Что такое дисперсно упрочненные композиционные материалы
ДИСПЕРСНО-УПРОЧНЕННЫЕ КОМПОЗИТЫ
Структура дисперсно-упрочненного композиционного материала представляет собой матрицу, в которой равномерно распределены мелкодисперсные частицы второго компонента. Упрочнение таких материалов осуществляется за счет создания барьеров перемещению дислокаций, аналогично тому, как это происходит в металлических сплавах с дисперсионным твердением, например, в системе «Аl—Сu». Наиболее сильное торможение перемещению дислокаций достигается при использовании в качестве второй, упрочняющей фазы частиц химических соединений — карбидов, нитридов, боридов, оксидов, обладающих высокими значениями твердости, прочности, а также высокой химической устойчивостью.
Для эффективного торможения дислокаций суммарная поверхность дисперсных частиц должна быть максимальной, т. е. их размеры минимальными (но не менее 2÷10 нм, так как при меньших размерах частицы перерезаются движущимися дислокациями, а не задерживают их).
Наиболее распространенная технология получения дисперсно-упрочненного композита — порошковая металлургия. Основными технологическими процессами являются получение порошковых смесей, прессование порошков с последующим спеканием и пластическая деформация полученной массы. В процессе пластической деформации повышается плотность и уменьшается пористость композита.
В промышленности нашли применение композиты с алюминиевой, магниевой, титановой, никелевой, вольфрамовой и другими матрицами.
При цеховой температуре механические свойства САПов ниже, чем у алюминиевых сплавов. Их основное преимущество достигается при температурах свыше 300 °С, когда алюминиевые сплавы ра-зупрочняются. Так, при 500 °С предел прочности сплавов САП составляет 80÷120 МПа, тогда как у сплавов Д19, Д20, АК-4 не превышает 5 МПа.
Композиты на основе бериллияпредназначены для длительной работы при высоких температурах. В качестве упрочнителя бериллиевой матрицы используют оксид или карбид бериллия — ВеО, Ве2С. Наиболее эффективно сопротивление ползучести повышается для композитов системы Ве—Ве2С. Так, при температуре 650 °С 100-часовая прочность композита выше прочности чистого бериллия в 3 раза (40 и 14 МПа соответственно), а при температуре 730 °С — более, чем в 5 раз (25 и 4 МПа соответственно).
Композиты на основе магния.Незначительная растворимость кислорода в магнии дает возможность упрочнять его оксидами. Наибольший эффект достигается при введении около 1 % оксида, при этом предел прочности достигает 300 МПа, тогда как предел прочности магния составляет 180 МПа. Композиты на основе магния обладают низкой плотностью, высокой длительной прочностью и высоким сопротивлением ползучести. Наиболее перспективно применение композита в авиации для изготовления деталей, от которых требуется сочетание малой массы с повышенной прочностью.
Композиты на основе никеля и кобальтапредназначены для эксплуатации при высоких температурах — свыше 1000 °С. Упрочнение достигается за счет введения оксидов тория или гафния в количестве 2÷4%. Матрицы этих композитов могут состоять из чистых металлов или сплавов на их основе. Так, в качестве матрицы нашел применение нихром (80 % Ni, 20 % Сr), а также сплав кобальта с цирконием (2 %). Композиты на основе нихрома обладают более высокой прочностью по сравнению с чисто никелевым композитом при температурах до 600÷800 °С. Легирование цирконием кобальтовой матрицы приводит к повышению механических свойств во всем диапазоне температур, однако при этом заметно снижается пластичность материала. Основное применение композитов — авиационная и космическая техника. Пределы прочности некоторых композитов приведены в табл. 16.1.
Таблица 16.1. Предел прочности композитов на основе никеля и кобальта в зависимости от температуры
Дисперсно-упрочненные композиты
Процесс получения полуфабрикатов дисперсно-упрочненных композитов на основе металлической матрицы (ДКМ) включает следующие операции: приготовление порошковой смеси, формование, спекание, деформационная и термическая обработка.
Свойства и методы получения ДКМ на основе алюминия. Широкое применение в технике нашли алюминиевые ДКМ, упрочненные оксидом алюминия, что способствует существенному повышению жаропрочности и характеристик ползучести алюминия. Часто применяют три марки ДКМ Al – Al2O3, отличающиеся содержанием оксида. САП-1 (6-9 % Al2O3), САП-2 (9,1-13 % Al2O3) и САП-3 (13,1-17 % Al2O3). При увеличении содержания Al2O3 в ДКМ растут твердость и прочность, а пластичность, коэффициент термического расширения, тепло- электропроводность снижаются. САПы имеют высокую коррозионную стойкость, не подвержены межкристаллитной коррозии и коррозии под напряжением. Они отличаются высокой радиационной
стойкостью.
Для изготовления ДКМ используют тонкодисперсные алюминиевые порошки (пудру). Предварительно дегазированные порошки брикетируют на гидравлических прессах при температуре 833-873 К и давлении 300-600 МПа и подвергают деформированию. ДКМ Al – Al2O3, полученные холодным экструдированием смеси порошков, обладающих высокой износостойкостью. С увеличением содержания Al2O3 (до 30 %) предел текучести, предел прочности, относительное удлинение и вязкость ДКМ уменьшаются, а износостойкость растет.
Основной упрочняющей фазой в ДКМ Al – C служит карбид алюминия. Дисперсно-упрочненные композиты получают методами порошковой металлургии и литья. Износостойкие ДКМ Al – C получают также путем механического замешивания подогретого (873 К) порошка графита в расплаве алюминия. Для улучшения смачивания алюминием графит покрывают медью.
ДКМ на основе алюминия с карбидами (TiC, ZrC, NbC, WC, Cr3C2, Mo2C) (объемная доля 2-8 %) получают путем механического смешивания с последующим прессованием, спеканием, прокаткой и отжигом. Прочностные характеристики зависят от природы химической связи упрочняющей фазы.
ДКМ Al – AlN, Al – Si3N4 получают методом плазмохимического синтеза, а ДКМ Al – FeAl3 – методом механического легирования.
Свойства и методы получения ДКМ на основе никеля. Цель создания никелевых ДКМ является повышение жаропрочности и снижение высокотемпературной ползучести никеля и его сплавов. В качестве упрочняющей фазы используют оксиды, так как их стабильность в никеле при высоких температурах выше, чем других тугоплавких соединений. Имеются сведения об изготовлении ДКМ с дисперсными карбидами TiC, TaC. Наиболее широко для упрочнения никеля используют оксиды тория и гафния.
Никелевые ДКМ получают методами порошковой металлургии, а порошковые смеси для них готовят методами водородного восстановления в растворах и химического осаждения из растворов солей с последующим восстановлением. Шихту прессуют под давлением 400-600 МПА и спекают в водороде при температуре 1323-1373 К. Спеченные заготовки подвергают горячей экструзии или горячей прокатке, волочению, ротационной ковке, холодной прокатке.
В ДКМ с никелевохромной матрицей, содержащей алюминий, и в более сложнолегированных матрицах упрочнение дисперсными частицами сочетается с упрочнением интерметаллидными фазами, выделяющимися из твердого раствора при старении. Уровень их механических свойств очень высок.
ДКМ на основе никеля обладают более высокой жаропрочностью, чем матричный материал. Дополнительное повышение жаростойкости ДКМ может быть достигнуто путем нанесения хромоалюминиевых защитных покрытий.
Соединение листов из ДКМ в сложных композитах производится методами диффузионной сварки и высокотемпературной пайки.
Свойства и методы получения ДКМ на основе хрома. Обладая рядом таких ценных свойств, как высокая температура плавления (2158 К), низкая плотность (7,2×10 3 кг/м 3 ), высокий модуль упругости (300 ГПа) и повышенная жаростойкость, хром и его сплавы имеют весьма существенный недостаток, ограничивающий их применение в промышленности, низкотемпературную хрупкость, особенно в рекристаллизованном состоянии. Повышенная хрупкость обусловлена наличием в металле примесей внедрения (азот, углерод, кислород, водород и др.). Дисперсное упрочнение способствует повышению жаропрочности, длительной прочности и снижению температуры вязкохрупкого перехода хрома за счет рафинирующего действия на матрицу дисперсных частиц и более прочной релаксации напряжений под нагрузкой. Эффективными упрочнителями являются тугоплавкие оксиды, поскольку растворимость кислорода в хроме очень мала. Преимущественно используют оксиды магния и тория. Оксид магния взаимодействует с оксидом хрома с образованием шпинели MgCr2O4, активно поглощает азот, удаляя эти примеси из хромовой матрицы. Кроме того, для упрочнения хрома используют оксиды ZrO2, HfO2, La3O2, а также нитриды, карбиды, бориды титана, циркония, тантала и других тугоплавких металлов. При введении оксидов в хром достигается не столько повышение жаропрочности, сколько снижение порога хладноломкости. При легировании хрома активными нитридо-, карбидо- и борообразователями (Ti, Ta, Nb, Zr и др.) происходит выделение дисперсных частиц тугоплавких соединений. При этом существенно снижается сегрегация примесей внедрения на границах зерен.
Свойства и методы получения ДКМ на основе молибдена. При дисперсном упрочнении молибдена удается достичь значительного повышения жаропрочности и длительной прочности. В качестве упрочнителей используют карбиды, нитриды и оксиды, так как растворимость кислорода, азота и углерода в молибдене очень мала. Степень упрочнения от введения карбидов в молибдене возрастает в ряду TiC, NbC, ZrC, HfC.
Повышение температурных пределов применения ДКМ на основе Mo, достигается за счет введения стабильных дисперсных фаз (ZrC, TiC, TiN и др.) в сочетании с твердорастворным упрочнением. ДКМ получают методами дуговой или плазменно-дуговой плавки. Добавки упрочняющих оксидов (ZrO2, ThO2 и др.) вводят в молибден методами механического смешивания, химического осаждения и внутреннего окисления. Установлено, что дисперсные частицы ZrO2, введенные методом химического осаждения в активный порошок молибдена, оказывают значительное антирекристаллизационное влияние при спекании.
Свойства и методы получения ДКМ на основе вольфрама. Вольфрам представляет большой интерес для техники, как основа конструкционных материалов, работающих при температурах выше 2273 К. Дисперсное упрочнение может быть осуществлено карбидами, нитридами и оксидами. Присутствие дисперсных частиц стабилизирует структуру, повышает температуру начала рекристаллизации вольфрама и обеспечивает высокие механические свойства. Наиболее эффективно повышают прочностные свойства вольфрама дисперсные карбиды. Упрочнение карбидами применяют в сочетании с твердорастворным упрочнением за счет легирования рением, ниобием, танталом,
молибденом.
Широкое распространение получили вольфрамовые ДКМ с оксидами, в частности, с оксидами тория алюмо-кремнещелочными присадками. В связи с радиоактивностью тория, ведутся работы по его замене на оксиды гафния, циркония и редкоземельных элементов. Вольфрамовые ДКМ получают методами механического и химического смешивания. При введении оксидов в твердые растворы вольфрама с рением повышаются прочностные характеристики ДКМ при комнатной и умеренных температурах, и растет пластичность. Присутствие в вольфраме оксидов (ThO2, MgO, Al2O3) положительно влияет на его жаропрочность.
Свойства и методы получения ДКМ на основе серебра. Для упрочнения серебра используют оксиды кадмия, алюминия, меди, никеля, олова, индия, свинца, цинка, сурьмы, титана и др. Дисперсно-упрочненные композиты на основе серебра получают методами порошковой металлургии и избирательным внутренним окислением сплавов Ag. Взаимодействие компонентов ДКМ отсутствует вплоть до температуры диссоциации оксида. Оксидами кадмия упрочняют также псевдосплавы серебро-никель. Известны электоконтактные материалы с высокими износо- и жаростойкостью на основе серебра, упрочненные совместно оксидами кадмия, олова, индия, цинка. Получают их путем внутреннего окисления сложнолегированных сплавов серебра. Другой способ получения: несколько различных сплавов серебра размалывают, механически смешивают, прессуют, спекают и избирательно окисляют.
Области применения ДКМ. ДКМ на основе алюминия применяют в изделиях длительно работающих при температурах 573-773 К. Из САПов изготовляют противопожарные экраны самолетов, теплообменники для авиастроения и химической промышленности, крепеж. Высокая коррозионная стойкость и способность поглощать нейтроны позволили использовать САП для изготовления опорных элементов трубопроводов атомных реакторов. ДКМ Al-C используется для изготовления поршней двигателей внутреннего сгорания.
Никелевые ДКМ применяют для изготовления деталей двигателей, подверженных воздействию температур до 1573 К и невысоких напряжений. Такие условия работы характерны для деталей сопла, камер сгорания и форсажных камер авиационных двигателей.
Дисперсно-упрочненный нихром используют в производстве горячих газопроводов, теплозащитных панелей, высокотемпературных крепежных деталей. Дисперсно-упрочненные композиты на основе хрома перспективны для изготовления рабочих и сопловых лопаток газотурбинных двигателей, нагревателей и электропечей. Прочность печных нагревателей из хромовых ДКМ значительно превышает прочность селитовых нагревателей.
Вольфрамовые ДКМ, упрочненные оксидами, широко применяют в светотехнике, электротехнике и электронике. Из них производят спирали для мощных ламп накаливания. Торированный вольфрам используют для изготовления электродных газоразрядных ламп. Благодаря высоким эмиссионным свойствам, ДКМ используют в электронике в качестве эмиттера электронов.
Из ДКМ на основе серебра производят электрические контакты для низковольтной аппаратуры, обладающие высокими электро- и теплопроводностью, электроэрозионной и коррозионной стойкостью, малой склонностью к свариванию и низким контактным сопротивлением. Упрочненные оксидами фехрали (сплавы Fe-Cr-Al) используют в качестве нагревателей в электротехнической промышленности.
Медь эффективно упрочняется тугоплавкими оксидами (ThO2, BeO, Al2O3). Сочетание высокой жаропрочности и электропроводности открывает возможности для изготовления из медных ДКМ электроконтактов, обмоток роторов электродвигателей, трубчатых теплообменников.
ДКМ на основе титана с оксидами и карбидами служат для изготовления компрессорных дисков и других изделий, эксплуатируемых при 873-973 К.
ДКМ на основе свинца с оксидами применяют в электротехнике (пластины кислотных аккумуляторов, ванны электрохимического хромирования).
ДКМ на основе платины используют для изготовления термометров сопротивления, высокотемпературных термопар, нагревательных элементов, сосудов для получения стекловолокон и др. При использовании ДКМ увеличивается долговечность изделий, что позволяет получить существенный экономический и технический эффект.
Эвтектический композит (ЭКМ) – естественный материал, поскольку его структура формируется при направленной кристаллизации естественным путем, а не в результате искусственного введения арматуры в матрицу. Форма выделяющейся фазы – волокнистая или пластинчатая – зависит от объемной доли упрочнителя. При объемной доле упрочнителя (меньше 32 %) для ЭКМ характерна волокнистая структура, а при большей концентрации – пластинчатая. Поскольку прочность волокон выше прочности пластин, то волокнистое строение предпочтительнее пластинчатого.
