ΠΌ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊ ΠΎΠΊΠΎΠ»ΠΎ всякой Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΎΠΊΠΎΠ»ΠΎ всякой ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру.

4. Π’ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ сфСру Π² Ρ‚ΠΎΠΌ случаС, Ссли биссСкторныС плоскости Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π΄Π²ΡƒΠ³Ρ€Π°Π½Π½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² 1-Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС). Π­Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠ° станСт Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ сфСры.

5. ΠšΠΎΠ½ΡƒΡ Π±ΡƒΠ΄Π΅Ρ‚ вписанным Π² ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ, ΠΊΠΎΠ³Π΄Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈΡ… совпадут, Π° основаниС конуса Π±ΡƒΠ΄Π΅Ρ‚ вписанным Π² основаниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΡ€ΠΈ этом Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ конус Π² ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ ΠΌΠΎΠΆΠ½ΠΎ лишь Π² Ρ‚ΠΎΠΌ случаС, Ссли Π°ΠΏΠΎΡ„Π΅ΠΌΡ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π²Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС).

6. ΠšΠΎΠ½ΡƒΡ Π±ΡƒΠ΄Π΅Ρ‚ описанным ΠΎΠΊΠΎΠ»ΠΎ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Ссли ΠΈΡ… Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ совпадут, Π° основаниС конуса Π±ΡƒΠ΄Π΅Ρ‚ описано ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΡ€ΠΈ этом ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ конус ΠΎΠΊΠΎΠ»ΠΎ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ лишь Π² Ρ‚ΠΎΠΌ случаС, Ссли всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС). Высоты Ρƒ этих конусов ΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹.

7. Π¦ΠΈΠ»ΠΈΠ½Π΄Ρ€ Π±ΡƒΠ΄Π΅Ρ‚ вписанным Π² ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρƒ, Ссли 1-Π½ΠΎ Π΅Π³ΠΎ основаниС совпадСт с ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ, которая вписана Π² сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ основанию, Π° Π²Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ основанию ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

8. Π¦ΠΈΠ»ΠΈΠ½Π΄Ρ€ Π±ΡƒΠ΄Π΅Ρ‚ описанным ΠΎΠΊΠΎΠ»ΠΎ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, ΠΊΠΎΠ³Π΄Π° Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π΅Π³ΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ основанию, Π° Π²Ρ‚ΠΎΡ€ΠΎΠ΅ основаниС Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° Π±ΡƒΠ΄Π΅Ρ‚ описано ΠΎΠΊΠΎΠ»ΠΎ основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΡ€ΠΈ этом ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ ΠΎΠΊΠΎΠ»ΠΎ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ лишь Π² Ρ‚ΠΎΠΌ случаС, Ссли основаниСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ слуТит вписанный ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС).

Π’ΠΈΠ΄Ρ‹ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диагональ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹

По количСству ΡƒΠ³Π»ΠΎΠ² основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ дСлят Π½Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅, Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

ΠŸΠΈΡ€Π°ΠΌΠΈΠ΄Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅, ΠΊΠΎΠ³Π΄Π° основаниСм ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° Π΅ΡΡ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…Π³Ρ€Π°Π½Π½ΠΈΠΊ β€” тСтраэдр. Π§Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ β€” пятигранник ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *