Что такое двухкартинный чертеж
Комплексный чертеж в начертательной геометрии с примерами
Рис. 3.1. Плоскости проекций:
x 12 = Π1
Направление осей x, y, zв первом октанте считается положительным. Знаки осей, продолженных за начало координат, считают отрицательными.
Рис. 3.2. Проецирование точки на три плоскости проекций
Чертеж трех совмещенных плоскостей проекций называется трехкартинным комплексным чертежом. Метод образования комплексного чертежа называют методом Монжа, в честь французского ученого Гаспара Монжа, жившего в XIX веке, первым предложившего использовать совмещенные чертежи.
Для решения задач в начертательной геометрии часто используются чертежи на двух совмещенных плоскостях проекций, которые называются двухкартинными комплексными чертежами (рис. 3.4).
Рис. 3.4. Двухкартинный комплексный чертеж точек, занимающих различное положение относительно плоскостей проекций
Основные свойства комплексного чертежа
Оси проекций фиксируют положение плоскостей проекций. Практически гораздо важнее установить взаимное расположение изображаемых объектов и их элементов, нежели расстояния до плоскостей проекций. На рис. 3.5,а представлен
Рис. 3.5. Двухкартинные комплексные чертежи точки A:
На технических чертежах оси не проводят, предполагая, что проецирование ведется ортогонально на три взаимно перпендикулярные плоскости проекций.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Комплексный двухкартинный чертеж точки.
Пространственная модель плоскостей проекций с заданными на них горизонтальной и фронтальной проекциями А1 и А2 точки А (рис. 2.2) хотя и определяет положение точки А в пространстве, но неудобна в использовании. Для того, чтобы превратить пространственную систему плоскостей проекций в плоскую фигуру, совмещаем плоскости проекций. При этом плоскость П1, вращаясь вокруг оси x, опускается вниз до совмещения с плоскостью П2. На рис. 2.3 изображены совмещенные плоскости проекций
и проекции точек на них.
Поле чертежа представляет собой проекции совмещенных плоскостей проекций, а весь чертеж является моделью трехмерного пространства.
Вместе с проекциями А1, А2 точки А и прямой, связывающей эти проекции, рис. 2.3 и рис. 2.4 каждый представляют собой двухкартинный комплексный чертеж точки (эпюр точки).
Впервые описал и обосновал комплексный чертеж точки, применяя совмещение плоскостей проекций, известный французский ученый Гаспар Монж, который жил и творил во времена Великой Французской революции.
Труд «Начертательная геометрия» был написан Монжем в 1775 году. В те времена метод Монжа было военной тайной, так как этот метод давал большие преимущества французской промышленности. Монжу разрешили опубликовать свой труд только в 1795 году, через 20 лет.
Метод изображения с помощью совмещения плоскостей проекций вошел в историю техники как метод Монжа.
Перпендикуляр к оси эпюра, связывающий проекции А1 и А2, называется линией проекционной связи.
Комплексный чертеж точки вполне определяет ее положение в пространстве.
2.1.2. Замена плоскостей проекций.Плоскостей, перпендикулярных к плоскости П1, кроме плоскости П2, можно провести множество, и точно также к плоскости П2 можно провести множество перпендикулярных плоскостей.
При замене одной из плоскостей проекций, как видно из рис. 2.5, имеется два инварианта (величины, остающиеся постоянными при преобразованиях):
1) проекция точки на незаменённую плоскость проекций. В данном случае это точка А1;
2) расстояние точки до незаменённой плоскости проекций. В данном случае это zА.
На рис. 2.6 показано построение проекции точки А4 по данным А1 и А2 и имеющемуся направлению новой оси проекции x14 при замене П2 на П4. На этом рисунке даны старая и новая оси проекций. Около каждой оси отмечены плоскости проекций, пересечением которых они являются.
На рис. 2.7 показано преобразование чертежа, при котором заменена плоскость П1 на П5. Здесь инвариантами являются проекция А2 и расстояние до незамененной плоскости П2. Построения понятны из чертежа. Очевидно, что А25А5=yА=А1А12.
Если необходимо заменить обе плоскости проекций, то преобразование нужно выполнять последовательно: сначала заменить одну плоскость проекций, а потом вторую.
На рис. 2.8 показано преобразование, в котором система П1—П2 заменена на систему П5—П6. Сначала заменена плоскость П1 на П5, а после этого П2 на П6.
2.1.3. Комплексный трехкартинный чертеж точки. Оси проекций z и y (рис. 2.1) образуют плоскость, перпендикулярную к оси x и к плоскостям П1 и П2. Обозначим эту плоскость П3 и назовем ее профильной плоскостью проекций.
Построение профильной проекции точки. Профильную проекцию А3 точки А на плоскость П3 найдем, заменив П1 на П3 (рис. 2.9).
Новая ось проекций должна быть названа x23, но, учитывая традиции в изучении начертательной геометрии и то, что новая ось совпадает с осью z, мы вместо x23 напишем z23.
На рис. 2.10 и рис. 2.11 показаны практические приемы построения профильной проекции точки. Из точки А2 в обоих случаях проводится линия связи, параллельная горизонтальной оси эпюра. Вдоль этой линии от точки А23 откладывается отрезок, равный yА=А1А12. На рис. 2.10 эта операция производится с помощью дуги окружности, на рис. 2.11 с помощью отражения от прямой, проведенной под углом 45 0 к горизонтальной оси чертежа. Порядок построения показан стрелками.
Так как данная система плоскостей проекций совпадает с прямоугольной системой координат, то полученный параллелепипед можно назвать параллелепипедом координат.
Совмещение плоскостей проекций осуществляем как и для случая построения комплексного двухкартинного чертежа точки. Плоскость П1 при этом вращается вокруг оси x12 до совмещения с плоскостью П2, и горизонтальная проекция оси у1 опускается вниз (рис. 2.13). Плоскость П3 вращается вокруг оси z23 вправо до совмещения с плоскостью П2. При этом оси х12 и z23 остаются на месте. Профильная проекция оси у3 поворачивается вместе с плоскостью П3 вправо и встает на одну линию с осью х12.
На рис. 2.14 показан комплексный трехкартинный чертеж (эпюр) точки А. Также как и для комплексного двухкартинного чертежа точки в данном случае имеем:
1) горизонтальная и фронтальная проекции точки Алежат на одной прямой, перпендикулярной к осих12, т.е. А1А2 х12;
2) фронтальная и профильная проекции точки Алежат на одной прямой, перпендикулярной к осиz23, т.е. А2А3 z23. Доказательство этого положения аналогично приведенному ранее для комплексного двухкартинного чертежа точки, но только по отношению к оси z23.
Проекции точек, лежащих на плоскостях проекций. Проекции точки, лежащей на плоскости, можно получить, приравнивая нулю соответствующую координату, так как координата – отрезок, выражающий расстояние от точки до плоскости проекции (рис.2.15).
|
Поэтому, если zА=0, то А П1 (рис. 2.15, а). При уА=0 А
П2 (рис. 2.15, б) и, когда хА=0, А
П3 (рис. 2.15, в).
Проекции точек, лежащих на осях проекций. На рис. 2.16 рассмотрены случаи, когда точка А лежит на осях проекций: А x (рис. 2.16, а); А
y (рис. 2.16, б); А
z(рис. 2.16, в).
Построение проекций точек по координатам. Последовательность построения проекций точки А (xA, yA, zA) следующая (рис. 2.17):
1) От точки О вдоль оси х12 откладываем отрезок длиной xA и отмечаем точку А12.
2) Через точку А12 проводим линию проекционной связи перпендикулярно оси х12.
3) Вниз на линии проекционной связи от точки А12 откладываем отрезок длиной yA и получаем горизонтальную проекцию А1.
4) Вверх на линии проекционной связи от точки А12 откладываем отрезок длиной zA и получаем фронтальную проекцию А2.
5) Строим профильную проекцию А3, для чего из точки А2 проводим линию проек-ионной связи перпендикулярно оси z23 и от полученной точки А23 откладываем отрезок длиной yA.
Образование двух- и трёхкартинного комплексного чертежа
Наиболее употребительным в практике является метод комплексного чертежа в ортогональных проекциях. Комплексным чертежом называется чертёж, состоящий из нескольких связанных между собой проекций изображаемой фигуры. Метод комплексного чертежа в ортогональных проекциях называется такжеметодом Монжа.
Этот метод прост в построении и даёт большую точность при графическом решении задач. Он обеспечивает точное определение изображённой фигуры по чертежу. Недостатком метода является малая наглядность изображений.
Комплексный чертёж из двух проекций называется также двухкартинным чертежом.
Рассмотрим неподвижную систему двух взаимно перпендикулярных плоскостей П1 и П2 в соответствии с рисунком 1.2.6. Плоскость П1, расположенная горизонтально, называется горизонтальной плоскостью проекций. Плоскость П2, перпендикулярная к П1, занимает вертикальное положение и расположена перед наблюдателем. Эту плоскость называют фронтальной плоскостью проекций. На обе эти плоскости будем проецировать ортогонально точки пространства.
Плоскость, перпендикулярную к плоскости проекций, называют проецирующей плоскостью (плоскость, перпендикулярная к плоскости П1, называется горизонтально проецирующей плоскостью, а плоскость, перпендикулярная к плоскости П2, – фронтально проецирующей плоскостью).
Плоскость АА1А2 проходит через прямую АА1, перпендикулярную к плоскости П1, в силу чего она перпендикулярна к плоскости П1. Аналогично плоскость АА1А2 перпендикулярна плоскости П2. Следовательно, дважды проецирующая плоскость АА1А2 перпендикулярна к оси проекций X.
Рисунок 1.2.6 – Ортогональное проецирование точки
Тогда каждая пара точек А1 и А2, лежащих на этих перпендикулярах, определит в пространстве единственную точку А. Действительно, две пересекающиеся прямые А12А1 и А12А2 определяют плоскость А1А12А2, перпендикулярную к оси проекций х (так как А12А1^х и А12А2^х). Но плоскость, перпендикулярная к линии х пересечения двух плоскостей П1 и П2, перпендикулярна к каждой из этих плоскостей, т.е. плоскость А1А12А2 является проецирующей по отношению к обеим плоскостям проекций. Следовательно, перпендикуляры, восставленные в точках А1 и А2 соответственно к плоскостям П1 и П2, лежат в одной плоскости (в плоскости А1А12А2). Точка А их пересечения и является искомой точкой пространства, определяемой данной парой точек Итак, каждой точке А соответствует пара её проекций А1 и А2, лежащих вместе с данной точкой А в одной плоскости, перпендикулярной к обеим плоскостям проекций П1 и П2, а следовательно, и к линии х их пересечения; обратно, любые две точки А1ÎП1 и А2ÎП2, лежащие в одной плоскости, перпендикулярной к оси х, определяют в пространстве единственную точку А.
Расстояние А1А точки А от горизонтальной плоскости проекций называется высотойточки А, а её расстояние А2А от фронтальной плоскости проекций – глубиной точки А.
Для получения плоского чертежа совмещаем плоскость проекций П1 с плоскостью П2 путем вращения плоскости П1 вокруг оси X в направлении, указанном на рисунке 1.2.6 стрелками, так, чтобы передняя полуплоскость П1 совместилась с нижней полуплоскостью П2. В результате получим комплексный чертёжточки А (рисунок 1.2.7), состоящий из двух проекций А1 и А2 точки А. Обе проекции А1 и А2 лежат на одном перпендикуляре к оси проекций х, которую как прямую, принадлежащую одновременно обеим плоскостям проекций П1 и П2, будем обозначать на комплексном чертеже х12. Два перпендикуляра А12А1 и А12А2 к оси х12 имеют общую точку А12. Прямая А1А2, соединяющая две проекции точки на комплексном чертеже, называется линией связи. Линия связи двух проекций точки перпендикулярна к оси проекций.
|
ПРИМЕЧАНИЕ:контуры плоскостей проекций на комплексном чертеже не показывают.
Рисунок 1.2.7 – Комплексный чертёж точки
Плоскости проекций разбивают всё пространство на четыре части, называемые квадрантами или четвертями. Принято нумеровать квадранты в порядке, указанном на рисунке 1.1.8, и называть их I, П, Ш, IV квадрантами.
Рисунок 1.2.8 – Квадранты пространства
Если точка лежит в I квадранте, то её горизонтальная проекция А1, будет принадлежать передней полуплоскости П1, а фронтальная проекция А2 – верхней полуплоскости П2. При совмещении плоскостей проекций горизонтальная проекция А1 точки А, лежащей в I квадранте, окажется расположенной ниже оси x12 в соответствии с рисунком 1.2.9.
|
В зависимости от положения натуральных (проецируемых) точек в различных квадрантах пространства будем иметь соответствующее расположение их проекций на комплексном чертеже в соответствии с рисунком 1.2.9, так же как и обратно: по расположению проекций можно судить о том, в каком квадранте лежит натуральная точка.
Рисунок 1.2.9 – Комплексный чертёж точек, расположенных в разных квадрантах
Двухкартинный чертёж является метрически определённым чертежом. Однако, в силу трёхмерности пространственной фигуры её комплексный чертёж становится более ясным, когда, помимо двух основных проекций, дана ещё одна проекция на третью плоскость. В качестве такой плоскости проекций чаще всего применяют профильную плоскость проекций П3 (рис. 1.2.10).
П3^х, поэтому П3^П1 и П3^П2. Три плоскости проекций (П1, П2, П3) образуют в пространстве прямоугольный трёхгранник, т.е. систему трёх взаимно перпендикулярных плоскостей. Ребра трёхгранника обозначим через х, y, z.
|
Пусть А – некоторая точка пространства. Для определения положения точки А относительно системы плоскостей (П1, П2, П3) опустим из точки А перпендикуляры на плоскости проекций: AAi^Пi (i=l, 2, 3). Основания этих пер-пендикуляров (точки А1, А2, А3) и являются соответственногоризонтальной, фронтальной и профильной проекциями точки А в системе плоскостей проекций (П1, П2, П3). Проецирующие плоскости AA1A2, AA1A3 и АА2А3 перпендикулярны соответственно к осям х, у, z. Обозначим точки пересечения этих плоскостей с осями через А12, А13, А23. Как прямые A1A12 и A12A2 перпендикулярны к оси x, так и две другие пары прямых A1A13, A13A3 и А2А23, А23А3 должны быть перпендикулярны соответственно к осям y и z. Расстояние точки А от профильной плоскости проекций П3 называется широтойточки А.
Рисунок 1.2.10 – Трёхкартинный чертёж точки
При построении плоского чертежа плоскость П2 считается неподвижной, а плоскости П1 и П3 совмещаются с ней путём вращения соответственно вокруг осей х и z в направлении, в соответствии с рисунком 1.2.10. После совмещения плоскости П1 с фронтальной плоскостью П2 отрезки А1А12 ^x12 и А12А2^x12 окажутся расположенными на одной прямой. Аналогично после совмещения плоскости П3 с плоскостью П2 отрезки А2А23^z23 и А23А3^z23 расположатся на линии связи А2А3^z23.
|
Рисунок 1.2.11 – Трёхпроекционный комплексный чертёж точки
В результате указанного совмещения плоскостей проекций получаем комплексный чертёж точки А в трёх ортогональных проекциях. При этом линии связи должны быть перпендикулярны к осям А1А2^x12, А2А3^z23, а отрезки А12А1 и А23А3 равны, так как А12А1=А23А3=А2А (рисунок 1.1.11) есть глубина точки А.
Рассмотрим квадрат А13O123А31А0. Диагональ этого квадрата является биссектрисой угла (Х12Z23). Следовательно, линия связи, соединяющая проекции А1 и А2, представляет собой ломаную линию с вершиной на биссектрисе К123 угла (X12Z23), состоящую из двух звеньев (горизонтального и вертикального). Часть этой ломаной заменяют иногда дугой окружности.
Таким образом, линии связи устанавливают на трёхкартинном чертеже следующим образом: А1А2 – вертикальная линия связи; А2А3 – горизонтальная линия связи; А1А3 – горизонтально-вертикальная линия связи; биссектриса К123 – геометрическое место вершин ломаных линий связи в соответствии с рисунком 1.2.12.
Рисунок 1.2.12 – Линии связи на проекционном чертеже
Прямая К123 определяется заданием трёх проекций какой-либо точки, например, точки А (А1А2А3), и является постоянной прямой комплексного чертежа.
|
Рассмотрим трёхгранник, образованный системой плоскостей проекций (П1,П2,П3). На осях x, y, z установим единицу измерения е. За начало отсчёта примем точку О пересечения трёх плоскостей проекций (вершину трёхгранника). Положительное направление на каждой оси установим, как показано на рисунке 1.2.13. Тогда трёхгранник Оxyz можно рассматривать как прямоугольную декартову систему координат с координатными осями: Ох – ось абсцисс, Оy – ось ординат, Оz – ось аппликат с координатными плоскостями хОyºП1, хОzºП2, yОzºП3..
Рисунок 1.2.13 – Прямоугольная система координат в пространстве
Точку А(xA, yA, zA) по данным координатам хА,,yA,zA строят следующим образом: пользуясь единицей длины е, строим отрезок АА12, затем отрезок А12А1, параллельный оси у, и отрезок А1А, параллельный оси z. В результате получаем точку А(хА, уА, zА).
|
На чертежах, применяющихся в технике, оси проекций обычно не показывают. Это означает, что плоскости проекций могут перемещаться параллельно самим себе. Однако, и при отсутствии на чертеже осей всегда можно определить по данным двум проекциям точки третью её проекцию, если на чертеже имеются три проекции хотя бы одной точки. Это достигается при помощи постоянной прямой k чертежа, являющейся биссектрисой угла, образованного ломаной линией связи в соответствии с рисунком 1.2.14. Например, известно расположение трёх проекций точки А. Это позволяет определить постоянную k123 как биссектрису угла А1А0А3. В результате линии связи становятся вполне определёнными и по каждым двум проекциям точки может быть построена третья её проекция. На рисунке 1.2.14 такое построение выполнено для точки В.
Рисунок 1.2.14 – Безосный комплексный чертёж точки