Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ЭлСктронная Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ°

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° – гСомСтричСскиС прСдставлСния мноТСств. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ большого ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство U, Π° Π²Π½ΡƒΡ‚Ρ€ΠΈ Π΅Π³ΠΎ – ΠΊΡ€ΡƒΠ³ΠΎΠ² (ΠΈΠ»ΠΈ ΠΊΠ°ΠΊΠΈΡ…-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… Ρ„ΠΈΠ³ΡƒΡ€), ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… мноТСства. Π€ΠΈΠ³ΡƒΡ€Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰Π΅ΠΌ случаС, Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΌ Π² Π·Π°Π΄Π°Ρ‡Π΅, ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Ρ‹. Π’ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… областСй Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹, ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ элСмСнты ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… мноТСств. ИмСя ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Π½ΡƒΡŽ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ области для обозначСния вновь ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… мноТСств.

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π°Π΄ мноТСствами Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ для получСния Π½ΠΎΠ²Ρ‹Ρ… мноТСств ΠΈΠ· ΡƒΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ….

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ОбъСдинСниСм мноТСств А ΠΈ Π’ называСтся мноТСство, состоящСС ΠΈΠ· всСх Ρ‚Π΅Ρ… элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· мноТСств А, Π’ (рис. 1):

Рис. 1.1. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° для объСдинСния

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ мноТСств А ΠΈ Π’ называСтся мноТСство, состоящСС ΠΈΠ· всСх Ρ‚Π΅Ρ… ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Ρ… элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΊΠ°ΠΊ мноТСству А, Ρ‚Π°ΠΊ ΠΈ мноТСству Π’ (рис. 2):

Рис. 1.2. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° для пСрСсСчСния

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π Π°Π·Π½ΠΎΡΡ‚ΡŒΡŽ мноТСств А ΠΈ Π’ называСтся мноТСство всСх Ρ‚Π΅Ρ… ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Ρ… элСмСнтов А, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ содСрТатся Π² Π’ (рис. 3):

Рис. 1.3. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° для разности

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. БиммСтричСской Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒΡŽ мноТСств А ΠΈ Π’ называСтся мноТСство элСмСнтов этих мноТСств, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ мноТСству А, Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ мноТСству Π’ (рис. 4):

Рис. 1.4. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° для симмСтричСской разности

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠΠ±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹ΠΌ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ΠΌ мноТСства А называСтся мноТСство всСх Ρ‚Π΅Ρ… элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ мноТСству А (рис. 5):

Рис. 1.5. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° для Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ дополнСния

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π­ΠΉΠ»Π΅Ρ€Π° – Π’Π΅Π½Π½Π° ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅ΠΌ ΡΠΏΡ€Π°Π²Π΅Π΄Π»ΠΈΠ²ΠΎΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ (рис. 6).

Рис. 1.6. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ справСдливости ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° 5

УбСдились, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±ΠΎΠΈΡ… случаях ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ€Π°Π²Π½Ρ‹Π΅ мноТСства. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, исходноС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ справСдливо.

Π‘Ρ€ΠΎΡ‡Π½ΠΎ?
Π—Π°ΠΊΠ°ΠΆΠΈ Ρƒ профСссионала, Ρ‡Π΅Ρ€Π΅Π· Ρ„ΠΎΡ€ΠΌΡƒ заявки
8 (800) 100-77-13 с 7.00 до 22.00

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ мноТСства, подмноТСства, пустого мноТСства. Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств.

«ΠŸΠΎΠ΄ мноТСством ΠΌΡ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΠΌ объСдинСниС Π² ΠΎΠ΄Π½ΠΎ Ρ†Π΅Π»ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ…, Π²ΠΏΠΎΠ»Π½Π΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΌΡ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² нашСй ΠΈΠ½Ρ‚ΡƒΠΈΡ†ΠΈΠΈ ΠΈΠ»ΠΈ нашСй мысли» β€” Ρ‚Π°ΠΊ описал понятиС «ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ» Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€, ΠΎΡΠ½ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ прСдпосылки канторовской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств сводятся ΠΊ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌΡƒ:

1Β° ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΡΡ‚ΠΎΡΡ‚ΡŒ ΠΈΠ· Π»ΡŽΠ±Ρ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΌΡ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ².

2Β° ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ опрСдСляСтся Π½Π°Π±ΠΎΡ€ΠΎΠΌ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π΅Π³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ².

3Β° Π›ΡŽΠ±ΠΎΠ΅ свойство опрСдСляСт мноТСство ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ этим свойством ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚.

Если Ρ… β€” ΠΎΠ±ΡŠΠ΅ΠΊΡ‚, Π  β€” свойство, Π (Ρ…) β€” ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρ… ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ свойством Π , Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· <Ρ…|Π (Ρ…)>ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ вСсь класс ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… свойством Π . ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ класс ΠΈΠ»ΠΈ мноТСство, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ элСмСнтами класса ΠΈΠ»ΠΈ мноТСства.

Π’Π΅Ρ€ΠΌΠΈΠ½ «ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ» употрСбляСтся ΠΊΠ°ΠΊ синоним понятий ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ, собраниС, коллСкция Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… элСмСнтов. Π’Π°ΠΊ, ΠΌΠΎΠΆΠ½ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΎ:

Π°) мноТСствС ΠΏΡ‡Ρ‘Π» Π² ΡƒΠ»ΡŒΠ΅,

Π±) мноТСствС Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°,

Π²) мноТСствС Π²Π΅Ρ€ΡˆΠΈΠ½ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° ΠΈΠ»ΠΈ ΠΎ мноТСствах Π΅Π³ΠΎ сторон ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ,

Π³) мноТСствС студСнтов Π² Π°ΡƒΠ΄ΠΈΡ‚ΠΎΡ€ΠΈΠΈ ΠΈ Ρ‚.Π΄.

Π’ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… Π² случаях Π°), Π²)-Π³) ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ мноТСства состоят ΠΈΠ· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ², Ρ‚Π°ΠΊΠΈΠ΅ мноТСства Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌΠΈ. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° (ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π±)) ΠΏΠ΅Ρ€Π΅ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, поэтому Ρ‚Π°ΠΊΠΈΠ΅ мноТСства Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ бСсконСчными. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ, Π½Π΅ содСрТащСС Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ элСмСнта, называСтся пустым мноТСством.

КаТдоС мноТСство являСтся своим подмноТСством (это самоС «ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅» подмноТСство мноТСства). ΠŸΡƒΡΡ‚ΠΎΠ΅ мноТСство являСтся подмноТСством любого мноТСства (это самоС «ΡƒΠ·ΠΊΠΎΠ΅» подмноТСство). Π›ΡŽΠ±ΠΎΠ΅ Π΄Ρ€ΡƒΠ³ΠΎΠ΅ подмноТСство мноТСства А содСрТит хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ элСмСнт мноТСства А, Π½ΠΎ Π½Π΅ всС Π΅Π³ΠΎ элСмСнты. Π’Π°ΠΊΠΈΠ΅ подмноТСства Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ истинными, ΠΈΠ»ΠΈ собствСнными подмноТСствами. Для истинных подмноТСств мноТСства А примСняСтся ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ B βŠ‚ A ΠΈΠ»ΠΈ A βŠƒ B. Если ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ B βŠ† A ΠΈ A βŠ† B, Ρ‚.Π΅ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ элСмСнт мноТСства Π’ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ А, ΠΈ Π² Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ элСмСнт А ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π’, Ρ‚ΠΎ А ΠΈ Π’, ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, состоят ΠΈΠ· ΠΎΠ΄Π½ΠΈΡ… ΠΈ Ρ‚Π΅Ρ… ΠΆΠ΅ элСмСнтов ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. Π’ этом случаС примСняСтся Π·Π½Π°ΠΊ равСнства мноТСств: A = B. (Π‘ΠΈΠΌΠ²ΠΎΠ»Ρ‹ ∈, βˆ‹, βŠ‚, βŠƒ, βŠ†, βŠ‡ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ символами Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ).

ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ· Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ большого ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство U, Π° Π²Π½ΡƒΡ‚Ρ€ΠΈ Π΅Π³ΠΎ – ΠΊΡ€ΡƒΠ³ΠΎΠ² (ΠΈΠ»ΠΈ ΠΊΠ°ΠΊΠΈΡ…-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… Ρ„ΠΈΠ³ΡƒΡ€), ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… мноТСства. Π€ΠΈΠ³ΡƒΡ€Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΠ±Ρ‰Π΅ΠΌ случаС, Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΌ Π² Π·Π°Π΄Π°Ρ‡Π΅, ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Ρ‹. Π’ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… областСй Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹, ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ элСмСнты ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… мноТСств. ИмСя ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Π½ΡƒΡŽ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ области для обозначСния вновь ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… мноТСств.

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π°Π΄ мноТСствами Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ для получСния Π½ΠΎΠ²Ρ‹Ρ… мноТСств ΠΈΠ· ΡƒΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ОбъСдинСниСм мноТСств А ΠΈ Π’ называСтся мноТСство, состоящСС ΠΈΠ· всСх Ρ‚Π΅Ρ… элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· мноТСств А, Π’ (рис. 1): Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ мноТСств А ΠΈ Π’ называСтся мноТСство, состоящСС ΠΈΠ· всСх Ρ‚Π΅Ρ… ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Ρ… элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΊΠ°ΠΊ мноТСству А, Ρ‚Π°ΠΊ ΠΈ мноТСству Π’ (рис. 2):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π Π°Π·Π½ΠΎΡΡ‚ΡŒΡŽ мноТСств А ΠΈ Π’ называСтся мноТСство всСх Ρ‚Π΅Ρ… ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Ρ… элСмСнтов А, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ содСрТатся Π² Π’ (рис. 3):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. БиммСтричСской Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒΡŽ мноТСств А ΠΈ Π’ называСтся мноТСство элСмСнтов этих мноТСств, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ мноТСству А, Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ мноТСству Π’ (рис. 4):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

РаспространСно ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ симмСтричСской разности: А βˆ† Π’, вмСсто А + Π’.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠΠ±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹ΠΌ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ΠΌ мноТСства А называСтся мноТСство всСх Ρ‚Π΅Ρ… элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ мноТСству А (рис. 5):

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Бвойства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ пСрСсСчСния: 1) A∩A=A; 2) A∩Ø=Ø; 3) Aβˆ©Δ€= Ø; 4) A∩U=A; 5) A∩B=B∩A;Бвойства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ объСдинСния: 1) AUA=A; 2) AUØ=A; 3) AUΔ€= U; 4) AUU=U; 5) AUB=BUA;
Бвойства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ разности: 1) A\A= Ø; 2) A\Ø= A; 3) A\Δ€= A; 4) A\U= Ø;5) U\A= Δ€; 6) \A =Ø; 7) A\Bβ‰ B\A;

Π‘ΠΏΡ€Π°Π²Π΅Π΄Π»ΠΈΠ²Ρ‹ равСнства: (AUB)= A∩B; (A∩B)= AUB.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для подсчСта числа элСмСнтов Π² объСдинСнии Ρ‚Ρ€Π΅Ρ… мноТСств (для ΠΎΠ±Ρ‰Π΅Π³ΠΎ случая ΠΈΡ… Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ располоТСния, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° рисункС):

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π—Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ мноТСство всСх Π½Π°ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ числа 15 ΠΈ Π½Π°ΠΉΠΈ число Π΅Π³ΠΎ элСмСнтов.

Найти AUB, CUD, B∩C, A∩D, A\C, C\A, B\D, AUBUC, A∩B∩C, BUD∩C, A∩C\D.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π’ школС 1400 ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ². Из Π½ΠΈΡ… 1250 ΡƒΠΌΠ΅ΡŽΡ‚ ΠΊΠ°Ρ‚Π°Ρ‚ΡŒΡΡ Π½Π° Π»Ρ‹ΠΆΠ°Ρ…, 952 – Π½Π° ΠΊΠΎΠ½ΡŒΠΊΠ°Ρ…. Ни Π½Π° Π»Ρ‹ΠΆΠ°Ρ…, Π½ΠΈ Π½Π° ΠΊΠΎΠ½ΡŒΠΊΠ°Ρ… Π½Π΅ ΡƒΠΌΠ΅ΡŽΡ‚ ΠΊΠ°Ρ‚Π°Ρ‚ΡŒΡΡ 60 учащихся. Бколько ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² ΡƒΠΌΠ΅ΡŽΡ‚ ΠΊΠ°Ρ‚Π°Ρ‚ΡŒΡΡ ΠΈ Π½Π° ΠΊΠΎΠ½ΡŒΠΊΠ°Ρ… ΠΈ Π½Π° Π»Ρ‹ΠΆΠ°Ρ…?

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ всСх ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² Π±ΡƒΠ΄Π΅ΠΌ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ основным мноТСством U, Ρ‚ΠΎΠ³Π΄Π° A ΠΈ B – соотвСтствСнно мноТСства учащихся, ΡƒΠΌΠ΅ΡŽΡ‰ΠΈΡ… ΠΊΠ°Ρ‚Π°Ρ‚ΡŒΡΡ Π½Π° Π»Ρ‹ΠΆΠ°Ρ… ΠΈ Π½Π° ΠΊΠΎΠ½ΡŒΠΊΠ°Ρ….

A∩B – мноТСство учащихся, Π½Π΅ ΡƒΠΌΠ΅ΡŽΡ‰ΠΈΡ… ΠΊΠ°Ρ‚Π°Ρ‚ΡŒΡΡ Π½ΠΈ Π½Π° Π»Ρ‹ΠΆΠ°Ρ…, Π½ΠΈ Π½Π° ΠΊΠΎΠ½ΡŒΠΊΠ°Ρ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ m(A∩B)=60, Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ равСнство (AUB)= A∩B, Ρ‚ΠΎΠ³Π΄Π° m((AUB))=60.

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ m(A)=1250, m(B)=952, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ m(A∩B)=m(A)+m(B)-m(AUB)=1250+952-1340=862

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

А – мноТСство студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Β«ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΒ»;

Π’ – мноТСство студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Β«Ρ…ΠΎΡ€ΠΎΡˆΠΎΒ»;

Π‘ – мноТСство студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Β«ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΒ».

Из условия извСстно, Ρ‡Ρ‚ΠΎ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅— число студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Β«5Β»,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅— число студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Β«4Β»,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅— число студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Β«5Β» ΠΈ Β«3Β»,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅— число студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Β«4Β» ΠΈ Β«3Β»,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅— число студСнтов, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… Β«5Β», Β«4Β» ΠΈ Β«3Β».

Π’Π°ΠΊΠΆΠ΅ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ извСстно, Ρ‡Ρ‚ΠΎ мноТСства Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅Ρ€Π°Π²Π½Ρ‹. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ эту Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π·Π° x. Π’ΠΎΠ³Π΄Π° ΠΈΠ· условия Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Число ΠΆΠ΅ студСнтов, Π½Π΅ ΡΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ Π½Π° экзамСн, Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΡ‚Π²Π΅Ρ‚: 6 студСнтов ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Β«ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΒ», 1 студСнт Π½Π΅ явился Π½Π° экзамСны.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° β€” Ρ‡Ρ‚ΠΎ ΠΈΠ· сСбя прСдставляСт, Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° прСдставляСт собой Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ схСму, ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΡƒΡŽ для прСдставлСния ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ мноТСств ΠΈ схСм ΠΈΡ… взаимосвязСй.

Благодаря Π΄Π°Π½Π½ΠΎΠΉ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅, приводят наглядноС объяснСниС Ρ€Π°Π·Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΠ² ΠΎ мноТСствах. ΠŸΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π° для изобраТСния подмноТСства ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΊΡ€ΡƒΠ³ΠΈ. Π¨ΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° нашли Π² Ρ‚Π°ΠΊΠΈΡ… дисциплинах, ΠΊΠ°ΠΊ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°, Π»ΠΎΠ³ΠΈΠΊΠ°, ΠΌΠ΅Π½Π΅Π΄ΠΆΠΌΠ΅Π½Ρ‚, финансы ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Π΅ направлСния.

Бпособы отраТСния ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ мноТСствами Ρ€Π°Π½Π΅Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ. Π”ΠΆΠΎΠ½ Π’Π΅Π½Π½ примСнял Π² качСствС обозначСния мноТСств Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π° Π­ΠΉΠ»Π΅Ρ€ – ΠΊΡ€ΡƒΠ³ΠΈ.

ΠžΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎ! Если ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ отчислСния). Если Π½Π΅Ρ‚ возмоТности Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ самому, Π·Π°ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‚ΡƒΡ‚.

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Π²Π°ΠΆΠ½Ρ‹ΠΉ частный случай ΠΊΡ€ΡƒΠ³ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°Π» Π­ΠΉΠ»Π΅Ρ€. На Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ°Ρ… прСдставлСны всС 2 n ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΉ n свойств, Ρ‡Ρ‚ΠΎ являСтся ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Π±ΡƒΠ»Π΅Π²ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€ΠΎΠΉ. Если n = 3, Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ Ρ‚Ρ€ΠΈ ΠΊΡ€ΡƒΠ³Π° с Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ располоТСны Π² ΡƒΠ³Π»Π°Ρ… равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠΌΠΈ радиусами, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ Π΄Π»ΠΈΠ½Π΅ сторон этого ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ построСния, ΠΊΠ°ΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ мноТСства

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° – Π·Π½Π°Ρ‡ΠΈΡ‚, ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ большой ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство U, ΠΈ Ρ€Π°Π·ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈ Π½Π΅Π³ΠΎ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π² качСствС обозначСния мноТСств.

Π’ Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° трСбуСтся ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€Π΅Ρ… мноТСств, цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΡ€ΡƒΠ³ΠΈ. Для изобраТСния ΡΠ²Ρ‹ΡˆΠ΅ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… мноТСств ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ эллипсы. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€ соотвСтствуСт максимально ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΡΠ»ΡƒΡ‡Π°ΡŽ, согласно условиям Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΈ изобраТаСтся Π΄ΠΎΠ»ΠΆΠ½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅.

Если ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° содСрТит ΠΊΡ€ΡƒΠ³, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‰ΠΈΠΉ мноТСство А, Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚ΡŒ ΠΈΡΡ‚ΠΈΠ½Π½ΠΎΡΡ‚ΡŒ выраТСния А, Π° ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π²Π½Π΅ ΠΊΡ€ΡƒΠ³Π° – ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ лоТь. Π’Π΅ области, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ истинным значСниям, Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ являСтся ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ логичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅.

Богласно Π°Π»Π³Π΅Π±Ρ€Π΅ Π»ΠΎΠ³ΠΈΠΊΠΈ, ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ мноТСств А ΠΈ Π’ соотвСтствуСт истинС Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° истинны ΠΎΠ±Π° эти мноТСства. ΠŸΡ€ΠΈ этом Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ участок пСрСсСчСния мноТСств.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°, Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π»ΡŽΠ±Ρ‹Π΅ алгСбраичСскиС Π·Π°ΠΊΠΎΠ½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΈΡ… графичСского изобраТСния. Алгоритм построСния:

Π”Π°Π½Π½Ρ‹Π΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ эффСктивным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ с мноТСствами. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ мноТСства ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ Π² Π²ΠΈΠ΄Π΅ ΠΊΡ€ΡƒΠ³ΠΎΠ², Π° ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

Π”ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ мноТСства

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ОбъСдинСниС мноТСств

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ мноТСств

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π Π°Π·Π½ΠΎΡΡ‚ΡŒ мноТСств

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

БиммСтричная Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ мноТСств

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ИспользованиС Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° логичСских равСнств

Π’ качСствС Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° логичСского равСнства ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ способ построСния Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°. Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ выраТСния: Β¬(АvΠ’) = ¬А&Β¬Π’. РавСнство дСмонстрируСт запись Π·Π°ΠΊΠΎΠ½Π° Π΄Π΅ ΠœΠΎΡ€Π³Π°Π½Π°. Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ слСдуСт наглядно ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ уравнСния. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Ρ‚ΡŒ сСрым Ρ†Π²Π΅Ρ‚ΠΎΠΌ всС ΠΊΡ€ΡƒΠ³ΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΡŽ. ΠžΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΈΠ½Π²Π΅Ρ€ΡΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π·Π°ΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ Ρ‡Π΅Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ области Π²Π½Π΅ этих ΠΊΡ€ΡƒΠ³ΠΎΠ².

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”Π°Π»Π΅Π΅ слСдуСт Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ выраТСния. ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ дСйствий Π² этом случаС Ρ‚Π°ΠΊΠΎΠ²Π°: Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ отобраТаСтся инвСрсия (¬А), с использованиСм сСрого Ρ†Π²Π΅Ρ‚Π° ΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π·Π°ΠΊΡ€Π°ΡΠΈΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Β¬Π’; ΠΎΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡŽ Π² Π²ΠΈΠ΄Π΅ пСрСсСчСния этих сСрых областСй. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Ρ‚Π°ΠΊΠΎΠ³ΠΎ налоТСния Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΊΡ€Π°ΡˆΠ΅Π½ Ρ‡Π΅Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

На рисункС Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ области, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ лСвая ΠΈ правая части уравнСния, Ρ€Π°Π²Π½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

РСшСниС Π·Π°Π΄Π°Ρ‡ΠΈ поиска ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² Π˜Π½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°

Π˜Π·ΡƒΡ‡Π°Ρ Ρ‚Π΅ΠΌΡƒ поиска ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² глобальной сСти Π˜Π½Ρ‚Π΅Ρ€Π½Π΅Ρ‚, нСльзя ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ Π±Π΅Π· ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² поисковых запросов, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ логичСскиС связки. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΡ… смысл Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π΅Π½ союзам Β«ΠΈΒ», Β«ΠΈΠ»ΠΈΒ» ΠΈΠ· русского языка. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ дСйствия ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Ссли ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ логичСскиС связи с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ графичСской схСмы ΠΈΠ»ΠΈ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Как логичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ связаны с Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ мноТСств

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°, принято наглядно Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ связь логичСских дСйствий ΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π»ΠΎΠ³ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π°Π±Π»ΠΈΡ† истинности. Π’ этом случаС слСдуСт Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΎΠ±Ρ‰ΠΈΠΌ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠΌ.

На Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ΅ Π² Π²ΠΈΠ΄Π΅ области ΠΊΡ€ΡƒΠ³Π° ΠΏΠΎΠ΄ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ А ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΈΡΡ‚ΠΈΠ½Π½ΠΎΡΡ‚ΡŒ опрСдСлСния А, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ тСорСтичСски ΠΊΡ€ΡƒΠ³ А ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ всС элСмСнты, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² Π΄Π°Π½Π½ΠΎΠ΅ мноТСство. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΊΡ€ΡƒΠ³Π° А Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ лоТь ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ утвСрТдСния.

ПониманиС, какая ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ послС Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Π±ΡƒΠ΄ΡƒΡ‚ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅ области, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… значСния логичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° Π½Π°Π±ΠΎΡ€Π°Ρ… А ΠΈ Π’ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ истинС. К ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, импликация истинна ΠΏΡ€ΠΈ (00, 01 ΠΈ 11).

НСобходимо Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Ρ‚ΡŒ сначала ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΏΠ°Ρ€Ρ‹ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΡ€ΡƒΠ³ΠΎΠ² Π² соотвСтствии со значСниями А=0, Π’=0. Π—Π°Ρ‚Π΅ΠΌ Π·Π°ΠΊΡ€Π°ΡΠΈΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π² ΠΊΡ€ΡƒΠ³Π΅ Π’, которая относится ΠΊ значСниям А=0, Π’=1, ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΈ ΠΊΡ€ΡƒΠ³Ρƒ А, ΠΈ ΠΊΡ€ΡƒΠ³Ρƒ Π’, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ участок пСрСсСчСния, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΉ значСния А=1, Π’=1. Π­Ρ‚ΠΈ Ρ‚Ρ€ΠΈ области Π² комплСксС ΡΠ²Π»ΡΡŽΡ‚ΡΡ графичСским прСдставлСниСм логичСской ΠΈΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π·Π°Π΄Π°Ρ‡ с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π° ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ Ρ‚Ρ€ΠΈ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΡƒΠ³Π°. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ графичСского способа прСдставлСния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ являСтся Π΅Π³ΠΎ высокая ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Π½Π°Π³Π»ΡΠ΄Π½ΠΎΡΡ‚ΡŒ. К ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ пСрСсСчСний Π±ΡƒΠΊΠ² ΠΈΠ· русского, латинского ΠΈ грСчСского Π°Π»Ρ„Π°Π²ΠΈΡ‚Π°:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ½ΡΡ‚ΡŒ ΡΡƒΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. МоТно Ρ€Π΅ΡˆΠΈΡ‚ΡŒ нСсколько Π·Π°Π΄Π°Ρ‡ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π­ΠΉΠ»Π΅Ρ€Π°-Π’Π΅Π½Π½Π°.

Π—Π°Π΄Π°Ρ‡Π° 1

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π΅ΡΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Π° поисковых запросов. Π’ Π½Π΅ΠΉ прСдставлСны страницы ΠΏΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ сСгмСнту. ВрСбуСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько страниц Π² тысячах Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ‚ΡŒΡΡ ΠΏΠΎ запросу «ЭсминСц». Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ запросы Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡŒ практичСски Π² ΠΎΠ΄Π½ΠΎ врСмя, поэтому Π½Π°Π±ΠΎΡ€ страниц с искомыми словами Π½Π΅ мСнялся Π² процСссС выполнСния запросов.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

РСшСниС

Π€ – являСтся числом страниц (Π² тысячах) Π² соотвСтствии с запросом Β«Π€Ρ€Π΅Π³Π°Ρ‚Β»;

Π­ – являСтся числом страниц (Π² тысячах) Π² соотвСтствии с запросом «ЭсминСц»;

Π₯ – прСдставляСт собой число страниц (Π² тысячах) ΠΏΠΎ запросу, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ присутствуСт Β«Π€Ρ€Π΅Π³Π°Ρ‚Β» ΠΈ отсутствуСт «ЭсминСц»;

Π£ – опрСдСляСт число страниц (Π² тысячах) ΠΏΠΎ запросу, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡƒΠΊΠ°Π·Π°Π½ΠΎ слово «ЭсминСц» ΠΈ отсутствуСт слово Β«Π€Ρ€Π΅Π³Π°Ρ‚Β».

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ поискового запроса Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΠΎ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ°ΠΌ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π₯+900+Π£ = Π€+Π£ = 2100+Π£ = 3400

Π­ = 900+Π£ = 900+1300= 2200

ΠžΡ‚Π²Π΅Ρ‚: ΠΏΠΎ запросу «ЭсминСц» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ 2200 страниц

Π—Π°Π΄Π°Ρ‡Π° 2

Класс состоит ΠΈΠ· 36 ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ². Π”Π΅Ρ‚ΠΈ ходят Π½Π° занятия Π² Ρ€Π°ΠΌΠΊΠ°Ρ… матСматичСского, физичСского, химичСского ΠΊΡ€ΡƒΠΆΠΊΠ°. Π€Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ² ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΠΎΡΠ΅Ρ‰Π°ΡŽΡ‚ 18 учащихся, ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ – 14, ΠΏΠΎ Ρ…ΠΈΠΌΠΈΠΈ – 10. Π’Π°ΠΊΠΆΠ΅ извСстно, Ρ‡Ρ‚ΠΎ 2 ΡƒΡ‡Π΅Π½ΠΈΠΊΠ° ходят Π½Π° всС Ρ‚Ρ€ΠΈ ΠΊΡ€ΡƒΠΆΠΊΠ°, 8 – Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΡƒ, 5 – Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ ΠΈ Ρ…ΠΈΠΌΠΈΡŽ, 3 – Π½Π° Ρ„ΠΈΠ·ΠΈΠΊΡƒ ΠΈ Ρ…ΠΈΠΌΠΈΡŽ. НСобходимо ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ количСство ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΏΠΎΡΠ΅Ρ‰Π°ΡŽΡ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠΆΠΊΠ°.

РСшСниС

Π Π΅ΡˆΠΈΡ‚ΡŒ Π΄Π°Π½Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ ΠΈ наглядного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π² Π²ΠΈΠ΄Π΅ ΠΊΡ€ΡƒΠ³ΠΎΠ² Π­ΠΉΠ»Π΅Ρ€Π°. Наибольшим ΠΊΡ€ΡƒΠ³ΠΎΠΌ слСдуСт ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ мноТСство всСх учащихся класса. Π’Π½ΡƒΡ‚Ρ€ΠΈ этой окруТности Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ мноТСства Π² Π²ΠΈΠ΄Π΅ учащихся Π½Π° Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π΅ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ (М), Ρ„ΠΈΠ·ΠΈΠΊΠ΅ (Π€), Ρ…ΠΈΠΌΠΈΠΈ (Π₯).

МЀΠ₯ – являСтся мноТСством ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ², ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ…ΠΎΠ΄ΠΈΡ‚ Π½Π° занятия Π²ΠΎ всС Ρ‚Ρ€ΠΈ ΠΊΡ€ΡƒΠΆΠΊΠ°;

МЀ¬Π₯ – опрСдСляСт мноТСство учащихся, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΡΠ΅Ρ‰Π°ΡŽΡ‚ Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Ρ‹ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π½ΠΎ Π½Π΅ ходят Π½Π° занятия ΠΏΠΎ Ρ…ΠΈΠΌΠΈΠΈ.

¬М¬ЀΠ₯ – прСдставляСт собой мноТСство людСй, ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… посСщаСт химичСский Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ², Π½ΠΎ отказался ΠΎΡ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… занятий ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

По Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡƒ ΠΌΠΎΠΆΠ½ΠΎ ввСсти мноТСства: ¬МЀΠ₯, М¬ЀΠ₯, М¬Ѐ¬Π₯, ¬МЀ¬Π₯, ¬М¬Ѐ¬Π₯.

Богласно условиям Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΏΠ°Ρ€Π° ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² записаны Π²ΠΎ всС Ρ‚Ρ€ΠΈ ΠΊΡ€ΡƒΠΆΠΊΠ°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ МЀΠ₯ трСбуСтся Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ число 2. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ 8 учащихся ΠΏΠΎΡΠ΅Ρ‰Π°ΡŽΡ‚ Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Ρ‹ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π° ΠΈΠ· Π½ΠΈΡ… Π΄Π²ΠΎΠ΅ школьников ходят Π²ΠΎ всС ΠΊΡ€ΡƒΠΆΠΊΠΈ, Ρ‚ΠΎ Π² области МЀ¬Π₯ слСдуСт ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ 6 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ (8-2). Аналогичным способом ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ число ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² Π² ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… мноТСствах:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”Π°Π»Π΅Π΅ трСбуСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ сумму ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² ΠΏΠΎ всСм областям:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, всСго 28 учащихся ΠΏΠΎΡΠ΅Ρ‰Π°ΡŽΡ‚ Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ занятия.

ΠžΡ‚Π²Π΅Ρ‚: 8 ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² ΠΈΠ· класса Π½Π΅ ΠΏΠΎΡΠ΅Ρ‰Π°ΡŽΡ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠΆΠΊΠ°.

Π—Π°Π΄Π°Ρ‡Π° 3

Когда Π·Π°ΠΊΠΎΠ½Ρ‡ΠΈΠ»ΠΈΡΡŒ Π·ΠΈΠΌΠ½ΠΈΠ΅ ΠΊΠ°Π½ΠΈΠΊΡƒΠ»Ρ‹, ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ поинтСрСсовался Ρƒ ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ², ΠΊΡ‚ΠΎ ΠΈΠ· Π½ΠΈΡ… посСщал Ρ‚Π΅Π°Ρ‚Ρ€, ΠΊΠΈΠ½ΠΎ ΠΈΠ»ΠΈ Ρ†ΠΈΡ€ΠΊ. ВсСго Π² классС 36 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ. По ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, Π΄Π²Π° Ρ€Π΅Π±Π΅Π½ΠΊΠ° Π½Π΅ Π±Ρ‹Π»ΠΈ Π½ΠΈ Π² ΠΊΠΈΠ½ΠΎ, Π½ΠΈ Π² Ρ‚Π΅Π°Ρ‚Ρ€Π΅, Π½ΠΈ Π² Ρ†ΠΈΡ€ΠΊΠ΅. Кино посСтили 25 школьников, Ρ‚Π΅Π°Ρ‚Ρ€ – 11, Ρ†ΠΈΡ€ΠΊ – 17. И Π² ΠΊΠΈΠ½ΠΎ, ΠΈ Π² Ρ‚Π΅Π°Ρ‚Ρ€ сходили 6 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ, ΠΈ Π² ΠΊΠΈΠ½ΠΎ, ΠΈ Π² Ρ†ΠΈΡ€ΠΊ – 10, ΠΈ Π² Ρ‚Π΅Π°Ρ‚Ρ€, ΠΈ Π² Ρ†ΠΈΡ€ΠΊ – 4. НСобходимо ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊΠΎΠ΅ количСство учащихся ΠΈΠ· класса посСтили ΠΈ ΠΊΠΈΠ½ΠΎ, ΠΈ Ρ‚Π΅Π°Ρ‚Ρ€, ΠΈ Ρ†ΠΈΡ€ΠΊ.

РСшСниС

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ… прСдставляСт собой число ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ посСтили ΠΈ ΠΊΠΈΠ½ΠΎ, ΠΈ Ρ‚Π΅Π°Ρ‚Ρ€, ΠΈ Ρ†ΠΈΡ€ΠΊ. Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ число школьников для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ области:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΡ‚Π²Π΅Ρ‚: 1 ΡƒΡ‡Π΅Π½ΠΈΠΊ ΠΏΠΎΠ±Ρ‹Π²Π°Π» ΠΈ Π² ΠΊΠΈΠ½ΠΎ, ΠΈ Π² Ρ‚Π΅Π°Ρ‚Ρ€Π΅, ΠΈ Π² Ρ†ΠΈΡ€ΠΊΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Ρ‚Π΅ΠΎΡ€ΠΈΡŽ мноТСств

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ бСсконСчности идСологичСски Π΄Π°Π»Π΅ΠΊΠ° ΠΎΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ матСматичСской Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ β€” Π½ΠΈ ΠΎΠ΄Π½Π° другая Ρ‚Π΅ΠΌΠ° Π½Π΅ Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ прСвращаСтся ΠΈΠ· практичСского, аналитичСского инструмСнта Π² явлСниС мифичСского порядка. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ бСсконСчности Π½Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠΉ Π½ΠΎΠ³Π΅ с Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π½Ρ‹ΠΌΠΈ Ρ‚Π΅ΠΌΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ рСлигия ΠΈ философия, ΠΈ ΠΎΠΊΡƒΡ‚Π°Π½Π° Π·Π°Π³Π°Π΄ΠΎΡ‡Π½ΠΎΠΉ Π°ΡƒΡ€ΠΎΠΉ боТСствСнности.

Когда-Ρ‚ΠΎ Π΄Π°Π²Π½Ρ‹ΠΌ Π΄Π°Π²Π½ΠΎ Π²ΠΎ всСх акадСмичСских дисциплинах Π±Ρ‹Π»ΠΎ Π·Π°Π»ΠΎΠΆΠ΅Π½ΠΎ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ±Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ β€” сущСствуСт СдинствСнная Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ.

