Что такое диф уравнение
Определения и понятия теории дифференциальных уравнений
С этой темы мы рекомендуем начинать изучение теории дифференциальных уравнений. В одном разделе мы собрали все основные термины и определения, которые будут применяться при рассмотрении теоретической части. Для того, чтобы облегчить усвоение материала, мы приводим многочисленные примеры.
Дифференциальное уравнение
Дифференциальное уравнение – это уравнение, которое содержит неизвестную функцию под знаком производной или дифференциала.
Обыкновенное дифференциальное уравнение содержит неизвестную функцию, которая является функцией одной переменной. Если же переменных несколько, то мы имеем дело с уравнением в частных производных.
Имеет значение также порядок дифференциального уравнения, за который принимают максимальный порядок производной неизвестной функции дифференциального уравнения.
Интегрирование дифференциального уравнения
Интегрирование дифференциального уравнения – это процесс решения этого уравнения.
Интеграл дифференциального уравнения – это название решения дифференциального уравнения.
У одного дифференциального уравнения может быть множество решений.
Общее решение ДУ
Общее решение ДУ – это все множество решений данного дифференциального уравнения.
Также общее решение часто носит название общего интеграла ДУ.
Частное решение ДУ
Частное решение ДУ – это такое решение, которое удовлетворяет условиям, заданным изначально.
К числу основных задач из теории дифференциальных уравнений относятся:
Особенностью задач Коши является наличие начальных условий, которым должно удовлетворять полученное частное решение ДУ. Начальные условия задаются следующим образом:
Остальные определения мы будем разбирать в других темах по мере изучения теории.
Дифференциальные уравнения. Что это?
| Срок выполнения | от 1 дня |
| Цена | от 100 руб./задача |
| Предоплата | 50 % |
| Кто будет выполнять? | преподаватель или аспирант |
Вы уже имеете находить производные и интегралы? Тогда настало самое время, чтобы перейти к более сложной теме, а именно, решению дифференциальных уравнений (ДУ, в простонародье диффуров). Но не все так страшно, как кажется на первый взгляд.
Дифференциальное уравнение: что это такое?
Дифференциальное уравнение (ДУ) – это уравнение, которое вместе с самой функцией (и ее аргументами), содержит еще и ее производную или несколько производных.
Дифференциальное уравнение: что нужно знать еще?
Первое (и главное), что понадобится, это умение правильно определять тип дифференциального уравнения. Второе, но не менее важное, это умение хорошо интегрировать и дифференцировать.
Не секрет, что дифференциальные уравнения бывают разных типов. Но… для начала отметим, что ДУ бывают разных порядков. Порядок ДУ — это порядок высшей производной, входящей в дифференциальное уравнение. Классификацию ДУ согласно порядку уравнения можно посмотреть в следующей таблице:
| Порядок уравнения | Вид уравнения | Пример |
|---|---|---|
| I | ![]() | ![]() |
| II | ![]() | ![]() |
| … | … | … |
| n | ![]() | ![]() |
Наиболее часто приходится иметь дело с ДУ первого и второго порядка, реже третьего. В 99% случаев в задачах встречаются три типа ДУ первого порядка: уравнения с разделяющимися переменными, однородные уравнения и линейные неоднородные уравнения. Иногда еще встречаются более редкие типы ДУ: уравнения в полных дифференциалах, уравнения Бернулли и др. Среди ДУ второго порядка часто встречаются уравнения, приводящиеся к ДУ первого порядка, линейные однородные и неоднородные уравнения с постоянными коэффициентами.
Дифференциальное уравнение: решение – что это значит и как его найти?
При решении ДУ нам предлагается найти либо общее решение (общий интеграл), либо частное решение. Общее решение y = f(x, C) зависит от некоторой постоянной ( С — const), а частное решение не зависит: y = f(x, C0).
С геометрической точки зрения общее решение – это семейство кривых на координатной плоскости, а частное решение – это одна прямая этого семейства, проходящая через некоторую точку.
Давайте рассмотрим примеры решения некоторых ДУ. Начнем с ДУ первого порядка с разделяющимися переменными:
Здесь все очень просто как на уроке физкультуры, когда ученики класса делятся на две команды, в одну из которых входят только мальчики, а в другую – только девочки. Применительно к уравнению делаем следующее: в левую часть от знака равенства переносим все то, что содержит переменную y, а в правую часть – переменную x.
Получаем:
Далее интегрируем обе части:
Итоговое общее решение выглядит следующим образом: y = C(x-1) — 2. Все оказалось очень просто, не правда ли?
Не сложнее и решение однородных ДУ второго порядка с постоянными коэффициентами. Здесь всего-то и нужно знать из курса школьной алгебры, как решаются квадратные уравнения, а из курса по ДУ, как правильно записать общее решение.
Для наглядности рассмотрим пример:
Составляем характеристическое уравнение, заменяя переменную y на переменную k, а количество штрихов соответствующей степенью (два штриха – степень 2, один штрих – степень 1, нет штрихов – степень 0). Получаем квадратное уравнение, решить которое можно с помощью дискриминанта или теоремы Виета:
После того, как корни характеристического уравнения найдены, вспоминаем правила записи общего решения однородного ДУ:
Вспоминаем, что наше уравнение имеет два различных действительных корня. Следовательно, общее решение запишем в виде:
Решение линейных неоднородных ДУ с постоянными коэффициентами выполняется в два этапа:
Выполнение первого этапа рассмотрено на примере чуть раньше. То, в каком виде мы будем искать частное решение неоднородного ДУ, зависит от того, что стоит в уравнении справа от знака равенства. Все возможные случаи подробно рассматривают в учебной литературе.
Итак, тема «Решение задач по дифференциальным уравнениям» изучается в ВУЗах, но, как было показано выше, решить некоторые ДУ может и школьник.
Дифференциальные уравнения и методы их решения рассматриваются практически в каждом учебнике по высшей математике и математическому анализу. Особенно хорошо данная тема рассмотрена в учебнике автора Пискунов Н.С., а называется он «Дифференциальное и интегральное исчисления: Учеб. Для втузов. В 2-х т. Т. II». С помощью данного учебника можно самостоятельно изучить методы решения тех типов ДУ, которые не были рассмотрены в данной статье.
Решение дифференциальных уравнений на заказ
У нас вы можете выгодно заказать решение задач с дифференциальными уравнениями. Нами накоплен большой опыт решения заданий по данной дисциплине, которым мы готовы поделиться с вами. Работа будет оформлена очень подробно. При заказе большого количества задач действует скидка. Купить решение можно, сделав заказ у нас на сайте.
Дифференциальное уравнение
Дифференциа́льное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, 
Порядок, или степень дифференциального уравнения — наибольший порядок производных, входящих в него.
Решением (интегралом) дифференциального уравнения порядка n называется функция y(x), имеющая на некотором интервале (a, b) производные 
Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.
Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.
Содержание
Обыкновенные дифференциальные уравнения
Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения вида


где 



Дифференциальные уравнения в частных производных
Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где 

Примеры




Второй закон Ньютона можно записать в форме дифференциального уравнения 





Колебание струны задается уравнением 




См. также
Ссылки
Литература
Учебники
Справочники
Полезное
Смотреть что такое «Дифференциальное уравнение» в других словарях:
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — (differential equation) Уравнение, определяющее зависимость переменной от ее собственных производных с учетом времени, которое рассматривается как непрерывная переменная. Уравнение этого типа следует отличать от разностного уравнения, в котором… … Экономический словарь
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — уравнение, связывающее искомую функцию, ее производные (или дифференциалы) и независимые переменные, напр. dy = 2xdx. Решением или интегралом дифференциального уравнения называется функция, при подстановке которой в дифференциальное уравнение… … Большой Энциклопедический словарь
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ, уравнение, содержащее производные. Дифференциальные уравнения используются почти во всех областях ПРИКЛАДНОЙ МАТЕМАТИКИ. см. также ИСЧИСЛЕНИЕ … Научно-технический энциклопедический словарь
дифференциальное уравнение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN differential equation … Справочник технического переводчика
дифференциальное уравнение — уравнение, связывающее искомую функцию, её производные (или дифференциалы) и независимые переменные, например dy = 2xdx. Решением или интегралом дифференциального уравнения называется функция, при подстановке которой в дифференциальном уравнении… … Энциклопедический словарь
дифференциальное уравнение — diferencialinė lygtis statusas T sritis automatika atitikmenys: angl. differential equation vok. Differentialgleichung, f rus. дифференциальное уравнение, n pranc. équation différentielle, f … Automatikos terminų žodynas
дифференциальное уравнение — diferencialinė lygtis statusas T sritis fizika atitikmenys: angl. differential equation vok. Differentialgleichung, f rus. дифференциальное уравнение, n pranc. équation différentielle, f … Fizikos terminų žodynas
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — уравне ние, связывающее искомую функцию, её производные (или дифференциалы) и независимые переменные, напр. dy = 2xdx. Решением или интегралом Д. у. наз. ф ция, при подстановке к рой в Д. у. последнее обращается в тождество; в приведённом примере … Естествознание. Энциклопедический словарь
Дифференциальное уравнение в частных производных — (частные случаи также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные. Содержание 1 Введение 2 История … Википедия
Дифференциальные уравнения для «чайников». Примеры решения
Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?
Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.
Основные понятия теории дифференциальных уравнений
Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х), которая обратит уравнение в тождество.
Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.
Дифференциальное уравнение (ДУ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.
Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.
Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.
Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.
Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.
Обыкновенные дифференциальные уравнения
Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.
Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:
Решить такое уравнение можно, просто проинтегрировав его правую часть.
Примеры таких уравнений:
Уравнения с разделяющимися переменными
В общем виде этот тип уравнений выглядит так:
Решая такое уравнение, нужно разделить переменные, приведя его к виду:
После этого останется проинтегрировать обе части и получить решение.
Линейные дифференциальные уравнения первого порядка
Такие уравнения имеют вид:
Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:
Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).
Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.
Пример решения ДУ с разделяющимися переменными
Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.
Сначала перепишем производную в более привычном виде:
Затем разделим переменные, то есть в одной части уравнения соберем все «игреки», а в другой – «иксы»:
Теперь осталось проинтегрировать обе части:
Интегрируем и получаем общее решение данного уравнения:
Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему «Как решать дифференциальные уравнения»:
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.



























