Что такое дифференциал уравнения
Дифференциальное уравнение
Дифференциа́льное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, 
Порядок, или степень дифференциального уравнения — наибольший порядок производных, входящих в него.
Решением (интегралом) дифференциального уравнения порядка n называется функция y(x), имеющая на некотором интервале (a, b) производные 
Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы.
Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.
Содержание
Обыкновенные дифференциальные уравнения
Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения вида


где 



Дифференциальные уравнения в частных производных
Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где 

Примеры




Второй закон Ньютона можно записать в форме дифференциального уравнения 





Колебание струны задается уравнением 




См. также
Ссылки
Литература
Учебники
Справочники
Полезное
Смотреть что такое «Дифференциальное уравнение» в других словарях:
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — (differential equation) Уравнение, определяющее зависимость переменной от ее собственных производных с учетом времени, которое рассматривается как непрерывная переменная. Уравнение этого типа следует отличать от разностного уравнения, в котором… … Экономический словарь
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — уравнение, связывающее искомую функцию, ее производные (или дифференциалы) и независимые переменные, напр. dy = 2xdx. Решением или интегралом дифференциального уравнения называется функция, при подстановке которой в дифференциальное уравнение… … Большой Энциклопедический словарь
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ, уравнение, содержащее производные. Дифференциальные уравнения используются почти во всех областях ПРИКЛАДНОЙ МАТЕМАТИКИ. см. также ИСЧИСЛЕНИЕ … Научно-технический энциклопедический словарь
дифференциальное уравнение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN differential equation … Справочник технического переводчика
дифференциальное уравнение — уравнение, связывающее искомую функцию, её производные (или дифференциалы) и независимые переменные, например dy = 2xdx. Решением или интегралом дифференциального уравнения называется функция, при подстановке которой в дифференциальном уравнении… … Энциклопедический словарь
дифференциальное уравнение — diferencialinė lygtis statusas T sritis automatika atitikmenys: angl. differential equation vok. Differentialgleichung, f rus. дифференциальное уравнение, n pranc. équation différentielle, f … Automatikos terminų žodynas
дифференциальное уравнение — diferencialinė lygtis statusas T sritis fizika atitikmenys: angl. differential equation vok. Differentialgleichung, f rus. дифференциальное уравнение, n pranc. équation différentielle, f … Fizikos terminų žodynas
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ — уравне ние, связывающее искомую функцию, её производные (или дифференциалы) и независимые переменные, напр. dy = 2xdx. Решением или интегралом Д. у. наз. ф ция, при подстановке к рой в Д. у. последнее обращается в тождество; в приведённом примере … Естествознание. Энциклопедический словарь
Дифференциальное уравнение в частных производных — (частные случаи также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные. Содержание 1 Введение 2 История … Википедия
Дифференциальные уравнения. Что это?
| Срок выполнения | от 1 дня |
| Цена | от 100 руб./задача |
| Предоплата | 50 % |
| Кто будет выполнять? | преподаватель или аспирант |
Вы уже имеете находить производные и интегралы? Тогда настало самое время, чтобы перейти к более сложной теме, а именно, решению дифференциальных уравнений (ДУ, в простонародье диффуров). Но не все так страшно, как кажется на первый взгляд.
Дифференциальное уравнение: что это такое?
Дифференциальное уравнение (ДУ) – это уравнение, которое вместе с самой функцией (и ее аргументами), содержит еще и ее производную или несколько производных.
Дифференциальное уравнение: что нужно знать еще?
Первое (и главное), что понадобится, это умение правильно определять тип дифференциального уравнения. Второе, но не менее важное, это умение хорошо интегрировать и дифференцировать.
Не секрет, что дифференциальные уравнения бывают разных типов. Но… для начала отметим, что ДУ бывают разных порядков. Порядок ДУ — это порядок высшей производной, входящей в дифференциальное уравнение. Классификацию ДУ согласно порядку уравнения можно посмотреть в следующей таблице:
| Порядок уравнения | Вид уравнения | Пример |
|---|---|---|
| I | ![]() | ![]() |
| II | ![]() | ![]() |
| … | … | … |
| n | ![]() | ![]() |
Наиболее часто приходится иметь дело с ДУ первого и второго порядка, реже третьего. В 99% случаев в задачах встречаются три типа ДУ первого порядка: уравнения с разделяющимися переменными, однородные уравнения и линейные неоднородные уравнения. Иногда еще встречаются более редкие типы ДУ: уравнения в полных дифференциалах, уравнения Бернулли и др. Среди ДУ второго порядка часто встречаются уравнения, приводящиеся к ДУ первого порядка, линейные однородные и неоднородные уравнения с постоянными коэффициентами.
Дифференциальное уравнение: решение – что это значит и как его найти?
При решении ДУ нам предлагается найти либо общее решение (общий интеграл), либо частное решение. Общее решение y = f(x, C) зависит от некоторой постоянной ( С — const), а частное решение не зависит: y = f(x, C0).
С геометрической точки зрения общее решение – это семейство кривых на координатной плоскости, а частное решение – это одна прямая этого семейства, проходящая через некоторую точку.
Давайте рассмотрим примеры решения некоторых ДУ. Начнем с ДУ первого порядка с разделяющимися переменными:
Здесь все очень просто как на уроке физкультуры, когда ученики класса делятся на две команды, в одну из которых входят только мальчики, а в другую – только девочки. Применительно к уравнению делаем следующее: в левую часть от знака равенства переносим все то, что содержит переменную y, а в правую часть – переменную x.
Получаем:
Далее интегрируем обе части:
Итоговое общее решение выглядит следующим образом: y = C(x-1) — 2. Все оказалось очень просто, не правда ли?
Не сложнее и решение однородных ДУ второго порядка с постоянными коэффициентами. Здесь всего-то и нужно знать из курса школьной алгебры, как решаются квадратные уравнения, а из курса по ДУ, как правильно записать общее решение.
Для наглядности рассмотрим пример:
Составляем характеристическое уравнение, заменяя переменную y на переменную k, а количество штрихов соответствующей степенью (два штриха – степень 2, один штрих – степень 1, нет штрихов – степень 0). Получаем квадратное уравнение, решить которое можно с помощью дискриминанта или теоремы Виета:
После того, как корни характеристического уравнения найдены, вспоминаем правила записи общего решения однородного ДУ:
Вспоминаем, что наше уравнение имеет два различных действительных корня. Следовательно, общее решение запишем в виде:
Решение линейных неоднородных ДУ с постоянными коэффициентами выполняется в два этапа:
Выполнение первого этапа рассмотрено на примере чуть раньше. То, в каком виде мы будем искать частное решение неоднородного ДУ, зависит от того, что стоит в уравнении справа от знака равенства. Все возможные случаи подробно рассматривают в учебной литературе.
Итак, тема «Решение задач по дифференциальным уравнениям» изучается в ВУЗах, но, как было показано выше, решить некоторые ДУ может и школьник.
Дифференциальные уравнения и методы их решения рассматриваются практически в каждом учебнике по высшей математике и математическому анализу. Особенно хорошо данная тема рассмотрена в учебнике автора Пискунов Н.С., а называется он «Дифференциальное и интегральное исчисления: Учеб. Для втузов. В 2-х т. Т. II». С помощью данного учебника можно самостоятельно изучить методы решения тех типов ДУ, которые не были рассмотрены в данной статье.
Решение дифференциальных уравнений на заказ
У нас вы можете выгодно заказать решение задач с дифференциальными уравнениями. Нами накоплен большой опыт решения заданий по данной дисциплине, которым мы готовы поделиться с вами. Работа будет оформлена очень подробно. При заказе большого количества задач действует скидка. Купить решение можно, сделав заказ у нас на сайте.
Определения и понятия теории дифференциальных уравнений
С этой темы мы рекомендуем начинать изучение теории дифференциальных уравнений. В одном разделе мы собрали все основные термины и определения, которые будут применяться при рассмотрении теоретической части. Для того, чтобы облегчить усвоение материала, мы приводим многочисленные примеры.
Дифференциальное уравнение
Дифференциальное уравнение – это уравнение, которое содержит неизвестную функцию под знаком производной или дифференциала.
Обыкновенное дифференциальное уравнение содержит неизвестную функцию, которая является функцией одной переменной. Если же переменных несколько, то мы имеем дело с уравнением в частных производных.
Имеет значение также порядок дифференциального уравнения, за который принимают максимальный порядок производной неизвестной функции дифференциального уравнения.
Интегрирование дифференциального уравнения
Интегрирование дифференциального уравнения – это процесс решения этого уравнения.
Интеграл дифференциального уравнения – это название решения дифференциального уравнения.
У одного дифференциального уравнения может быть множество решений.
Общее решение ДУ
Общее решение ДУ – это все множество решений данного дифференциального уравнения.
Также общее решение часто носит название общего интеграла ДУ.
Частное решение ДУ
Частное решение ДУ – это такое решение, которое удовлетворяет условиям, заданным изначально.
К числу основных задач из теории дифференциальных уравнений относятся:
Особенностью задач Коши является наличие начальных условий, которым должно удовлетворять полученное частное решение ДУ. Начальные условия задаются следующим образом:
Остальные определения мы будем разбирать в других темах по мере изучения теории.
Дифференциальные уравнения.
Дифференциальное уравнение – это соотношение, имеющее вид F(x1,x2,x3. y,y′,y′′. y (n) ) = 0, и которое связывает независимые переменные x1,x2,x3. функцию y этих независимых переменных и ее производные до n-го порядка. Причем функция F определяется и достаточное число раз дифференцируется в некоторой области изменения своих аргументов.
Обыкновенные дифференциальные уравнения – это дифференциальные уравнения, содержащие лишь одну независимую переменную.
Дифференциальные уравнения в частных производных – это дифференциальные уравнения, в которых содержится 2 и более независимых переменных.
Дифференциальное уравнение 1-го порядка в общем случае содержит:
1) независимую переменную х;
2) зависимую переменную y (функцию);
3) первую производную функции: y’.
В некоторых уравнениях первого порядка может отсутствовать х или (и) y, но это не существенно – важно чтобы в дифференциальных уравнениях была 1-я производная y’, и не было производных высших порядков – y’’, y’’’ и так далее.
Дифференциальное уравнение — уравнение, которое связывает значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть разным (формально он не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях либо все, кроме хотя бы 1-й производной, отсутствовать совсем. Не каждое уравнение, которое содержит производные неизвестной функции, оказывается дифференциальным уравнением. Например, 
Дифференциальное уравнение порядка выше 1-го можно преобразовать в систему уравнений 1-го порядка, в которой количество уравнений равняется порядку начального уравнения.
Классификация дифференциальных уравнений.
Порядок дифференциального уравнения – это порядок старшей производной, которая входит в него.
Степень дифференциального уравнения – это показатель степени, в которую возведена производная самого высокого порядка.
Например, уравнение 1-го порядка 2-й степени:
Например, уравнение 4-го порядка 1-й степени:
Бывает дифференциальные уравнения записывают как (в него входят дифференциалы):
В таком случае переменные x и y нужно полагать равноправными. Если нужно, подобное уравнение приводят к виду, в котором явно содержится производная y’. Разделим на dx:
так как 

Виды дифференциальных уравнений.
3. Дифференциальные уравнения высших порядков.
4. Системы дифференциальных уравнений вида 
Определения и понятия теории дифференциальных уравнений.
Эта статья является отправной точкой в изучении теории дифференциальных уравнений. Здесь собраны основные определения и понятия, которые будут постоянно фигурировать в тексте. Для лучшего усвоения и понимания определения снабжены примерами.
Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала.
Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных.
Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения.
Вот примеры ОДУ первого, второго и пятого порядков соответственно
В качестве примеров уравнений в частных производных второго порядка приведем
Далее мы будем рассматривать только обыкновенные дифференциальные уравнения n-ого порядка вида 

Процесс нахождения решений дифференциального уравнения называется интегрированием дифференциального уравнения.
Решение дифференциального уравнения часто называют интегралом дифференциального уравнения.
Функции 


Одним из решений дифференциального уравнения 



Общее решение дифференциального уравнения – это множество решений, содержащее все без исключения решения этого дифференциального уравнения.
Общее решение дифференциального уравнения еще называют общим интегралом дифференциального уравнения.
Вернемся к примеру. Общее решение дифференциального уравнения 



Если решение дифференциального уравнения удовлетворяет изначально заданным дополнительным условиям, то его называют частным решением дифференциального уравнения.
Задача Коши – это задача нахождения частного решения дифференциального уравнения, удовлетворяющего заданным начальным условиям 

Краевую задачу часто называют граничной задачей.
Обыкновенное дифференциальное уравнение n-ого порядка называется линейным, если оно имеет вид 

Если 

Когда коэффициенты 

Характеристическое уравнение линейного однородного дифференциального уравнения n-ой степени с постоянными коэффициентами – это уравнение n-ой степени вида 
Теперь Вы знакомы с основными определениями и понятиями. Дополнительные определения будем давать по мере изложения теории. Далее рекомендуем изучить основные виды дифференциальных уравнений и методы решения.


