Жаропрочные ЭКМ можно разделить на две группы: хрупкие и пластичные. Хрупкими, например, являются никелевые пластинчатые ЭКМ с объемной долей упрочнителя 33-35 %. Свойства хрупких ЭКМ, рассчитанные по закону аддитивности, удовлетворительно совпадают с результатами испытаний. К пластичным ЭКМ относятся: волокнистые композиты с невысокой долей упрочнителя (от 3 до 15 %), например, сплавы Ni, Co, упрочненные монокарбидами Ta, Nb, Hf. Высокие механические свойства волокнистых ЭКМ на основе Ni и Co, упрочненные карбидной фазой являются результатом создания композитной структуры, пластинчатая матрица которой армирована высокопрочными нитевидными кристаллами.
ЭКМ, в которых одна или обе фазы ферромагнитны, обладают высокими магнитными свойствами. В качестве магнитных материалов, используют ЭКМ, у которых коэрцитивная сила существенно увеличивается за счет создания ориентированной структуры с ферромагнитными волокнами, имеющими поперечный размер близкий к размеру доменов (
Таким образом, к преимуществам эвтектических композитов следует отнести простоту их изготовления (нет необходимости отдельного изготовления «усов», исчезают трудности, связанные с их использованием), высокую прочность связи на поверхности раздела и отсутствие окисных слоев (что обеспечивает высокую термическую устойчивость – возможность длительной работы при повышенных температурах). Однако для таких композитов характерно постоянство объемной доли эвтектической фазы, что делает невозможным воздействие на их свойства путем изменения состава. Кроме того, для реализации плоского фронта кристаллизации необходимо использовать высокочистые вещества, так как примеси этому препятствуют.
Дисперсно-упрочненные композиты
Процесс получения полуфабрикатов дисперсно-упрочненных композитов на основе металлической матрицы (ДКМ) включает следующие операции: приготовление порошковой смеси, формование, спекание, деформационная и термическая обработка.
Свойства и методы получения ДКМ на основе алюминия. Широкое применение в технике нашли алюминиевые ДКМ, упрочненные оксидом алюминия, что способствует существенному повышению жаропрочности и характеристик ползучести алюминия. Часто применяют три марки ДКМ Al – Al2O3, отличающиеся содержанием оксида. САП-1 (6-9 % Al2O3), САП-2 (9,1-13 % Al2O3) и САП-3 (13,1-17 % Al2O3). При увеличении содержания Al2O3 в ДКМ растут твердость и прочность, а пластичность, коэффициент термического расширения, тепло- электропроводность снижаются. САПы имеют высокую коррозионную стойкость, не подвержены межкристаллитной коррозии и коррозии под напряжением. Они отличаются высокой радиационной
стойкостью.
Для изготовления ДКМ используют тонкодисперсные алюминиевые порошки (пудру). Предварительно дегазированные порошки брикетируют на гидравлических прессах при температуре 833-873 К и давлении 300-600 МПа и подвергают деформированию. ДКМ Al – Al2O3, полученные холодным экструдированием смеси порошков, обладающих высокой износостойкостью. С увеличением содержания Al2O3 (до 30 %) предел текучести, предел прочности, относительное удлинение и вязкость ДКМ уменьшаются, а износостойкость растет.
Основной упрочняющей фазой в ДКМ Al – C служит карбид алюминия. Дисперсно-упрочненные композиты получают методами порошковой металлургии и литья. Износостойкие ДКМ Al – C получают также путем механического замешивания подогретого (873 К) порошка графита в расплаве алюминия. Для улучшения смачивания алюминием графит покрывают медью.
ДКМ на основе алюминия с карбидами (TiC, ZrC, NbC, WC, Cr3C2, Mo2C) (объемная доля 2-8 %) получают путем механического смешивания с последующим прессованием, спеканием, прокаткой и отжигом. Прочностные характеристики зависят от природы химической связи упрочняющей фазы.
ДКМ Al – AlN, Al – Si3N4 получают методом плазмохимического синтеза, а ДКМ Al – FeAl3 – методом механического легирования.
Свойства и методы получения ДКМ на основе никеля. Цель создания никелевых ДКМ является повышение жаропрочности и снижение высокотемпературной ползучести никеля и его сплавов. В качестве упрочняющей фазы используют оксиды, так как их стабильность в никеле при высоких температурах выше, чем других тугоплавких соединений. Имеются сведения об изготовлении ДКМ с дисперсными карбидами TiC, TaC. Наиболее широко для упрочнения никеля используют оксиды тория и гафния.
Никелевые ДКМ получают методами порошковой металлургии, а порошковые смеси для них готовят методами водородного восстановления в растворах и химического осаждения из растворов солей с последующим восстановлением. Шихту прессуют под давлением 400-600 МПА и спекают в водороде при температуре 1323-1373 К. Спеченные заготовки подвергают горячей экструзии или горячей прокатке, волочению, ротационной ковке, холодной прокатке.
В ДКМ с никелевохромной матрицей, содержащей алюминий, и в более сложнолегированных матрицах упрочнение дисперсными частицами сочетается с упрочнением интерметаллидными фазами, выделяющимися из твердого раствора при старении. Уровень их механических свойств очень высок.
ДКМ на основе никеля обладают более высокой жаропрочностью, чем матричный материал. Дополнительное повышение жаростойкости ДКМ может быть достигнуто путем нанесения хромоалюминиевых защитных покрытий.
Соединение листов из ДКМ в сложных композитах производится методами диффузионной сварки и высокотемпературной пайки.
Свойства и методы получения ДКМ на основе хрома. Обладая рядом таких ценных свойств, как высокая температура плавления (2158 К), низкая плотность (7,2×10 3 кг/м 3 ), высокий модуль упругости (300 ГПа) и повышенная жаростойкость, хром и его сплавы имеют весьма существенный недостаток, ограничивающий их применение в промышленности, низкотемпературную хрупкость, особенно в рекристаллизованном состоянии. Повышенная хрупкость обусловлена наличием в металле примесей внедрения (азот, углерод, кислород, водород и др.). Дисперсное упрочнение способствует повышению жаропрочности, длительной прочности и снижению температуры вязкохрупкого перехода хрома за счет рафинирующего действия на матрицу дисперсных частиц и более прочной релаксации напряжений под нагрузкой. Эффективными упрочнителями являются тугоплавкие оксиды, поскольку растворимость кислорода в хроме очень мала. Преимущественно используют оксиды магния и тория. Оксид магния взаимодействует с оксидом хрома с образованием шпинели MgCr2O4, активно поглощает азот, удаляя эти примеси из хромовой матрицы. Кроме того, для упрочнения хрома используют оксиды ZrO2, HfO2, La3O2, а также нитриды, карбиды, бориды титана, циркония, тантала и других тугоплавких металлов. При введении оксидов в хром достигается не столько повышение жаропрочности, сколько снижение порога хладноломкости. При легировании хрома активными нитридо-, карбидо- и борообразователями (Ti, Ta, Nb, Zr и др.) происходит выделение дисперсных частиц тугоплавких соединений. При этом существенно снижается сегрегация примесей внедрения на границах зерен.
Свойства и методы получения ДКМ на основе молибдена. При дисперсном упрочнении молибдена удается достичь значительного повышения жаропрочности и длительной прочности. В качестве упрочнителей используют карбиды, нитриды и оксиды, так как растворимость кислорода, азота и углерода в молибдене очень мала. Степень упрочнения от введения карбидов в молибдене возрастает в ряду TiC, NbC, ZrC, HfC.
Повышение температурных пределов применения ДКМ на основе Mo, достигается за счет введения стабильных дисперсных фаз (ZrC, TiC, TiN и др.) в сочетании с твердорастворным упрочнением. ДКМ получают методами дуговой или плазменно-дуговой плавки. Добавки упрочняющих оксидов (ZrO2, ThO2 и др.) вводят в молибден методами механического смешивания, химического осаждения и внутреннего окисления. Установлено, что дисперсные частицы ZrO2, введенные методом химического осаждения в активный порошок молибдена, оказывают значительное антирекристаллизационное влияние при спекании.
Свойства и методы получения ДКМ на основе вольфрама. Вольфрам представляет большой интерес для техники, как основа конструкционных материалов, работающих при температурах выше 2273 К. Дисперсное упрочнение может быть осуществлено карбидами, нитридами и оксидами. Присутствие дисперсных частиц стабилизирует структуру, повышает температуру начала рекристаллизации вольфрама и обеспечивает высокие механические свойства. Наиболее эффективно повышают прочностные свойства вольфрама дисперсные карбиды. Упрочнение карбидами применяют в сочетании с твердорастворным упрочнением за счет легирования рением, ниобием, танталом,
молибденом.
Широкое распространение получили вольфрамовые ДКМ с оксидами, в частности, с оксидами тория алюмо-кремнещелочными присадками. В связи с радиоактивностью тория, ведутся работы по его замене на оксиды гафния, циркония и редкоземельных элементов. Вольфрамовые ДКМ получают методами механического и химического смешивания. При введении оксидов в твердые растворы вольфрама с рением повышаются прочностные характеристики ДКМ при комнатной и умеренных температурах, и растет пластичность. Присутствие в вольфраме оксидов (ThO2, MgO, Al2O3) положительно влияет на его жаропрочность.
Свойства и методы получения ДКМ на основе серебра. Для упрочнения серебра используют оксиды кадмия, алюминия, меди, никеля, олова, индия, свинца, цинка, сурьмы, титана и др. Дисперсно-упрочненные композиты на основе серебра получают методами порошковой металлургии и избирательным внутренним окислением сплавов Ag. Взаимодействие компонентов ДКМ отсутствует вплоть до температуры диссоциации оксида. Оксидами кадмия упрочняют также псевдосплавы серебро-никель. Известны электоконтактные материалы с высокими износо- и жаростойкостью на основе серебра, упрочненные совместно оксидами кадмия, олова, индия, цинка. Получают их путем внутреннего окисления сложнолегированных сплавов серебра. Другой способ получения: несколько различных сплавов серебра размалывают, механически смешивают, прессуют, спекают и избирательно окисляют.
Области применения ДКМ. ДКМ на основе алюминия применяют в изделиях длительно работающих при температурах 573-773 К. Из САПов изготовляют противопожарные экраны самолетов, теплообменники для авиастроения и химической промышленности, крепеж. Высокая коррозионная стойкость и способность поглощать нейтроны позволили использовать САП для изготовления опорных элементов трубопроводов атомных реакторов. ДКМ Al-C используется для изготовления поршней двигателей внутреннего сгорания.
Никелевые ДКМ применяют для изготовления деталей двигателей, подверженных воздействию температур до 1573 К и невысоких напряжений. Такие условия работы характерны для деталей сопла, камер сгорания и форсажных камер авиационных двигателей.
Дисперсно-упрочненный нихром используют в производстве горячих газопроводов, теплозащитных панелей, высокотемпературных крепежных деталей. Дисперсно-упрочненные композиты на основе хрома перспективны для изготовления рабочих и сопловых лопаток газотурбинных двигателей, нагревателей и электропечей. Прочность печных нагревателей из хромовых ДКМ значительно превышает прочность селитовых нагревателей.
Вольфрамовые ДКМ, упрочненные оксидами, широко применяют в светотехнике, электротехнике и электронике. Из них производят спирали для мощных ламп накаливания. Торированный вольфрам используют для изготовления электродных газоразрядных ламп. Благодаря высоким эмиссионным свойствам, ДКМ используют в электронике в качестве эмиттера электронов.
Из ДКМ на основе серебра производят электрические контакты для низковольтной аппаратуры, обладающие высокими электро- и теплопроводностью, электроэрозионной и коррозионной стойкостью, малой склонностью к свариванию и низким контактным сопротивлением. Упрочненные оксидами фехрали (сплавы Fe-Cr-Al) используют в качестве нагревателей в электротехнической промышленности.
Медь эффективно упрочняется тугоплавкими оксидами (ThO2, BeO, Al2O3). Сочетание высокой жаропрочности и электропроводности открывает возможности для изготовления из медных ДКМ электроконтактов, обмоток роторов электродвигателей, трубчатых теплообменников.
ДКМ на основе титана с оксидами и карбидами служат для изготовления компрессорных дисков и других изделий, эксплуатируемых при 873-973 К.
ДКМ на основе свинца с оксидами применяют в электротехнике (пластины кислотных аккумуляторов, ванны электрохимического хромирования).
ДКМ на основе платины используют для изготовления термометров сопротивления, высокотемпературных термопар, нагревательных элементов, сосудов для получения стекловолокон и др. При использовании ДКМ увеличивается долговечность изделий, что позволяет получить существенный экономический и технический эффект.
Эвтектический композит (ЭКМ) – естественный материал, поскольку его структура формируется при направленной кристаллизации естественным путем, а не в результате искусственного введения арматуры в матрицу. Форма выделяющейся фазы – волокнистая или пластинчатая – зависит от объемной доли упрочнителя. При объемной доле упрочнителя (меньше 32 %) для ЭКМ характерна волокнистая структура, а при большей концентрации – пластинчатая. Поскольку прочность волокон выше прочности пластин, то волокнистое строение предпочтительнее пластинчатого.
Жаропрочные ЭКМ можно разделить на две группы: хрупкие и пластичные. Хрупкими, например, являются никелевые пластинчатые ЭКМ с объемной долей упрочнителя 33-35 %. Свойства хрупких ЭКМ, рассчитанные по закону аддитивности, удовлетворительно совпадают с результатами испытаний. К пластичным ЭКМ относятся: волокнистые композиты с невысокой долей упрочнителя (от 3 до 15 %), например, сплавы Ni, Co, упрочненные монокарбидами Ta, Nb, Hf. Высокие механические свойства волокнистых ЭКМ на основе Ni и Co, упрочненные карбидной фазой являются результатом создания композитной структуры, пластинчатая матрица которой армирована высокопрочными нитевидными кристаллами.
ЭКМ, в которых одна или обе фазы ферромагнитны, обладают высокими магнитными свойствами. В качестве магнитных материалов, используют ЭКМ, у которых коэрцитивная сила существенно увеличивается за счет создания ориентированной структуры с ферромагнитными волокнами, имеющими поперечный размер близкий к размеру доменов (
Таким образом, к преимуществам эвтектических композитов следует отнести простоту их изготовления (нет необходимости отдельного изготовления «усов», исчезают трудности, связанные с их использованием), высокую прочность связи на поверхности раздела и отсутствие окисных слоев (что обеспечивает высокую термическую устойчивость – возможность длительной работы при повышенных температурах). Однако для таких композитов характерно постоянство объемной доли эвтектической фазы, что делает невозможным воздействие на их свойства путем изменения состава. Кроме того, для реализации плоского фронта кристаллизации необходимо использовать высокочистые вещества, так как примеси этому препятствуют.
Контрольные вопросы №14
1. Какие материалы называются композиционными?
2. Из каких фаз состоит композиционный материал?
3. Что такое наполнитель?
4. Какие вещества могут выступать в роли матрицы?
5. Каковы свойства и области применения композиционных материалов на основе металлической матрицы?
6. Каковы свойства и области применения дисперсно-упрочненные композитов?
7. Какие материалы относятся к эвтектическим композитам?