Но 1874 Π³ΠΎΠ΄Ρƒ довольно малоизвСстный ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΏΡ€ΠΎΠ²Ρ‘Π» ΡΠ΅Ρ€ΠΈΡŽ Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… наблюдСний, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Π²ΡˆΠΈΡ… сомнСнию это всСми принятоС ΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΎ ΡƒΠΊΠΎΡ€Π΅Π½ΠΈΠ²ΡˆΠ΅Π΅ΡΡ ΡƒΠ±Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅. Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€ Π² своСй (Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΡƒΠΆΠ΅ ΡΡ‚Π°Π²ΡˆΠ΅ΠΉ Π»Π΅Π³Π΅Π½Π΄Π°Ρ€Π½ΠΎΠΉ) ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ On a Property of the Collection of All Real Algebraic Numbers Π΄ΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ мноТСство вСщСствСнных чисСл Β«Π±ΠΎΠ»Π΅Π΅ многочислСнно», Ρ‡Π΅ΠΌ мноТСство алгСбраичСских чисСл. Π’Π°ΠΊ ΠΎΠ½ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ бСсконСчныС мноТСства Ρ€Π°Π·Π½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² (Π½Π΅ Π²ΠΎΠ»Π½ΡƒΠΉΡ‚Π΅ΡΡŒ β€” для прояснСния этого ΠΌΡ‹ вскорС ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΈΠ·ΡƒΡ‡ΠΈΠΌ Π΅Π³ΠΎ ΡΡ‚Π°Ρ‚ΡŒΡŽ).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Β«ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ β€” это большоС количСство, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ позволяСт Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ сСбя ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΒ» β€” Π“Π΅ΠΎΡ€Π³ ΠšΠ°Π½Ρ‚ΠΎΡ€

Π‘ 1874 ΠΏΠΎ 1897 Π³ΠΎΠ΄ ΠšΠ°Π½Ρ‚ΠΎΡ€ нСистово ΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π» ΡΡ‚Π°Ρ‚ΡŒΡŽ Π·Π° ΡΡ‚Π°Ρ‚ΡŒΡ‘ΠΉ, разворачивая свою Ρ‚Π΅ΠΎΡ€ΠΈΡŽ абстрактных мноТСств Π² Ρ€Π°ΡΡ†Π²Π΅Ρ‚Π°ΡŽΡ‰ΡƒΡŽ дисциплину. Однако ΠΎΠ½Π° Π±Ρ‹Π»Π° встрСчСна ΡƒΠΏΠΎΡ€Π½Ρ‹ΠΌ сопротивлСниСм ΠΈ ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠΎΠΉ; ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΠΏΠ΅Π΄Π°Π½Ρ‚Ρ‹ считали, Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΡˆΠ»ΠΈ Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ философии ΠΈ Π½Π°Ρ€ΡƒΡˆΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π΅Π»ΠΈΠ³ΠΈΠΈ.

Однако ΠΊΠΎΠ³Π΄Π° Π½Π°Ρ‡Π°Π»ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ практичСскиС примСнСния матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°, ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ измСнилось, Π° ΠΈΠ΄Π΅ΠΈ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠšΠ°Π½Ρ‚ΠΎΡ€Π° Π½Π°Ρ‡Π°Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ·Π½Π°Π½ΠΈΠ΅. К ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ Π΄Π΅ΡΡΡ‚ΠΈΠ»Π΅Π½ΠΈΡŽ 20-Π³ΠΎ Π²Π΅ΠΊΠ° Π΅Π³ΠΎ наблюдСния, Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ достигли своСй ΠΊΡƒΠ»ΡŒΠΌΠΈΠ½Π°Ρ†ΠΈΠΈ β€” признания соврСмСнной Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств Π½ΠΎΠ²ΠΎΠΉ, ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ:

ВСория мноТСств β€” это матСматичСская тСория ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… Π½Π°Π±ΠΎΡ€Π°Ρ… (мноТСствах) ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Ρ‡Π»Π΅Π½Π°ΠΌΠΈ ΠΈΠ»ΠΈ элСмСнтами мноТСства.

Бколько чисСл Π΅ΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ 0 ΠΈ 1?

ΠŸΠ΅Ρ€Π²Π°Ρ публикация ΠšΠ°Π½Ρ‚ΠΎΡ€Π°, состоящая ΠΈΠ· Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… с ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½ΠΎΠΉ страниц, являСтся Π²Π΅Π»ΠΈΠΊΠΎΠ»Π΅ΠΏΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ краткости. Она Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π° Π½Π° Π΄Π²Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°, совмСстно приводящих ΠΊ Π²Ρ‹Π²ΠΎΠ΄Ρƒ ΠΎ сущСствовании ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ Π΄Π²ΡƒΡ… ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² мноТСств.

Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΉ части Ρ‚Π΅ΠΎΡ€ΠΈΠΈ исслСдуСтся мноТСство вСщСствСнных алгСбраичСских чисСл ΠΈ доказываСтся, Ρ‡Ρ‚ΠΎ это бСсконСчноС счётноС мноТСство. Π—Π΄Π΅ΡΡŒ Π½Π΅ стоит ΠΏΡƒΡ‚Π°Ρ‚ΡŒ β€” «счётноС» Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ счёт вСдётся строго Π² Ρ†Π΅Π»Ρ‹Ρ… числах; Π² контСкстС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств «счётноС» ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ мноТСство, ΠΏΡƒΡΡ‚ΡŒ Π΄Π°ΠΆΠ΅ состоящСС ΠΈΠ· бСсконСчного числа элСмСнтов, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΠΌΡΡ рядом, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ упорядочСнной ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ. ΠšΠ°Π½Ρ‚ΠΎΡ€ Π½Π°Π·Π²Π°Π» это свойство бСсконСчного Π½Π°Π±ΠΎΡ€Π° чисСл соотвСтствия Β«ΠΎΠ΄ΠΈΠ½ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒΒ» с рядом, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ³ΠΎ соотвСтствия.

Если Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ Π²ΠΊΡ€Π°Ρ‚Ρ†Π΅, Ρ‚ΠΎ Π½Π°Π±ΠΎΡ€, ΠΈΠ»ΠΈ мноТСство всСх вСщСствСнных алгСбраичСских чисСл ΠΌΠΎΠΆΠ½ΠΎ вывСсти с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Ρ‚ΠΎ тСорСтичСского ряда ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ стСпСнями ΠΈ коэффициСнтами; ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, мноТСство всСх вСщСствСнных алгСбраичСских чисСл являСтся бСсконСчным счётным мноТСством.

Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ части Ρ‚Ρ€ΡƒΠ΄Π° ΠšΠ°Π½Ρ‚ΠΎΡ€Π° анализируСтся Ρ€ΠΎΠ»ΡŒ вСщСствСнных комплСксных чисСл, Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ трансцСндСнтными числами. Π’Ρ€Π°Π½Ρ†Π΅Π½Π΄Π΅Π½Ρ‚Π½Ρ‹Π΅ числа (Π»ΡƒΡ‡ΡˆΠΈΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… β€” это ΠΏΠΈ ΠΈ e) ΠΈΠΌΠ΅ΡŽΡ‚ Π»ΡŽΠ±ΠΎΠΏΡ‹Ρ‚Π½ΠΎΠ΅ свойство: матСматичСски Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΈΡ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” ΠΎΠ½ΠΈ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ алгСбраичСскими. Π’Π½Π΅ зависимости ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, количСства частСй, стСпСнСй ΠΈΠ»ΠΈ коэффициСнтов, Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ ряд Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠΈ Π² своём Π½Π°Π±ΠΎΡ€Π΅ бСсконСчного счётного мноТСства.

Π—Π°Ρ‚Π΅ΠΌ ΠšΠ°Π½Ρ‚ΠΎΡ€ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π² любом Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ [a,b] сущСствуСт хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎ Ρ‚Ρ€Π°Π½Ρ†Π΅Π½Π΄Π΅Π½Ρ‚Π½ΠΎΠ΅ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½ΠΈΠΊΠΎΠ³Π΄Π° нСльзя Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ΄ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π² бСсконСчном счётном мноТСствС. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ΄Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ число сущСствуСт, Ρ‚ΠΎ прСдполагаСтся, Ρ‡Ρ‚ΠΎ Π² сСмСйствС вСщСствСнных чисСл сущСствуСт бСсконСчноС количСство Ρ‚Ρ€Π°Π½Ρ†Π΅Π½Π΄Π΅Π½Ρ‚Π½Ρ‹Ρ… чисСл.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΎΠ½ Π΄ΠΎΠΊΠ°Π·Π°Π» ΠΎΡ‡Π΅Π½ΡŒ Ρ‡Ρ‘Ρ‚ΠΊΠΎΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ мноТСством Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ…, ΠΈΠ΄ΡƒΡ‰ΠΈΡ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ нСсчётных чисСл ΠΈ Π½Π°Π±ΠΎΡ€Π° счётных чисСл, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ ряд, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, всСх вСщСствСнных алгСбраичСских чисСл.

Π”Π°Π»Π΅Π΅: запись ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ

ΠŸΠ΅Ρ€Π²Π°Ρ публикация ΠšΠ°Π½Ρ‚ΠΎΡ€Π° Π·Π°Π²Π΅Ρ€ΡˆΠΈΠ»Π°ΡΡŒ Π½Π° этом ΠΏΠΎΡ‚Ρ€ΡΡΠ°ΡŽΡ‰Π΅ΠΌ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΈ сущСствования ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅Ρ€Π΅ Π΄Π²ΡƒΡ… Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² бСсконСчности. ПослС Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ появился шквал Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΉ, ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ, Π½ΠΎ Π²Π΅Ρ€Π½ΠΎ ΠΏΡ€ΠΎΠΊΠ»Π°Π΄Ρ‹Π²Π°Π²ΡˆΠΈΡ… ΠΏΡƒΡ‚ΡŒ ΠΊ соврСмСнной Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π‘Ρ‚ΠΎΠΈΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ интСрСсным наблюдСниСм: Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ людСй, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΎΡ€ΠΈΡŽ мноТСств Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅, цСнят скорСС Π½Π΅ эту ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ, Π° Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ Сю ΠΎΠ±ΠΎΠ±Ρ‰Ρ‘Π½Π½Ρ‹ΠΉ язык. Благодаря своСй абстрактной ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ тСория мноТСств скрытно влияСт Π½Π° мноТСство областСй ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π’ матСматичСском Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² ΠΈ нСпрСрывности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π°ΠΊΡ€Π΅ΠΏΠ»Ρ‘Π½Π½Ρ‹Ρ… Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. Π’ Π°Π»Π³Π΅Π±Ρ€Π΅ Π»ΠΎΠ³ΠΈΠΊΠΈ логичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Β«ΠΈΒ», Β«ΠΈΠ»ΠΈΒ» ΠΈ Β«Π½Π΅Β» ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ опСрациям пСрСсСчСния, объСдинСния ΠΈ разности Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. И послСднСС, Π½ΠΎ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½ΠΎΠ΅ β€” тСория мноТСств Π·Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅Ρ‚ основы Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠΈ β€” исслСдования гСомСтричСских свойств ΠΈ пространствСнных ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ.

