Что такое дырочная проводимость
Электронно-дырочная проводимость полупроводников
Электронно-дырочная проводимость полупроводников и влияние примесей на их проводимость
Полупроводники – это большая группа веществ с электронной проводимостью, удельное сопротивление которых при нормальной температуре изменяется в пределах от 10 –6 до 10 +8 Ом·м.
Электропроводность полупроводников в большой степени зависит от внешних энергетических воздействий, а также от различных примесей, иногда в ничтожных количествах присутствующих в теле собственного полупроводника.
Использующиеся в практике полупроводники могут быть подразделены на простые полупроводники (их основной состав образован атомами одного химического элемента) и сложные полупроводниковые композиции, основной состав которых образован атомами двух или большего числа химических элементов.
В зависимости от влияния примесей на проводимость различают собственные и примесные полупроводники.
Собственный полупроводник – полупроводник не содержащий примесей, влияющих на его электропроводность.
Для большинства полупроводниковых приборов используются примесные полупроводники. Примесями в простых полупроводниках служат чужеродные атомы.
Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях – примесями внедрения.
Обычно в качестве полупроводниковых материалов в электронике используют германий (Ge) и кремний (Si) — элементы четвертой группы периодической системы элементов. Они имеют кристаллическую структуру в виде объемно-центрированного тетраэдра, в котором каждый атом связан с четырьмя соседними атомами парноэлектронными (ковалентными) связями.
Рис. 1 Плоские модели кристаллических решеток полупроводников: идеального (а), с донорной примесью (б), с акцепторной примесью (в)
На рис. 1, а показана плоская модель кристаллической решетки идеального германия и кремния. Ковалентные связи изображаются двойными линиями, символизирующими два валентных электрона, вращающихся вокруг соответствующей пары атомов и образующих ковалентную связь.
Если в такую структуру ввести пятивалентную примесь, например мышьяк (As), то, внедрившись в узел кристаллической решетки (рис. 1, б), примесный атом становится донором. Четыре валентных электрона примеси образуют ковалентные связи с соседними атомами, а пятый, получив добавочную энергию, переходит с донорного уровня в зону проводимости и, таким образом, легко теряет связь со своим атомом, в результате чего может перемещаться под действием внешнего электрического поля. Примесный атом при этом становится положительным ионом.
Атом примеси имеет больше валентных электронов, чем атом кристаллической решетки. Полупроводник с такой примесью имеет концентрацию электронов большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником n-типа, а примеси, поставляющие электроны в зону проводимости, – донорами.
Если в четырехвалентный собственный полупроводник ввести трехвалентную примесь, например индий (In), то примесный атом становится акцептором (рис. 1, в). Для образования ковалентной связи примесному атому не хватает одного электрона, т. е. имеется свободный акцепторный уровень, который может быть заполнен электроном валентной зоны, в которой после этого образуется дырка. В свою очередь эта новая дырка может быть заполнена следующим электроном и т. д. Таким образом, происходит как бы движение дырки в полупроводнике. Примесный атом при этом превращается в отрицательный ион.
Атом примеси имеет меньше валентных электронов, чем атом кристаллической решетки. Полупроводник с такой примесью имеет концентрацию дырок большую, чем концентрация электронов, перешедших из валентной зоны в зону проводимости, и его называют полупроводником p-типа, а примеси, захватывающие электроны из валентной зоны полупроводника, – акцепторами.
Вопрос. Полупроводники. Электронная и дырочная проводимость полупроводников. Собственная и примесная проводимость.
Полупроводник — это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам. Однако, если в полупроводник, например, в кремний, ввести несколько атомов сурьмы, имеющей «избыток» электронов, то в этом случае свободные электроны сурьмы помогут кремнию переносить отрицательный заряд. При замене нескольких атомов полупроводника индием, который легко присоединяет к себе дополнительные электроны, в полупроводнике образуются не занятые электронами «свободные места», или, как говорят физики, «дырки»; которые переносят положительный заряд. Такие свойства полупроводников привели к их широкому использованию в транзисторах — устройствах для усиления тока, его блокирования или пропускания только в одном направлении. В типичном NPN транзисторе, слой полупроводника с положительной (Р) проводимостью (основание), расположен между двумя слоями полупроводника с отрицательной (N) проводимостью (эмиттером и коллектором). Когда слабый сигнал, например, от интеркома (аппарата селекторной связи), проходит через основание NPN транзистора, эмиссия электронов этот сигнал усиливает.1 Строение полупроводников Полупроводники N-типа содержат избыточное количество электронов, переносящих отрицательный заряд. Полупроводники Р-типа испытывают нехватку электронов, но зато имеют избыток дырок (вакантных мест для электронов), которые переносят положительный заряд. Отличительные признаки полупроводников В отличие от проводников, имеющих много свободных электронов, и изоляторов, практически их не имеющих, полупроводники содержат небольшое количество свободных электронов и так называемые дырки (белый кружочек) — вакантные места, оставленные свободными электронами. И дырки и электроны проводят электрический ток. NPN транзистор
Электронная проводимость
При нагревании кремния ему будет сообщаться дополнительная энергия. Кинетическая энергия частиц увеличивается и некоторые ковалентные связи разрываются. Тем самым образуются свободные электроны.
В электрическом поле эти электроны перемещаются между узлами кристаллической решетки. При этом в кремнии будет создаваться электрический ток.
Так как основными носителями заряда являются свободные электроны, такой тип проводимости называют – электронной проводимостью. Количество свободных электронов зависит от температуры. Чем сильнее мы будем нагревать кремний, тем больше ковалентных связей будет разрываться, а следовательно, будет появляться больше свободных электронов. Это приводит к уменьшению сопротивления. И кремний становится проводником.
Дырочная проводимость
Когда происходит разрыв ковалентной связи, на месте вырвавшегося электрона, образуется вакантное место, которое может занять другой электрон. Это место называется дыркой. В дырке имеется избыточный положительный заряд.
Положение дырки в кристалле постоянно меняется, любой электрон может занять это положение, а дырка при этом переместится туда, откуда перескочил электрон. Если электрического поля нет, то движение дырок беспорядочное, и поэтому тока не возникает.
При его наличии, возникает упорядоченность перемещения дырок, и помимо тока, который создается свободными электронами, появляется еще ток, который создается дырками. Дырки будут двигаться в противоположном движению электронов направлении.
Таким образом, в полупроводниках проводимость является электронно-дырочной. Ток создается как с помощью электронов, так и с помощью дырок. Такой тип проводимости еще называется собственной проводимостью, так как участвуют элементы только одного атома.
онцентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.
При наличии примесей электропроводимость полупроводников сильно изменяется.
Примесной проводимостью называется проводимость полупроводников при наличии примесей.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Что такое дырочная проводимость
К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.
Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)
Зонная модель электронно-дырочной проводимости полупроводников
При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны ЕV промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Еg 5 раз.
Небольшое добавление примеси к полупроводнику называется легированием.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла. Проводимость полупроводников при наличии примесей называется примесной проводимостью.
Различают два типа примесной проводимости – электронную и дырочную проводимости. Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As) (рис. 9.5).
Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним. Он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.
Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорской примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз.
Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника. Такая проводимость, обусловленная свободными электронами, называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.
Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы, например, атомы индия (рис. 9.5)
На рисунке 6 показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.
Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.
Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np>> nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.
Электронно-дырочный переход. Диоды и транзисторы
В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.
В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n–p-переход) – это область контакта двух полупроводников с разными типами проводимости.
На границе полупроводников (рис. 9.7) образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.
Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.
Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами. Транзисторы бывают двух типов: p–n–p-транзисторы и n–p–n-транзисторы. В транзисторе n–p–n-типа основная германиевая пластинка обладает проводимостью p-типа, а созданные на ней две области – проводимостью n-типа (рис.9.9).
В транзисторе p–n–p – типа всё наоборот. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э).
Электрический ток в полупроводниках
Главное яркое отличие полупроводников от металлов заключается в отрицательном температурном коэффициенте сопротивления: чем выше температура полупроводника — тем ниже его электрическое сопротивление. У металлов наоборот: чем выше температура — тем выше сопротивление. Если полупроводник охладить до абсолютного нуля — он станет диэлектриком.
Температура выше — сопротивление ниже
Такая зависимость проводимости полупроводников от температуры свидетельствует о том, что концентрация свободных носителей заряда у полупроводников не постоянна, и увеличивается вместе с температурой. Механизм прохождения электрического тока через полупроводник нельзя свести к модели газа свободных электронов как в металлах. Чтобы понять этот механизм, можно для примера рассмотреть его на кристалле германия.
В обычном состоянии атомы германия содержат на своей внешней оболочке четыре валентных электрона — четыре электрона, которые слабо связаны с ядром. При этом каждый атом в кристаллической решетке германия окружен четырьмя соседними атомами. И связь здесь ковалентная, это значит что она образуется парами валентных электронов.
Получается, что каждый из валентных электронов принадлежит одновременно двум атомам, и связи валентных электронов внутри германия с его атомами сильнее нежели в металлах. Вот почему при комнатной температуре полупроводники на несколько порядков хуже проводят ток по сравнению с металлами. А при абсолютном нуле все валентные электроны германия были бы заняты в связях и свободных электронов для обеспечения тока не осталось бы.
Эту дырку может легко занять валентный электрон из соседней пары, тогда дырка как-бы сместится на место у соседнего атома. При определенной температуре в кристалле образуется некоторое количество так называемых электронно-дырочных пар.
Одновременно идет процесс рекомбинации электронов с дырками — дырка, встречаясь со свободным электроном, восстанавливает ковалентную связь между атомами в кристалле германия. Такие пары, состоящие из электрона и дырки, могут возникать в полупроводнике не только от температурного действия, но и при освещении полупроводника, то есть за счет энергии падающего на него электромагнитного излучения.
Если внешнее электрическое поле к полупроводнику не приложено, то свободные электроны и дырки участвуют в хаотичном тепловом движении. Но когда полупроводник помещается во внешнее электрическое поле, электроны и дырки начинают двигаться упорядоченно. Так рождается ток в полупроводнике.
Он состоит из электронного тока и дырочного тока. В полупроводнике концентрация дырок и электронов проводимости равны. И только в чистых полупроводниках проявляется электронно-дырочный механизм проводимости. Это собственная электрическая проводимость полупроводника.
Примесная проводимость (электронная и дырочная)
Если в полупроводнике наличествуют примеси, то его электрическая проводимость очень изменяется по сравнению с чистым полупроводником. Добавление примеси в виде фосфора в кристалл кремния, в количестве 0,001 атомного процента, увеличит проводимость более чем в 100000 раз! Столь существенное влияние примесей на проводимость объяснимо.
Главное условие роста проводимости от примесей — отличие валентности примеси от валентности основного элемента. Такая проводимость с примесями называется примесной проводимостью, и может быть электронной и дырочной.
Кристалл германия начинает обладать электронной проводимостью если в него введены пятивалентные атомы, допустим, мышьяка, тогда как валентность атомов самого германия — четыре. Когда пятивалентный атом мышьяка оказывается в узле кристаллической решетки германия, четыре внешних электрона атома мышьяка включаются в ковалентные связи с четырьмя соседними атомами германия. Пятый же электрон атома мышьяка становится свободным, он легко покидает свой атом.
А покинутый электроном атом становится положительным ионом в узле кристаллической решетки полупроводника. Это так называемая донорная примесь, когда валентность примеси больше валентности основных атомов. Здесь появляется много свободных электронов, вот почему с введением примеси в тысячи и в миллионы раз падает электрическое сопротивление полупроводника. Полупроводник с большим количеством добавленных примесей по удельной проводимости приближается к металлам.
Хотя за собственную проводимость в кристалле германия с примесью мышьяка отвечают электроны и дырки, основными носителями свободного заряда являются все же электроны, покинувшие атомы мышьяка. В такой ситуации концентрация свободных электронов сильно превосходит концентрацию дырок, и данный вид проводимости называется электронной проводимостью полупроводника, а сам полупроводник — полупроводником n-типа.
Если же вместо пятивалентного мышьяка в кристалл германия добавить трехвалентный индий, то он создаст ковалентные связи лишь с тремя атомами германия. Четвертый атом германия останется без связи с атомом индия. Но ковалентный электрон может быть захвачен из соседних атомов германия. Индий будет тогда отрицательным ионом, а соседний атом германия приобретет вакантное место на месте где существовала ковалентная связь.
Примесь такого рода, когда атом примеси захватывает электроны, называется акцепторной примесью. При введении акцепторной примеси, в кристалле нарушаются многочисленные ковалентные связи, и образуется много дырок, в которые электроны могут перепрыгивать с ковалентных связей. В отсутствие электрического тока дырки хаотически движутся по кристаллу.
Акцепторная примесь приводит к резкому росту проводимости полупроводника благодаря рождению обилия дырок, и концентрация этих дырок сильно превышает концентрацию электронов собственной электропроводности полупроводника. Это дырочная проводимость, а полупроводник называется полупроводником p-типа. Основными носителями заряда в нем выступают дырки.
Полупроводники
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: полупроводники, собственная и примесная проводимость полупроводников.
До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.
Рис. 1. Зависимость для полупроводника
Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой — как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.
Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.
Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.
Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого — различная природа химической связи между атомами металлов и полупроводников.
Ковалентная связь
Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе — их атомы скрепляет ковалентная связь. Давайте вспомним, что это такое.
Электроны, находящиеся на внешнем электронном уровне и называемые валентными, слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2 ).
Рис. 2. Ковалентная связь
Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь — это связь, существующая между атомами за счёт общих электронных пар. По этой причине ковалентная связь называется также парноэлектронной.
Кристаллическая структура кремния
Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник — кремний. Аналогичное строение имеет и второй по важности полупроводник — германий.
Пространственная структура кремния представлена на рис. 3 (автор картинки — Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, — это каналы ковалентной связи между атомами.
Рис. 3. Кристаллическая структура кремния
Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?
Дело в том, что кремний четырёхвалентен — на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома. Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону. Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).
Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4 ).
Рис. 4. Кристаллическая решётка кремния
Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.
Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей. От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем — к соседнему с ним атому 3 и так далее. Валентные электроны могут перемещаться по всему пространству кристалла — они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).
Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах. Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему. Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам — они не проводят электрический ток.
Собственная проводимость
Если включить в электрическую цепь полупроводниковый элемент и начать его нагревать, то сила тока в цепи возрастает. Следовательно, сопротивление полупроводника уменьшается с ростом температуры. Почему это происходит?
При повышении температуры тепловые колебания атомов кремния становятся интенсивнее, и энергия валентных электронов возрастает. У некоторых электронов энергия достигает значений, достаточных для разрыва ковалентных связей. Такие электроны покидают свои атомы и становятся свободными (или электронами проводимости) — точно так же, как в металле. Во внешнем электрическом поле свободные электроны начинают упорядоченное движение, образуя электрический ток.
Чем выше температура кремния, тем больше энергия электронов, и тем большее количество ковалентных связей не выдерживает и рвётся. Число свободных электронов в кристалле кремния возрастает, что и приводит к уменьшению его сопротивления.
Рис. 5. Образование свободных электронов и дырок
Дырки не остаются на месте — они могут блуждать по кристаллу. Дело в том, что один из соседних валентных электронов, «путешествуя» между атомами, может перескочить на образовавшееся вакантное место, заполнив дырку; тогда дырка в этом месте исчезнет, но появится в том месте, откуда электрон пришёл.
При отсутствии внешнего электрического поля перемещение дырок носит случайный характер, ибо валентные электроны блуждают между атомами хаотически. Однако в электрическом поле начинается направленное движение дырок. Почему? Понять это несложно.
Рис. 6. Движение дырки в электрическом поле
Куда сместится дырка? Ясно, что наиболее вероятны перескоки «электрон > дырка» в направлении против линий поля (то есть к «плюсам», создающим поле). Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.
Мы видим, что дырка в целом перемещается по направлению линий поля — то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.
Возникновение тока за счёт движения свободных электронов называется электронной проводимостью, или проводимостью n-типа. Процесс упорядоченного перемещения дырок называется дырочной проводимостью,или проводимостью p-типа (от первых букв латинских слов negativus (отрицательный) и positivus (положительный)). Обе проводимости — электронная и дырочная — вместе называются собственной проводимостью полупроводника.
Каждый уход электрона с разорванной ковалентной связи порождает пару «свободный электрон–дырка». Поэтому концентрация свободных электронов в кристалле чистого кремния равна концентрации дырок. Соответственно, при нагревании кристалла увеличивается концентрация не только свободных электронов, но и дырок, что приводит к возрастанию собственной проводимости полупроводника за счёт увеличения как электронной, так и дырочной проводимости.
Наряду с образованием пар «свободный электрон–дырка» идёт и обратный процесс: рекомбинация свободных электронов и дырок. А именно, свободный электрон, встречаясь с дыркой, заполняет эту вакансию, восстанавливая разорванную ковалентную связь и превращаясь в валентный электрон. Таким образом, в полупроводнике устанавливается динамическое равновесие: среднее число разрывов ковалентных связей и образующихся электронно-дырочных пар в единицу времени равно среднему числу рекомбинирующих электронов и дырок. Это состояние динамического равновесия определяет равновесную концентрацию свободных электронов и дырок в полупроводнике при данных условиях.
Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.
Примесная проводимость
На внешнем электронном уровне атома мышьяка имеется пять электронов. Четыре из них образуют ковалентные связи с ближайшими соседями — атомами кремния (рис. 7 ). Какова судьба пятого электрона, не занятого в этих связях?
Рис. 7. Полупроводник n-типа
А пятый электрон становится свободным! Дело в том, что энергия связи этого «лишнего» электрона с атомом мышьяка, расположенным в кристалле кремния, гораздо меньше энергии связи валентных электронов с атомами кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка в результате теплового движения остаются без пятого электрона, превращаясь в положительные ионы. А кристалл кремния, соответственно, наполняется свободными электронами, которые отцепились от атомов мышьяка.
Наполнение кристалла свободными электронами для нас не новость: мы видели это и выше, когда нагревался чистый кремний (без каких-либо примесей). Но сейчас ситуация принципиально иная: появление свободного электрона, ушедшего из атома мышьяка, не сопровождается появлением подвижной дырки. Почему? Причина та же — связь валентных электронов с атомами кремния гораздо прочнее, чем с атомом мышьяка на пятой вакансии, поэтому электроны соседних атомов кремния и не стремятся эту вакансию заполнить. Вакансия, таким образом, остаётся на месте, она как бы «приморожена» к атому мышьяка и не участвует в создании тока.
Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости. Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.
Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.
Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными. Например, пятивалентный мышьяк — донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными — дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками, или полупроводниками n-типа (или просто n-полупроводниками).
А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.
Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.
Рис. 8. Полупроводник p-типа
Что происходит в этом случае? На внешнем электронном уровне атома индия расположены три электрона, которые формируют ковалентные связи с тремя окружающими атомами кремния. Для четвёртого соседнего атома кремния у атома индия уже не хватает электрона, и в этом месте возникает дырка.
И дырка эта не простая, а особенная — с весьма большой энергией связи. Когда в неё попадёт электрон из соседнего атома кремния, он в ней «застрянет навеки», ибо притяжение электрона к атому индия весьма велико — больше, чем к атомам кремния. Атом индия превратится в отрицательный ион, а в том месте, откуда электрон пришёл, возникнет дырка — но теперь уже обыкновенная подвижная дырка в виде разорванной ковалентной связи в кристаллической решётке кремния. Эта дырка обычным образом начнёт блуждать по кристаллу за счёт «эстафетной» передачи валентных электронов от одного атома кремния к другому.
И так, каждый примесный атом индия порождает дырку, но не приводит к симметричному появлению свободного электрона. Такие примеси, атомы которых захватывают «намертво» электроны и тем самым создают в кристалле подвижную дырку, называются акцепторными.
Трёхвалентный индий — пример акцепторной примеси.
Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью — это дырочный полупроводник, или полупроводник p-типа (или просто p-полупроводник).
Дырки играют главную роль при создании тока в p-полупроводнике; дырки — основные носители заряда. Свободные электроны — неосновные носители заряда в p-полупроводнике. Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.
p–n-переход
Место контакта двух полупроводников с различными типами проводимости (электронной и дырочной) называется электронно-дырочным переходом, или p–n-переходом. В области p–n-перехода возникает интересное и очень важное явление — односторонняя проводимость.
На рис. 9 изображён контакт областей p- и n-типа; цветные кружочки — это дырки и свободные электроны, которые являются основными (или неосновными) носителями заряда в соответствующих областях.
Рис. 9. Запирающий слой p–n-перехода
Совершая тепловое движение, носители заряда проникают через границу раздела областей.
Свободные электроны переходят из n-области в p-область и рекомбинируют там с дырками; дырки же диффундируют из p-области в n-область и рекомбинируют там с электронами.
Подключим теперь к нашему полупроводниковому элементу источник тока, подав «плюс» источника на n-полупроводник, а «минус» — на p-полупроводник (рис. 10 ).
Рис. 10. Включение в обратном направлении: тока нет
Мы видим, что внешнее электрическое поле уводит основные носители заряда дальше от границы контакта. Ширина запирающего слоя увеличивается, его электрическое поле возрастает. Сопротивление запирающего слоя велико, и основные носители не в состоянии преодолеть p–n-переход. Электрическое поле позволяет переходить границу лишь неосновным носителям, однако ввиду очень малой концентрации неосновных носителей создаваемый ими ток пренебрежимо мал.
Рассмотренная схема называется включением p–n-перехода в обратном направлении. Электрического тока основных носителей нет; имеется лишь ничтожно малый ток неосновных носителей. В данном случае p–n-переход оказывается закрытым.
Теперь поменяем полярность подключения и подадим «плюс» на p-полупроводник, а «минус»—на n-полупроводник (рис. 11 ). Эта схема называется включением в прямом направлении.
Рис. 11. Включение в прямом направлении: ток идёт
В этом случае внешнее электрическое поле направлено против запирающего поля и открывает путь основным носителям через p–n-переход. Запирающий слой становится тоньше, его сопротивление уменьшается.
Происходит массовое перемещение свободных электронов из n-области в p-область, а дырки, в свою очередь, дружно устремляются из p-области в n-область.
В данном случае диод открыт в направлении слева направо: заряды как бы текут вдоль стрелки (видите её на рисунке?). В направлении справа налево заряды словно упираются в стенку — диод закрыт.