Что такое дисперсия теория вероятностей
Основы теории вероятностей. Дисперсия случайной величины.
Дисперсия случайной величины характеризует степень разброса случайной величины около ее математического ожидания, то есть её отклонения от математического ожидания.
Если случайная величина ξ имеет математическое ожидание Mξ, то дисперсией случайной величины ξ выражается так:
Эта универсальная формула отлично применима как для дискретных случайных величин, так и для непрерывных. Величина Mξ 2 больше для дискретных и непрерывных случайных величин соответственно вычисляется по формулам:


Для вычисления степени разброса значений случайной величины зачастую используют среднеквадратичное отклонение 

Свойства дисперсии случайной величины.
Верно и обратное утверждение: если 



где
Пример. Как найти математическое ожидание и дисперсию.
Предположим, случайная величина X имеет стандартное непрерывное равномерное распределение на [0,1], т.е. её плотность вероятности задана следующим равенством:
Из этого следует, что математическое ожидание квадрата случайной величины можно выразить таким образом:
и формула математического ожидания случайной величины выглядит так:
Следовательно, дисперсию случайной величины найдем по формуле:

Дисперсия (теория вероятности)
Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, т. е. её отклонения от математического ожидания. Обозначается D[X] в русской литературе и 



Содержание
Определение
Пусть 
Замечания
Свойства дисперсии
Пример
Пусть случайная величина 

См. также
Полезное
Смотреть что такое «Дисперсия (теория вероятности)» в других словарях:
Дисперсия случайной величины — У этого термина существуют и другие значения, см. Дисперсия. Дисперсия случайной величины мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается в русской литературе и (англ. variance)… … Википедия
Теория вероятностей — График плотности вероятности нормального распределения одной из важнейших функций, изучаемых в рамках теории вероятностей … Википедия
ТЕОРИЯ ВЕРОЯТНОСТЕЙ — математич. наука позволяющая по вероятностям одних событий случайных (см.) находить вероятности случайных событий, связанных к. л. образом с первыми. Современная Т.в. основана на аксиоматике (см. Метод аксиоматический) А. Н. Колмогорова. На… … Российская социологическая энциклопедия
Квантовая теория поля — Квантовая теория поля квантовая теория систем с бесконечным числом степеней свободы (полей физических (См. Поля физические)). К. т. п., возникшая как обобщение квантовой механики (См. Квантовая механика) в связи с проблемой описания… … Большая советская энциклопедия
Вероятностей теория — математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким либо образом с первыми. Утверждение о том, что какое либо событие наступает с Вероятностью,… … Большая советская энциклопедия
ВЕРОЯТНОСТЕЙ ТЕОРИЯ — математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных к. л. образом с первыми. Утверждение о том, что к. л. событие наступает с вероятностью, равной, напр., 1/2, еще не… … Математическая энциклопедия
ВЕРОЯТНОСТЕЙ ТЕОРИЯ — раздел математики, в к ром строят и изучают матем. модели случайных явлении. Случайность присуща в той или иной степени подавляющему большинству протекающих в природе процессов. Обычно она присутствует там, где существ. влияние на ход процесса… … Физическая энциклопедия
ВЕРОЯТНОСТЕЙ ТЕОРИЯ — занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о разумности ожидания наступления одних событий по сравнению с другими, хотя приписывание численных значений вероятностям событий часто бывает излишним… … Энциклопедия Кольера
ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… … Физическая энциклопедия
Дисперсия дискретной случайной величины.
Среднее квадратическое отклонение
Итак, продолжаем. В предыдущей статье мы выяснили, насколько полезно знать математическое ожидание, однако только этой характеристики ещё не достаточно для исследования случайной величины. Представим двух стрелков, которые стреляют по мишени. Один стреляет метко и попадает близко к центру, а другой… просто развлекается и даже не целится. Но что забавно, его средний результат будет точно таким же, как и у первого стрелка! Эту ситуацию условно иллюстрируют следующие случайные величины:
«Снайперское» математическое ожидание равно 

Таким образом, возникает потребность количественно оценить, насколько далеко рассеяны пули (значения случайной величины) относительно центра мишени (математического ожидания). Ну а рассеяние с латыни переводится не иначе, как дисперсия.
Посмотрим, как определяется эта числовая характеристика на одном из примеров 1-й части урока:
Там мы нашли неутешительное математическое ожидание 

Выясним, насколько далеко «разбросаны» выигрыши/проигрыши относительно среднего значения. Очевидно, что для этого нужно вычислить разности между значениями случайной величины и её математическим ожиданием:
–5 – (–0,5) = –4,5
2,5 – (–0,5) = 3
10 – (–0,5) = 10,5
Теперь вроде бы нужно просуммировать результаты, но этот путь не годится – по той причине, что колебания влево будут взаимоуничтожаться с колебаниями вправо. Так, например, у стрелка-«любителя» (пример выше) разности составят 

Чтобы обойти эту неприятность можно рассмотреть модули разностей, но по техническим причинам прижился подход, когда их возводят в квадрат. Решение удобнее оформить таблицей: 
И здесь напрашивается вычислить средневзвешенное значение квадратов отклонений. А это ЧТО такое? Это их математическое ожидание, которое и является мерилом рассеяния:

Вспоминаем, как находить матожидание. Перемножаем квадраты разностей на соответствующие вероятности (продолжение таблицы):

и суммируем результаты:
Не кажется ли вам, что на фоне выигрышей 
Иногда это значение называют стандартным отклонением.
В чём его смысл? Если мы отклонимся от математического ожидания 


Однако так сложилось, что при анализе рассеяния почти всегда оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:
Во-первых, очевидно то, что при увеличении ставок, дисперсия тоже возрастает. Так, например, если мы увеличим 
Второй, более интересный момент состоит в том, что дисперсия характеризует стиль игры. Мысленно зафиксируем игровые ставки на каком-то определённом уровне, и посмотрим, что здесь к чему:
Игра с низкой дисперсией – это осторожная игра. Игрок склонен выбирать самые надёжные схемы, и в ситуации неопределённости не ставит слишком большие деньги. Например, система «красное/чёрное» в рулетке (см. Пример 4 статьи Случайные величины).
Игра с высокой дисперсией. Её часто называют дисперсионной игрой. Это авантюрный или агрессивный стиль игры, где игрок выбирает «адреналиновые» схемы. Вспомним хотя бы «Мартингейл», в котором на кону оказываются суммы, на порядки превосходящие «тихую» игру предыдущего пункта.
То же самое происходит на Форексе, других биржах и так далее – примеров масса.
Причём, во всех случаях не важно – на копейки ли идёт игра или на тысячи долларов. На любом уровне есть свои низко- и высокодисперсионные игроки. Ну а за средний выигрыш, как мы помним, «отвечает» математическое ожидание.
Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:
Формула для нахождения дисперсии
Данная формула выводится непосредственно из определения дисперсии, и мы незамедлительно пускаем её в оборот. Скопирую сверху табличку с нашей игрой: 
и найденное матожидание 
Вычислим дисперсию вторым способом. Сначала найдём математическое ожидание 

В данном случае:
Таким образом, по формуле:
Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).
Осваиваем технику решения и оформления:
Дискретная случайная величина задана своим законом распределения:
Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.
Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла.
Можете представлять себе несколько лампочек с числами, которые загораются в дурдоме с определёнными вероятностями 🙂
Решение: Основные вычисления удобно свести в таблицу. Сначала в верхние две строки записываем исходные данные. Затем рассчитываем произведения 

Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: 
Дисперсию вычислим по формуле:
И, наконец, среднее квадратическое отклонение:

Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе:
вот здесь уже трудно ошибиться 🙂
Ответ:
Желающие могут ещё более упростить свою жизнь и воспользоваться моим калькулятором (демо), который не только моментально решит данную задачу, но и построит тематические графики (скоро дойдём). Программа доступна за символическую плaтy. Спасибо за поддержку проекта!
Пара заданий для самостоятельного решения:
Вычислить дисперсию случайной величины 
И аналогичный пример:
Дискретная случайная величина задана своим законом распределения:
Найти
Да, значения случайной величины бывают достаточно большими (пример из реальной работы), и здесь по возможности используйте Эксель. Как, кстати, и в Примере 7 – это быстрее, надёжнее и приятнее.
Решения и ответы внизу страницы.
В заключение 2-й части урока разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:
Дискретная случайная величина 






Найти 
Решение: начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:
и поскольку 

Осталось найти 


ОК, едем дальше. По формуле вычисления дисперсии:

или:
О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:
Десятичные дроби – это, конечно, полное безобразие; умножаем оба уравнения на 10:
и делим на 2:
Вот так-то лучше. Из 1-го уравнения выражаем:


Возводим в квадрат и проводим упрощения: 
Умножаем на 
В результате получено квадратное уравнение, находим его дискриминант:

и у нас получается два решения:
1) если 

2) если 

Условию 

и выполним проверку, а именно, найдём матожидание:
и дисперсию:
В результате получены исходные значения, что и требовалось проверить.
Ответ:
Следует отметить, что это технически трудное задание, и поэтому в нём следует проявлять повышенное внимание. Потренируйтесь самостоятельно:
Случайная величина 




Тут вычисления попроще.
Жду вас в третьей, заключительной части урока, где мы познакомимся с многоугольником и функцией распределения. Её лучше изучить как можно скорее!
Пример 7. Решение: вычислим математическое ожидание: 
Вычислим дисперсию по определению: 
Заполним расчётную таблицу: 
Таким образом:
Ответ:
Пример 8. Решение: случайная величина может принять только 5 значений, поэтому: 
Заполним расчётную таблицу: 
Математическое ожидание: 
Дисперсию вычислим по формуле: 
Среднее квадратическое отклонение:
Ответ:
Пример 10. Решение: т.к. случайная величина 

По определению математического ожидания: 
По формуле вычисления дисперсии: 
Составим и решим систему: 
Умножим оба уравнения на 5: 
Из первого уравнения выразим: 

Решим полученное квадратное уравнение: 
Условию 
Ответ:
Проверка:
Автор: Емелин Александр
(Переход на главную страницу)

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5












