Π’ΠΎΠΎΡ€ΡƒΠΆΠΈΠ²ΡˆΠΈΡΡŒ Π±Π°Π·ΠΎΠ²Ρ‹ΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ истории мноТСств ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ² ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π² Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ Π΅Π³ΠΎ влияния, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€ΠΈΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ ΠΊ знакомству с основами систСмы ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Π°ΡΡ‚ΡŒ вторая. ΠšΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π’Π΅Π½Π½Π°.

Как сказано Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ части, ΠΎΠ΄Π½ΠΎ ΠΈΠ· Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… прСимущСств Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств произрастаСт Π½Π΅ ΠΈΠ· ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, Π° ΠΈΠ· созданного Сю языка. ИмСнно поэтому основная Ρ‡Π°ΡΡ‚ΡŒ этого Ρ€Π°Π·Π΄Π΅Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ посвящСна обозначСниям, опСрациям ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΈΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. Π”Π°Π²Π°ΠΉΡ‚Π΅ Π½Π°Ρ‡Π½Ρ‘ΠΌ с объяснСния Π±Π°Π·ΠΎΠ²Ρ‹Ρ… символов обозначСния мноТСства β€” ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π΅ΠΌΡƒ элСмСнтов. Π’ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΎΠ΄Π½ΠΎΠ³ΠΎ мноТСства A с трСмя элСмСнтами:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

A β€” это мноТСство с элСмСнтами Β«1Β», Β«2Β» ΠΈ Β«3Β»

Β«1Β» β€” элСмСнт мноТСства A

Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΉ строкС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ мноТСство A с трСмя ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ элСмСнтами (A = ); Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ строкС ΠΏΠΎΠΊΠ°Π·Π°Π½ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ способ обозначСния ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ элСмСнта 1, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ мноТСству A. Пока всё довольно просто, Π½ΠΎ тСория мноТСств становится сущСствСнно интСрСснСС, ΠΊΠΎΠ³Π΄Π° ΠΌΡ‹ добавляСм Π²Ρ‚ΠΎΡ€ΠΎΠ΅ мноТСство β€” начинаСтся ΠΏΡƒΡ‚Π΅ΡˆΠ΅ΡΡ‚Π²ΠΈΠ΅ ΠΏΠΎ стандартным опСрациям.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ: пСрСсСчСниС (intersection) β€” мноТСство элСмСнтов, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… мноТСству A ΠΈ мноТСству B;

объСдинСниС (union) β€” мноТСство элСмСнтов, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… мноТСству A ΠΈΠ»ΠΈ мноТСству B;

подмноТСство (subset) β€” C являСтся подмноТСством A, мноТСство C Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ Π²ΠΎ мноТСство A;

собствСнноС (истинноС) подмноТСство β€” C являСтся подмноТСством A, Π½ΠΎ C Π½Π΅ Ρ€Π°Π²Π½ΠΎ A;

ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ (relative complement) β€” мноТСство элСмСнтов, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΊ A ΠΈ Π½Π΅ ΠΊ B.

Π’ΠΎΡ‚ ΠΈ ΠΎΠ½ΠΈ, самыС распространённыС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств; ΠΎΠ½ΠΈ довольно популярны ΠΈ Π² областях Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ чистой ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. На самом Π΄Π΅Π»Π΅, высока Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ ΡƒΠΆΠ΅ Π²ΠΈΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π² ΠΏΡ€ΠΎΡˆΠ»ΠΎΠΌ, Ρ…ΠΎΡ‚ΡŒ ΠΈ Π½Π΅ совсСм с Ρ‚Π°ΠΊΠΎΠΉ Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ, ΠΈ Π΄Π°ΠΆΠ΅ пользовались ΠΈΠΌΠΈ. Π₯ΠΎΡ€ΠΎΡˆΠ°Ρ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ: попроситС любого студСнта ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ Π’Π΅Π½Π½Π° ΠΈΠ· Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΡ…ΡΡ Π³Ρ€ΡƒΠΏΠΏ, ΠΈ ΠΎΠ½ ΠΈΠ½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎ ΠΏΡ€ΠΈΠ΄Ρ‘Ρ‚ ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ.

Π•Ρ‰Ρ‘ Ρ€Π°Π· взглянитС Π½Π° послСднюю строку, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ β€” ΠΊΠ°ΠΊΠΎΠ΅ Π½Π΅ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ сочСтаниС слов, ΠΏΡ€Π°Π²Π΄Π°? ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΊ Ρ‡Π΅ΠΌΡƒ? Если ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ A β€” B опрСдСляСтся ΠΊΠ°ΠΊ A ΠΈ Π½Π΅ B, Ρ‚ΠΎ ΠΊΠ°ΠΊ Π½Π°ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ всё, Ρ‡Ρ‚ΠΎ Π½Π΅ являСтся B?

Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство β€” пустоС мноТСство

ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ΡΡ, Ссли ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚, Ρ‚ΠΎ для Π½Π°Ρ‡Π°Π»Π° Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности нашСй Π·Π°Π΄Π°Ρ‡ΠΈ мноТСств Π½Π΅ΠΊΠΈΠΉ контСкст. Он часто явным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ задаётся Π² Π½Π°Ρ‡Π°Π»Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΊΠΎΠ³Π΄Π° допустимыС элСмСнты мноТСства ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ фиксированным классом ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ сущСствуСт ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ ΠΎΠ±Ρ‰ΠΈΠΌ мноТСством, содСрТащим всС элСмСнты для этой ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ. НапримСр, Ссли ΠΌΡ‹ Ρ…ΠΎΡ‚Π΅Π»ΠΈ Π±Ρ‹ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ со мноТСствами Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ· Π±ΡƒΠΊΠ² английского Π°Π»Ρ„Π°Π²ΠΈΡ‚Π°, Ρ‚ΠΎ нашС ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство U состояло Π±Ρ‹ ΠΈΠ· 26 Π±ΡƒΠΊΠ² Π°Π»Ρ„Π°Π²ΠΈΡ‚Π°.

Для любого подмноТСства A мноТСства U Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ мноТСства A (ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅ΠΌΠΎΠ΅ Aβ€² ΠΈΠ»ΠΈ U βˆ’ A) опрСдСляСтся ΠΊΠ°ΠΊ мноТСство всСх элСмСнтов Π² Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности U, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ находится Π² A. Если Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΡΡ ΠΊ поставлСнному Π²Ρ‹ΡˆΠ΅ вопросу, Ρ‚ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ΠΌ мноТСства B являСтся всё Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ мноТСства, Ρ‡Ρ‚ΠΎ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ B, Π² Ρ‚ΠΎΠΌ числС ΠΈ A.

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΌΡ‹ двинСмся дальшС, Π½Π°Π΄ΠΎ ΡƒΠΏΠΎΠΌΡΠ½ΡƒΡ‚ΡŒ Π΅Ρ‰Ρ‘ ΠΎΠ΄Π½ΠΎ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ мноТСство, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ достаточно Π²Π°ΠΆΠ½ΠΎ для Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ понимания: Π½ΡƒΠ»Π΅Π²ΠΎΠ΅ ΠΈΠ»ΠΈ пустоС мноТСство. Π£Ρ‡Ρ‚ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ сущСствуСт СдинствСнноС пустоС мноТСство, поэтому Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ говорят «пустыС мноТСства». Π₯отя ΠΌΡ‹ Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ, основная тСория гласит, Ρ‡Ρ‚ΠΎ Π΄Π²Π° мноТСства эквивалСнтны, Ссли ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ элСмСнты; ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ мноТСство Π±Π΅Π· элСмСнтов. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ сущСствуСт СдинствСнноС пустоС мноТСство.

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π’Π΅Π½Π½Π° ΠΈ ΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ΅

Π”ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ Π’Π΅Π½Π½Π°, ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π΅Ρ‚Ρ‘Π½Π½Ρ‹Π΅ Π² 1880 Π³ΠΎΠ΄Ρƒ Π”ΠΆΠΎΠ½ΠΎΠΌ Π’Π΅Π½Π½ΠΎΠΌ, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ ΠΈ прСдставляСтС, хотя ΠΈΡ… Π½Π°ΡƒΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π²ΡƒΡ‡ΠΈΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‚Π°ΠΊ:

Π‘Ρ…Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ всСх Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… мноТСств

НиТС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡˆΠ΅ΡΡ‚ΠΈ самых распространённых Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ Π’Π΅Π½Π½Π°, ΠΈ ΠΏΠΎΡ‡Ρ‚ΠΈ Π²ΠΎ всСх ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ ΠΎΠΏΠ΅Ρ€Π°Π½Π΄Ρ‹:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ОбъСдинСниС (union), пСрСсСчСниС (intersection), ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ (relative complement), симмСтричСская Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ (symmetric difference), собствСнноС мноТСство (proper subset), Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ (universal Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅).

Начав с ΠΎΡ‡Π΅Π½ΡŒ простых ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ мноТСства ΠΈ Π΅Π³ΠΎ элСмСнтов, ΠΌΡ‹ ΡƒΠ·Π½Π°Π»ΠΈ Π·Π°Ρ‚Π΅ΠΌ ΠΎ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… опСрациях, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ²ΡˆΠΈΡ… Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ эту Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΡƒΡŽ подсказку. ΠœΡ‹ рассмотрСли всС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ симмСтричСской разности (Π²Π½ΠΈΠ·Ρƒ слСва). Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ ΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π΅Π»ΠΎΠ² Π² знаниях, скаТСм, Ρ‡Ρ‚ΠΎ симмСтричСская Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ, Ρ‚Π°ΠΊΠΆΠ΅ называСмая Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ объСдинСниСм β€” это просто мноТСство элСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ находятся Π² любом ΠΈΠ· мноТСств, Π½ΠΎ Π½Π΅ входят Π² ΠΈΡ… пСрСсСчСниС.

Π—Π°ΠΊΠΎΠ½Ρ‡ΠΈΠΌ ΠΌΡ‹ этот Ρ€Π°Π·Π΄Π΅Π» Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ понятия мощности (ΠΊΠ°Ρ€Π΄ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа). ΠœΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ мноТСства, обозначаСмая символом Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ значСния β€” это просто количСство ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов, содСрТащихся Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ мноТСствС. Для ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Π²Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Ρ‘Ρ… мноТСств Ρ€Π°Π²Π½Π°: |A| = 3, |B| =6, |C| = 2.

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ дальшС, Π΄Π°ΠΌ Π²Π°ΠΌ ΠΏΠΈΡ‰Ρƒ для Ρ€Π°Π·ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΠΉ β€” ΠΊΠ°ΠΊΠΎΠ²Π° связь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ количСством Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… подмноТСств?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Π°ΡΡ‚ΡŒ 3. ΠœΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ мноТСства

Π’ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… Π΄Π²ΡƒΡ… частях ΠΌΡ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈΡΡŒ с основами Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. Π’ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ части ΠΌΡ‹ ΡƒΠΊΡ€Π΅ΠΏΠΈΠΌ своё ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΠΎΡΡ€Π΅Π΄ΠΎΡ‚ΠΎΡ‡ΠΈΠ²ΡˆΠΈΡΡŒ Π½Π° самом Π²Π°ΠΆΠ½ΠΎΠΌ свойствС любого мноТСства: ΠΎΠ±Ρ‰Π΅ΠΌ количСствС содСрТащихся Π² Π½Ρ‘ΠΌ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов.

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π²ΠΎ мноТСствС, Ρ‚Π°ΠΊΠΆΠ΅ извСстноС ΠΊΠ°ΠΊ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ, прСдоставляСт Π½Π°ΠΌ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ ΠΎΠΏΠΎΡ€Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ для дальнСйшСго, Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° этого мноТСства. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ β€” это ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΠΈΠ· рассматриваСмых Π½Π°ΠΌΠΈ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… свойств, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π΅ Π½Π°ΠΌ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ мноТСств, провСряя, сущСствуСт Π»ΠΈ биСкция (это, с нСбольшими ΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΊΠ°ΠΌΠΈ, просто Π±ΠΎΠ»Π΅Π΅ изысканный Ρ‚Π΅Ρ€ΠΌΠΈΠ½ для function ) ΠΎΠ΄Π½ΠΎΠ³ΠΎ мноТСства Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠ΅. Π•Ρ‰Ρ‘ ΠΎΠ΄ΠΈΠ½ способ примСнСния мощности, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Π΅ΠΌΠ° этой части ΡΡ‚Π°Ρ‚ΡŒΠΈ β€” ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ всС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ подмноТСства, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΌ мноТСствС. Π§Ρ‚ΠΎ достаточно Π±ΡƒΠΊΠ²Π°Π»ΡŒΠ½ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Π² повсСднСвных Π·Π°Π΄Π°Ρ‡Π°Ρ… распрСдСлСния Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, Π±ΡƒΠ΄ΡŒ Ρ‚ΠΎ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π° Π½Π° ΠΏΠΎΠ΅Π·Π΄ΠΊΡƒ Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΌΠ°Π³Π°Π·ΠΈΠ½ ΠΈΠ»ΠΈ оптимизация портфСля Π°ΠΊΡ†ΠΈΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ мощности мноТСств

НапримСр, Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π²Ρ‹ΡˆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΡΡ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… мноТСств с ΠΈΡ… ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ справа ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ. Как ΠΌΡ‹ ΡƒΠΆΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΈ, символ мощности Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ символ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ значСния β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π·Π°ΠΊΠ»ΡŽΡ‡Ρ‘Π½Π½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ линиями. ВсС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ понятны, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, послСднСй строки, которая ΠΏΠΎΠ΄Ρ‡Ρ‘Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Π½Π° ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π²Π»ΠΈΡΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ элСмСнты мноТСства.

ΠŸΠΎΠΌΠ½ΠΈΡ‚Π΅ подмноТСства ΠΈΠ· ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ части ΡΡ‚Π°Ρ‚ΡŒΠΈ? ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ мноТСства A ΠΈ количСство Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… подмноТСств мноТСства A ΠΈΠΌΠ΅ΡŽΡ‚ ΡƒΠ΄ΠΈΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ связь. НиТС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ количСство подмноТСств, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΈΠ· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ подмноТСства, увСличиваСтся с порядком мощности Π½Π° ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·ΡƒΠ΅ΠΌΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ:

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… подмноТСств Π² C= 2 |C|

Π”Π°Π²Π°ΠΉΡ‚Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим ΠΏΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΉ Π½ΠΈΠΆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€. Однако для Π½Π°Ρ‡Π°Π»Π° поразмыслим Π½Π°Π΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΠ±Ρ‰Π΅Π΅ количСство Β«ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉΒ», ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ прСдставляСт мноТСство. ΠŸΡ€ΠΈ создании Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ подмноТСства для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ принимаСтся Π±ΡƒΠ»Π΅Π²ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ (Π΄Π°/Π½Π΅Ρ‚). Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ элСмСнт, добавляСмый ΠΊ мноТСству (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ) ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ количСство Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… подмноТСств Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π΄Π²Π°. Если Π²Ρ‹ программист ΠΈΠ»ΠΈ ΡƒΡ‡Ρ‘Π½Ρ‹ΠΉ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡƒΡΡΠ½ΠΈΡ‚ΡŒ эту Π»ΠΎΠ³ΠΈΠΊΡƒ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π³Π»ΡƒΠ±ΠΆΠ΅, Ссли ΠΏΠΎΠΉΠΌΡ‘Ρ‚Π΅, Ρ‡Ρ‚ΠΎ всС подмноТСства мноТСства ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ Π΄Π²ΠΎΠΈΡ‡Π½Ρ‹Ρ… чисСл.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ мноТСство (Π±ΡƒΠ»Π΅Π°Π½)

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΌΡ‹ вычислим всС подмноТСства для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° мноТСства C, я Ρ…ΠΎΡ‚Π΅Π» Π±Ρ‹ ввСсти послСднСС понятиС β€” Π±ΡƒΠ»Π΅Π°Π½.

Π‘ΡƒΠ»Π΅Π°Π½ обозначаСтся Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ Π±ΡƒΠΊΠ²ΠΎΠΉ S, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π² скобках указываСтся исходноС мноТСство S(Π‘). Π‘ΡƒΠ»Π΅Π°Π½ β€” это мноТСство всСх подмноТСств C, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ пустоС мноТСство ΠΈ само мноТСство C. Π’ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π½ΠΈΠΆΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π±ΡƒΠ»Π΅Π°Π½ S(Π‘) со всСми пСрСстановками Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… подмноТСств для мноТСства C, содСрТащихся Π² ΠΎΠ΄Π½ΠΎΠΌ большом мноТСствС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Для удобства форматирования я ΡƒΠ±Ρ€Π°Π» запятыС ΠΌΠ΅ΠΆΠ΄Ρƒ мноТСствами***

Π§Π΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π΅Π½ Π±ΡƒΠ»Π΅Π°Π½? На самом Π΄Π΅Π»Π΅, Π²Ρ‹ скорСС всСго ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π· ΠΈΠ½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎ использовали Π±ΡƒΠ»Π΅Π°Π½Ρ‹, Π΄Π°ΠΆΠ΅ ΠΎΠ± этом Π½Π΅ Π΄ΠΎΠ³Π°Π΄Ρ‹Π²Π°ΡΡΡŒ. ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ€Π°Π·, ΠΊΠΎΠ³Π΄Π° Π²Ρ‹ Π²Ρ‹Π±ΠΈΡ€Π°Π΅Ρ‚Π΅ подмноТСство элСмСнтов ΠΈΠ· Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠ³ΠΎ мноТСства, Π²Ρ‹ Π²Ρ‹Π±ΠΈΡ€Π°Π΅Ρ‚Π΅ элСмСнт Π±ΡƒΠ»Π΅Π°Π½Π°. НапримСр Ρ€Π΅Π±Ρ‘Π½ΠΎΠΊ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠΉ кондитСрский ΠΌΠ°Π³Π°Π·ΠΈΠ½ с ΠΊΡƒΠΏΡŽΡ€ΠΎΠΉ Π² 5 Π΄ΠΎΠ»Π»Π°Ρ€ΠΎΠ² β€” ΠΊΠ°ΠΊΠΎΠΉ элСмСнт Π±ΡƒΠ»Π΅Π°Π½Π° мноТСства всСх доступных сладостСй ΠΎΠ½ Π²Ρ‹Π±Π΅Ρ€Π΅Ρ‚? Или Ссли Π²Π·ΡΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ тСхничСский ΠΏΡ€ΠΈΠΌΠ΅Ρ€: Π²Π°ΠΌ, ΠΊΠ°ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΡƒ ПО ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π·Π°ΠΏΡ€ΠΎΡΠΈΡ‚ΡŒ всСх Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ…, Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… свойством X ΠΈ Y β€” Π΅Ρ‰Ρ‘ ΠΎΠ΄ΠΈΠ½ случай, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ΄Π½ΠΎ подмноТСство выбираСтся ΠΈΠ· всСх Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… подмноТСств.

Π­ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ биСктивная функция

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ мноТСства, ΠΏΠΎΡ‡Π΅ΠΌΡƒ ΠΎΠ½ΠΎ Π²Π°ΠΆΠ½ΠΎ, ΠΈ Π΅Π³ΠΎ связь с Π±ΡƒΠ»Π΅Π°Π½ΠΎΠΌ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ вСрнёмся Π½Π΅Π½Π°Π΄ΠΎΠ»Π³ΠΎ ΠΊ Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ ΡƒΠΏΠΎΠΌΠΈΠ½Π°Π»ΠΈ Π² самом Π½Π°Ρ‡Π°Π»Π΅: Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ опрСдСляСт ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств?

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π²Π° мноТСства с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠΌΠ΅ΡŽΡ‚ Π½Π΅ΠΊΠΎΠ΅ ΠΎΠ±Ρ‰Π΅Π΅ свойство, Π½ΠΎ Π½Π° этом сходства Π·Π°ΠΊΠ°Π½Ρ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ β€” Ρ‡Ρ‚ΠΎ Ссли Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· мноТСств Π΅ΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΠΉΡΡ элСмСнт? Π§Ρ‚ΠΎ Ссли Π΄Π²Π° мноТСства ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡƒΡŽ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ количСство элСмСнтов? НСльзя ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Π² ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ стСпСни «эквивалСнтны», Π½ΠΎ Π΄Π°ΠΆΠ΅ Π² этом случаС всё Ρ€Π°Π²Π½ΠΎ Π΅ΡΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ мноТСство ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Π΅ элСмСнты, ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ количСство Ρ€Π°Π·. Бмысл здСсь Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ концСпция эквивалСнтности Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ Ρ‡ΡƒΠΆΠ΄Π° Π΄Ρ€ΡƒΠ³ΠΈΠΌ областям ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. УстановлСниС эквивалСнтности Π² этом ΠΌΠΈΡ€Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ знакомства с этой ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠ΅ΠΉ ΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ языка. Π’ послСднСй части этой ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΌΡ‹ Π²Π²Π΅Π΄Ρ‘ΠΌ понятиС эквивалСнтности, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Π°ΠΊΠΈΡ… базисных свойств, ΠΊΠ°ΠΊ ΠΈΠ½ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅, Π±ΠΈΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΈ ΡΡŽΡ€ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Π°ΡΡ‚ΡŒ 4. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’ этой части ΠΌΡ‹ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅ расскаТСм ΠΎ функциях Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств. Как ΠΈ Π² случаС с ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠΌΠΈ понятиями, тСрминология стандартных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств слСгка отличаСтся ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… областСй ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π° ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ объяснСния. Π’Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ довольно ΠΌΠ½ΠΎΠ³ΠΎ, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π΄Π°Π²Π°ΠΉΡ‚Π΅ сразу приступим ΠΊ Π΄Π΅Π»Ρƒ! Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π²Π½ΠΈΠ·Ρƒ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ понятия области опрСдСлСния, области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Ѐункция Π² ΠΌΠΈΡ€Π΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств β€” это просто соотвСтствиС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… (ΠΈΠ»ΠΈ всСх) элСмСнтов ΠΈΠ· ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π° A Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ (ΠΈΠ»ΠΈ всСм) элСмСнтам ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π° B. Π’ ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ Π²Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π½Π°Π±ΠΎΡ€ всСх Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… элСмСнтов A называСтся ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния; элСмСнты A, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² качСствС Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Π² частности Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ. Π‘ΠΏΡ€Π°Π²Π° Π½Π°Π±ΠΎΡ€ всСх Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ (Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… областях ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Β«ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉΒ»), называСтся ΠΊΠΎΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ; Π½Π°Π±ΠΎΡ€ настоящих Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹Ρ… элСмСнтов B, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… A, называСтся ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Пока особо Π½ΠΈΡ‡Π΅Π³ΠΎ слоТного, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½ΠΎΠ²Ρ‹ΠΉ способ задания ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π”Π°Π»Π΅Π΅ ΠΌΡ‹ расскаТСм ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ повСдСния этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ соотвСтствия ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜Π½ΡŠΠ΅ΠΊΡ†ΠΈΠΈ, ΡΡŽΡ€ΡŠΠ΅ΠΊΡ†ΠΈΠΈ ΠΈ Π±ΠΈΠ΅ΠΊΡ†ΠΈΠΈ

Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств для классификации соотвСтствия мноТСств ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ‚Ρ€ΠΈ понятия: ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ, ΡΡŽΡ€ΡŠΠ΅ΠΊΡ†ΠΈΡ ΠΈ биСкция. К соТалСнию, эти понятия ΠΈΠΌΠ΅ΡŽΡ‚ нСсколько Ρ€Π°Π·Π½Ρ‹Ρ… Π½Π°Π·Π²Π°Π½ΠΈΠΉ, ΡƒΡΠΈΠ»ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π½Π΅Ρ€Π°Π·Π±Π΅Ρ€ΠΈΡ…Ρƒ, поэтому ΠΌΡ‹ сначала рассмотрим ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΈΠ·ΡƒΡ‡ΠΈΠΌ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹. ВсС Ρ‚Ρ€ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ способ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ Π½Π° ΠΎΠ±Ρ€Π°Π·Ρ‹:

ΠŸΡ€ΠΎΡ‡ΠΈΡ‚Π°ΠΉΡ‚Π΅ Π·Π°Π½ΠΎΠ²ΠΎ прСдставлСнный Π²Ρ‹ΡˆΠ΅ список ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ². БиСкция β€” это просто функция, ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰Π°Ρ ΠΎΠ±ΠΎΠΈΠΌ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠΌ трСбованиям; Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, функция ΠΈΠ½ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Π° ΠΈ ΡΡŽΡ€ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Π°. Π˜Π½ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Π°Ρ функция Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ ΡΡŽΡ€ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ, Π° ΡΡŽΡ€ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Π°Ρ β€” ΠΈΠ½ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ. НиТС ΠΏΠΎΠΊΠ°Π·Π°Π½ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ эти Ρ‚Ρ€ΠΈ классификации ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ ΠΊ созданию Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ мноТСств, опрСдСляСмых Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌΠΈ комбинациями ΠΈΠ½ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΈ ΡΡŽΡ€ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… свойств:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° мноТСств Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

БиСкция (ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ + ΡΡŽΡ€ΡŠΠ΅ΠΊΡ†ΠΈΡ), ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ (ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ + Π½Π΅-ΡΡŽΡ€ΡŠΠ΅ΠΊΡ†ΠΈΡ), ΡΡŽΡ€ΡŠΠ΅ΠΊΡ†ΠΈΡ (Π½Π΅-ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ + ΡΡŽΡ€ΡŠΠ΅Ρ†ΠΈΡ), Π±Π΅Π· классификации (Π½Π΅-ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΡ + Π½Π΅-ΡΡŽΡ€ΡŠΠ΅ΠΊΡ†ΠΈΡ)

Π’ΠΎΡ‚ ΠΈ всё! Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΎΠ±Π»Π°Π΄Π°Π΅ΠΌ элСмСнтарным ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ самых часто встрСчаСмых ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ, Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π² ΠΌΠΈΡ€Π΅ мноТСств. Однако это Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΌ случаС Π½Π΅ ΠΊΠΎΠ½Π΅Ρ† нашСго ΠΏΡƒΡ‚ΠΈ: Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ², это самоС Π½Π°Ρ‡Π°Π»ΠΎ.

Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ основы Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств β€” ΠΊΠ»ΡŽΡ‡ ΠΊ пониманию Π±ΠΎΠ»Π΅Π΅ высокоуровнСвых областСй ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚ΡŒ нашС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²Π²Π΅Ρ€Ρ…, ΠΊ этим Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ областям, Π΄Π°Π»Π΅Π΅ Π½ΡƒΠΆΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ своими знаниями ΠΎ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ мноТСств, ΡƒΡΡΠ½ΠΈΡ‚ΡŒ ΠΎΠ΄Π½Ρƒ ΠΈΠ· самых Ρ€Π΅Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚Π΅ΠΎΡ€ΠΈΠΉ Π² истории ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ: систСму аксиом Π¦Π΅Ρ€ΠΌΠ΅Π»ΠΎ-ЀрСнкСля.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *