Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡ опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ рассматриваСмой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НапримСр, производная Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (bx+a)?=b, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ являСтся константой; производная стСпСнной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (xn)?=axn 1 (Ρ…>0), Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ стСпСнной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ СС… … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• β€” 1) Π² Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚. производство матСматичСского Π°Π½Π°Π»ΠΈΠ·Π° посрСдством Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния; 2) Π΄. ΠΈΠ»ΠΈ диффСрСнциация Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ слоТного Ρ†Π΅Π»ΠΎΠ³ΠΎ Π½Π° части, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ; Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… частСй.… … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ иностранных слов русского языка

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• β€” Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π•, Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ Π˜ΠΠ’Π•Π“Π Π˜Π ΠžΠ’ΠΠΠ˜Π― ΠΈ диффСрСнцирования вмСстС ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ Π˜Π‘Π§Π˜Π‘Π›Π•ΠΠ˜Π™ ΠΈ находят ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ‡Ρ‚ΠΈ Π²ΠΎ всСх областях ΠŸΠ Π˜ΠšΠ›ΠΠ”ΠΠžΠ™ ΠœΠΠ’Π•ΠœΠΠ’Π˜ΠšΠ˜. см.… … Научно-тСхничСский энциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ элСмСнтарныС β€” Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½, Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ, стСпСнная, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈ логарифмичСская, тригономСтричСскиС ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС ГипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽβ€¦ … ВикипСдия

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• ПО Π‘Π•Π’Π˜ β€” ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ понятиС диффСрСнцирования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ мноТСств y(E). Π‘Π΅Ρ‚ΡŒ N ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠΉ основного пространства Xс ΠΌΠ΅Ρ€ΠΎΠΉ m, ΠΏΡ€ΠΈ этом ΠΈ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ найдСтся содСрТащСС Π΅Π³ΠΎ мноТСство ВсСизмСримы ΠΈ ΠΈΡ… ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ смыслС (см. [1])… … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ β€” Под Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ родствСнныС понятия. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ опСрация взятия ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΈΠ»ΠΈ частной ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰Π΅Π΅ тоТдСству Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°.… … ВикипСдия

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• Π§Π˜Π‘Π›Π•ΠΠΠžΠ• β€” Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ числСнными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π”. Ρ‡. ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² случаях, ΠΊΠΎΠ³Π΄Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния Π½Π΅ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹ (функция Π·Π°Π΄Π°Π½Π° Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎ), ΠΈΠ»ΠΈ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ трудности (функция ΠΈΠΌΠ΅Π΅Ρ‚ слоТноС… … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• β€” опСрация, края относит Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΈΠ»ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π». ΠŸΡ€ΠΈ этом Ρ€Π΅Ρ‡ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ΄Ρ‚ΠΈ ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π΅ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠ»ΠΈ Π½Π° Π½Π΅ΠΊ Ρ€ΠΎΠΌ мноТСствС, ΠΎ частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ, ΠΎ частных ΠΈ ΠΏΠΎΠ»Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°Ρ…, а… … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• ΠžΠ’ΠžΠ‘Π ΠΠ–Π•ΠΠ˜Π― β€” Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΈΠ»ΠΈ, ΠΈΠ½Π°Ρ‡Π΅, Π³Π»Π°Π²Π½ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ части отобраТСния. НахоТдСниС Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°, Ρ‚. Π΅. аппроксимация отобраТСния Π² окрСстности Π½Π΅ΠΊ Ρ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ отобраТСниями, являСтся ваТнСйшСй ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния.… … ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энциклопСдия

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

Если Π²Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ, Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ трСбуСтся Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, совСтуСм Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ‡Π΅ΡΡ‚ΡŒ эту ΡΡ‚Π°Ρ‚ΡŒΡŽ. Π—Π΄Π΅ΡΡŒ приводятся ΠΎΠ±Ρ‰ΠΈΠ΅ полоТСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ диффСрСнцирования, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Для этого ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π·Π½Ρ‹Π΅ способы, вСдь исходная функция ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π°Π΄Π°Π½Π° явно ΠΈΠ»ΠΈ нСявно, Π² парамСтричСском Π²ΠΈΠ΄Π΅, Π±Ρ‹Ρ‚ΡŒ элСмСнтарной, основной ΠΈΠ»ΠΈ слоТной, Π·Π½Π°Ρ‡ΠΈΡ‚, Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ситуации Π±Ρ‹Π²Π°Π΅Ρ‚ Π½ΡƒΠΆΠ΅Π½ свой ΠΏΠΎΠ΄Ρ…ΠΎΠ΄.

Π’Π°Π±Π»ΠΈΡ†Π° диффСрСнцирования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΡ‹ собрали всю ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ диффСрСнцирования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈ прСдставили Π΅Π΅ Π² Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅:

БтСпСнная фунция y = x p

y = a x a x ‘ = a x Β· ln a

Π’ частности, ΠΏΡ€ΠΈ a = e ΠΈΠΌΠ΅Π΅ΠΌ

log a x ‘ = 1 x Β· ln a

Π’ частности, ΠΏΡ€ΠΈ a = e ΠΈΠΌΠ΅Π΅ΠΌ

y = ln x ln x ‘ = 1 x

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

( f ( g ( x ) ) ) ‘ = f ‘ ( g ( x ) ) Β· g ‘ ( x )

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ нСявно Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ парамСтричСски Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

y = f ( x ) y ‘ = y Β· ( ln ( f ( x ) ) ) ‘

ПояснСния Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠΈΠΌΠΎΠ΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… пояснСний. НапримСр, Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ простом случаС для диффСрСнцирования Π½Π°ΠΌ пригодится ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Ρ‚.Π΅. вычислСниС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°. Π­Ρ‚ΠΎ дСйствиС носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ нСпосрСдствСнного диффСрСнцирования.

Если Π²Π°ΠΌ приходится Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ с основной элСмСнтарной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, Ρ‚ΠΎ слСдуСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ основных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. Π’ Π½Π΅ΠΉ приводятся всС Π³ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ значСния, Π΄ΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Π½Π° основании опрСдСлСния. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ ΡƒΠ΄ΠΎΠ±Π½ΠΎ, ΠΈ ΠΌΡ‹ совСтуСм Π²Π°ΠΌ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊΡƒΡŽ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΠΎΠ΄ Ρ€ΡƒΠΊΠΎΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ – ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ свойства

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΠΌΡ‹ ΡƒΠ²ΠΈΠ΄ΠΈΠΌ Π½ΠΈΠΆΠ΅, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ эквивалСнтно ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Π’ΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ вопрос – ΠΏΠΎΡ‡Π΅ΠΌΡƒ нСльзя сразу Π΄Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ диффСрСнцируСмая функция – это функция, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ?

ΠžΡ‚Π²Π΅Ρ‚ Π½Π° этот вопрос раскрываСтся ΠΏΡ€ΠΈ рассмотрСнии Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. Π”Π΅Π»ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, зависящих ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, Π²Π½Π°Ρ‡Π°Π»Π΅ Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ приблиТСния ΠΊ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ось x ΠΈΠ»ΠΈ ось y ), Π° Π·Π°Ρ‚Π΅ΠΌ ΠΏΠΎ этому Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² любой Ρ‚ΠΎΡ‡ΠΊΠ΅ имССтся бСсконСчноС мноТСство ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ. Из-Π·Π° этого ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π½Π΅ Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΡƒΡŽΡ‚ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Бвойства Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² случаС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ эквивалСнтно ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅. ЗабСгая Π²ΠΏΠ΅Ρ€Π΅Π΄ ΡƒΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² случаС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ функция Π±Ρ‹Π»Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½Π° ΠΈΠΌΠ΅Π»Π° Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½Π° ΠΈΠΌΠ΅Π»Π° Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ частныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌ

Бвязь диффСрСнцируСмости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с сущСствованиСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

Π’ нашСм случаС это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ
.
ΠžΡ‚ΡΡŽΠ΄Π°
.

Бвязь диффСрСнцируСмости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с Π΅Π΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒΡŽ

Использованная Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π°:
О.И. БСсов. Π›Π΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎ матСматичСскому Π°Π½Π°Π»ΠΈΠ·Ρƒ. Π§Π°ΡΡ‚ΡŒ 1. Москва, 2004.
Π‘.М. Никольский. ΠšΡƒΡ€Ρ матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°. Π’ΠΎΠΌ 1. Москва, 1983.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ способу ΠΈΡ… задания: явныС, нСявныС ΠΈ парамСтричСскиС.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f ( x ) ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ называСтся ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΊΠΎΠ³Π΄Π° послСднСС стрСмится ΠΊ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² достаточно ΠΌΠ°Π»ΠΎΠΉ окрСстности Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π°ΠΌΠΈ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ простыС ΠΈ явно Π·Π°Π΄Π°Π½Π½Ρ‹Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

БлСдствиС. Π’ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²Π° функция ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π°, Π½ΠΎ Π½Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ°. Π’Π°ΠΊ, функция y =| x | Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x =0 Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π°, Π½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти бСсконСчноС мноТСство ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… (рис. 3.6). Π’Π°ΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΈΠ·Π»ΠΎΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Π°Π½Π½Ρ‹ΠΉ случай ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ 3.9 Π½Π΅Π²Π΅Ρ€Π½ΠΎ.

Π‘Ρ€Π΅Π΄ΠΈ явных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ особоС мСсто Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, производная ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… находится с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.10. Если строго монотонная функция y = f ( x ) Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π₯, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π΅Π΅ производная Π½Π΅ обращаСтся Π² Π½ΡƒΠ»ΡŒ Π½Π° Π₯, Ρ‚ΠΎ обратная ΠΊ Π½Π΅ΠΉ функция x = Ο† ( y ) Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π½Π° этом ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, ΠΏΡ€ΠΈ этом:

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ:

Π‘Ρ€Π΅Π΄ΠΈ явных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ класс слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.11. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сначала ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ внСшнюю Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ, считая Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Π·Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠΎ нСзависимому ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌΡƒ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ диффСрСнцирования ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.31) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17), (3.19), (3.29) ΠΈΠΌΠ΅Π΅ΠΌ:

Π³Π΄Π΅ t – ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ нСслоТно ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3.9. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.32) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.18), (3.19) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Помимо Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ мСсто ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.12. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Данная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π° для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ-слагаСмых.

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ (3.33) ΠΈ (3.31) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17), (3.20), (3.23) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.13. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ-сомноТитСля Π½Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ плюс ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠΉ функции–сомноТитСля, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.34) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.22), (3.24) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3.14. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ знамСнатСля Π΄Π°Π½Π½ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΠΈ, Π° Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ знамСнатСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ числитСля ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ числитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ знамСнатСля, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.35) ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17), (3.29) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Богласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3.31) диффСрСнцирования слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ (3.34) ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ произвСдСния, с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» (3.17) ΠΈ (3.18) ΠΈΠΌΠ΅Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ диффСрСнциация Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f ( x ) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x называСтся главная Ρ‡Π°ΡΡ‚ΡŒ приращСния этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, равная ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° (3.39) примСняСтся для вычислСния ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования: Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. Данная ΡΡ‚Π°Ρ‚ΡŒΡ посвящСна основным ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ диффСрСнцирования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ постоянно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ самого опрСдСлСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΡ‹ сформулируСм Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° всСх этих ΠΏΡ€Π°Π²ΠΈΠ» ΠΈ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡.

Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ основныС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ диффСрСнцирования:

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ всС эти случаи ΠΏΠΎ порядку.

Как вынСсти постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ

Для Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, запишСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Π­Ρ‚ΠΈΠΌ ΠΌΡ‹ Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования. Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅.

РСшСниС

ВынСсСм ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π­Ρ‚ΠΎ самый простой ΠΏΡ€ΠΈΠΌΠ΅Ρ€. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Ρ‡Π°Ρ‰Π΅ всСго приходится ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½ΡƒΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ.

РСшСниС

РСшСниС

Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”Π°Π»Π΅Π΅ примСняСм ΠΈΠ·ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π²Ρ‹ΡˆΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΈ Π±Π΅Ρ€Π΅ΠΌ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅:

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ суммы ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ разности

Π’Π°ΠΊ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ равСнство ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ суммы ΠΈΠ»ΠΈ разности n-Π½ΠΎΠ³ΠΎ количСства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ суммС ΠΈΠ»ΠΈ разности ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…:

РСшСниС

ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ Π΄Π΅Π»ΠΎΠΌ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅ΠΌ Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

ПослС этого примСняСм Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ – ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ суммы/разности:

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ Π½Π°ΠΌ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ вынСсти постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚:

Нам остаСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π°Π³Π»ΡΠ½ΡƒΡ‚ΡŒ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Π²Π·ΡΡ‚ΡŒ ΠΎΡ‚Ρ‚ΡƒΠ΄Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅:

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ произвСдСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: f x Β· g ( x ) ‘ = f ‘ ( x ) Β· g ( x ) ‘ + f ( x ) Β· g ‘ ( x )

ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠ΅ΠΌ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Π΅Π³ΠΎ.

Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

РСшСниС

y ‘ = ( t g x Β· a r c sin x ) ‘ = ( t g x ) ‘ Β· a r c sin x + t g x Β· ( a r c sin x ) ‘

Π‘Π΅Ρ€Π΅ΠΌ Π½ΡƒΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ записываСм ΠΎΡ‚Π²Π΅Ρ‚:

РСшСниС

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ Π² случаС, ΠΊΠΎΠ³Π΄Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ для произвСдСния Ρ‚Ρ€Π΅Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. По Ρ‚ΠΎΠΉ ΠΆΠ΅ схСмС Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ Π·Π°Π΄Π°Ρ‡ΠΈ с произвСдСниями Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…, пяти ΠΈ большСго количСства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

РСшСниС

Π£ нас получится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

y ‘ = ( ( 1 + x ) Β· sin x Β· ln x ) ‘ = 1 + x Β· sin x ‘ Β· ln x + 1 + x Β· sin x Β· ln x ‘

1 + x Β· sin x ‘ = ( 1 + x ) ‘ Β· sin x + 1 + x Β· ( sin x ) ‘

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этого ΠΏΡ€Π°Π²ΠΈΠ»Π° ΠΈ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ подставим Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ:

y ‘ = 1 + x Β· sin x Β· ln x ‘ = 1 + x Β· sin x ‘ Β· ln x + ( 1 + x ) Β· sin x Β· ( ln x ) ‘ = = sin x + cos x + x Β· cos x Β· ln x + ( 1 + x ) Β· sin x x

ΠžΡ‚Π²Π΅Ρ‚: y ‘ = sin x + cos x + x Β· cos x Β· ln x + ( 1 + x ) Β· sin x x

Из этого ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠ½ΠΎΠ³Π΄Π° приходится ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ нСсколько ΠΏΡ€Π°Π²ΠΈΠ» диффСрСнцирования подряд для вычислСния Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚Π°ΠΊ слоТно, ΠΊΠ°ΠΊ каТСтся, Π³Π»Π°Π²Π½ΠΎΠ΅ – ΡΠΎΠ±Π»ΡŽΠ΄Π°Ρ‚ΡŒ Π½ΡƒΠΆΠ½ΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ дСйствий.

РСшСниС

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Π΄Ρ€ΠΎΠ±Π½ΠΎΠ³ΠΎ выраТСния с функциями)

Π‘Ρ€Π°Π·Ρƒ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ g ( x ) Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ Π² 0 Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… значСниях x ΠΈΠ· ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°. Богласно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

РСшСниС

ПослС этого Π½Π°ΠΌ потрСбуСтся ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ для суммы, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ вынСсСния постоянного мноТитСля Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ всСх ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€Π°Π²ΠΈΠ».

РСшСниС

Поясним, ΠΊΠ°ΠΊ это ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ.

ВычисляСм Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ слагаСмоС:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ собираСм всС, Ρ‡Ρ‚ΠΎ Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ:

Π’ Π·Π°Π΄Π°Ρ‡Π°Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅, использовались Ρ‚ΠΎΠ»ΡŒΠΊΠΎ основныС элСмСнтарныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ связаны ΠΌΠ΅ΠΆΠ΄Ρƒ собой Π·Π½Π°ΠΊΠ°ΠΌΠΈ простых арифмСтичСских дСйствий. Они нагляднСС всСго ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования. Однако Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΊ Π±ΠΎΠ»Π΅Π΅ слоТным функциям.

ПослС Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΠΌΡ‹ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ производная слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΌΡ‹ смоТСтС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ любой слоТности.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *