Что такое генная революция
Что такое генная инженерия и зачем вмешиваться в природу организмов
Содержание:
Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.
Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).
Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.
История развития
Истоки
Основы классической генетики были заложены в середине XIX века благодаря экспериментам чешского-австрийского биолога Грегора Менделя. Открытые им на примере растений принципы передачи наследственных признаков от родительских организмов к их потомкам в 1865 году, к сожалению, не получили должного внимания у современников, и только в 1900 году Хуго де Фриз и другие европейские ученые независимо друг от друга «переоткрыли» законы наследственности.
Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.
На подъеме
К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.
Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.
Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.
Новая эра
В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.
Технологии генной инженерии
Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.
Так, появилась технология CRISPR — инструмент редактирования генома. В 2014 году MIT Technology Review назвал его «самым большим биотехнологическим открытием века». Он основан на защитной системе бактерий, которые производят специальные ферменты, позволяющие им защищаться от вирусов.
«Каждый раз, когда бактерия убивает вирус, она разрезает остатки его генома, будь то ДНК или РНК, и сохраняет их внутри последовательности CRISPR, как в архив. Как только вирус атакует снова, бактерия использует информацию из «архива» и быстро производит защитные белки Cas9, в которых заключены фрагменты генома вируса. Если вдруг эти фрагменты совпадают с генетическим материалом нынешнего атакующего вируса, Cas9 как ножницами разрезает захватчика, и бактерия снова в безопасности», — поясняет Алевтина Федина, медицинский директор Checkme.
Уникальное открытие состоялось в 2011 году, когда биологи Дженнифер Дудна и Эммануэль Шарпантье обнаружили, что белок Cas9 можно обмануть. Если дать ему искусственную РНК, синтезированную в лаборатории, то он, найдя в «архиве» соответствие, нападет на нее. Таким образом, с помощью этого белка можно резать геном в нужном месте — и не просто резать, а еще и заменять другими генами.
Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.
Есть и другие методы генной инженерии, например, ZFN и TALEN.
Где и как применяется генная инженерия
Медицина
Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.
Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.
«В медицине среди достижений генной инженерии сегодня можно выделить терапию рака, а также другие фармакологические новинки — исследования стволовых клеток, новые антибиотики, прицельно бьющие по бактериям, лечение сахарного диабета. Правда, пока все это на стадии исследований, но результаты многообещающие», — говорит Алевтина Федина.
Сельское хозяйство
В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.
Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.
Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.
Благодаря генной инженерии зерновые культуры стали более устойчивы к климатическим условиям, кроме того появилась возможность увеличить количество витаминов и полезных веществ в продукте. Например, можно обогатить рис витамином «А» и выращивать его в тех регионах, где люди имеют массовую нехватку этого элемента.
С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.
Скотоводство
В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.
«В месячном возрасте была проведена оценка, которая показала, что телята отличаются от своих сверстников только устойчивостью к вирусу. Пять особей отобрали для дальнейшей селекционной работы. Это позволит закрепить наследственные признаки устойчивости к вирусу лейкоза у последующих поколений», — пояснила руководитель проекта, доктор биологических наук, профессор кафедры зоотехнии Кузбасской ГСХА Татьяна Зубова.
По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.
Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.
С прицелом на человека
В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.
В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.
Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.
В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.
Изменение ДНК человека
Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.
14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.
Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.
После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.
Генная терапия
Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.
Существует три основных стратегии использования генной терапии:
Наиболее часто применяемый метод включает вставку «терапевтического» гена для замены «ненормального» или «вызывающего болезнь».
В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.
Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.
После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.
Этическая сторона вопроса
В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.
Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.
«Вопрос клонирования уже давно стоит на горизонте. Этично ли выращивать клонов, чтобы потом забирать их органы для трансплантации человеку… Большой вопрос. Само собой, это абсолютно нормально, что нет единой точки зрения, ведь смысл подобных дискуссий как раз в том, чтобы найти правильные формулировки и отрегулировать потенциально спасительное, но при этом очень опасное знание», — говорит Алевтина Федина.
Страх неизвестности
Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.
Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.
Олег Долгицкий, социальный философ, отмечает, что современное общество настолько неоднородно в культурном и экономическом плане, что любые методы, способные существенно изменить геном, могут создать условия не только для классового, но и видового расслоения, где представители «первого мира» смогут существенно продлевать свою жизнь и не бояться никаких болезней, в отличие от менее богатых людей. Это является серьезнейшей почвой для конфликтов и столкновений.
Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.
Генетическая революция
«Расшифровка генома – часть рутинного медобследования»
Отдел науки «Газеты.Ru» рассказывает об истории геномики,
ее развитии в мире и в России и о том, как она изменит мир в будущем
Николай Подорванюк, Владимир Покровский, «Газета.Ru»
Европейцы в среднем имеют большее количество потенциально болезнетворных генетических мутаций, чем африканцы. В связи с опубликованием статьи, в которой это утверждается, отдел науки «Газеты.Ru» решил рассказать своим читателям об истории геномики, генетических исследованиях, которые проводятся в этом направлении в России, и том, как геномные технологии изменят мир в будущем.
В минувший четверг в журнале Nature была опубликована статья (Fu et al., Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants), в которой сообщалось, что европейцы в среднем имеют большее количество потенциально болезнетворных генетических мутаций, чем африканцы. Это была чувствительная, но далеко не самая главная новость, к которой пришли исследователи из США, обследовав геномы 6,5 тысячи соотечественников. Главная новость состояла в том, что обе эти расы, составляющие вида «человек современный», в последние пять тысячелетий переживают, в буквальном смысле слова, «геномную революцию». Именно в этот период их генетическое разнообразие стало кардинальным образом разрастаться – мутации, или, по-научному, генные варианты (замена одной из четырех букв генного алфавита на другую) стали множиться с ошеломляющей скоростью – за пять тысяч лет при возрасте нашего вида в сто или больше миллениумов в наших ДНК накопилось около 700 тысяч таких вариантов, причем 81% их у евроамериканцев и 58% у афроамериканцев возникли именно в этот сравнительно короткий период. Различие ученые объясняют возрастом рас и их необычайно высокой скоростью размножения.
Это открытие, как и многие из тех, что были сделаны в последние годы, поражает воображение и в первую очередь удивляет людей, к геномике непричастных: каким образом все это можно узнать из состава пусть главной для нашей жизни, но все-таки просто молекулы? Что еще она может дать?
Одну из лавин научных новостей в последние годы создают геномные исследования, получившие взрывной толчок после того, как Крейг Вентер полностью секвенировал человеческую ДНК. Конечно, справедливости ради следует сказать, что это достижение не слишком повлияло на ход событий – если бы не было Вентера, геном был бы точно так же прочитан спустя несколько месяцев гигантским международным консорциумом. Это была личная война Вентера, в которой он победил, щелкнув по носу международное генетическое сообщество, когда-то не давшее ему грантов; и то, что именно он, а не консорциум стал катализатором дальнейших событий, придало всей геномной эпопее несколько хулиганский оттенок.
Дальнейшие события не заставили себя ждать: открытия посыпались как из рога изобилия: геном собаки (собаки Вентера), геном мыши, кошки, свиньи, обезьяны и так далее по всему списку животных и растений. Скорость секвенирования стала стремительно расти, а само секвенирование – столь же стремительно дешеветь. В период 2007-2010 годов она упала в сто раз – с миллиона долларов до десяти тысяч. Сейчас стоимость приближается к тысяче, и уже пошли разговоры о тридцатидолларовом секвенировании.
Используя данные генома, ученые стали разбираться в прошлом человечества, и в самом конце двадцатого века палеогенетик Сванте Паабо заявил, что мы не имеем ничего общего с неандертальцами, и что они представляли собой отдельное человечество. Правда, впоследствии он выяснил, что небольшое количество генов мы все-таки от них унаследовали, но тут Паабо по обломку сустава пальца нашел представителя еще одного человечества – человека из Денисовой пещеры. И сегодня нет никаких гарантий, что количество вымерших человечеств не станет расти и дальше.
Но главный вал открытий пришелся на медицину. Генетики со страшной скоростью стали обнаруживать в ДНК гены или их мутации, ответственные за ту или иную болезнь. Заговорили о скором, буквально через несколько десятилетий, приходе новой медицины, которая сможет искоренить множество наследственных и до сих пор неизлечимых заболеваний; вот-вот, подумалось публике, реализуется древняя мечта об универсальной панацее.
Воспряли геронтологи, стали обнаруживать различные генетические факторы, вызывающие старение. Заговорили даже о возможности бессмертия.
Одновременно проясняется структура самого генома. Долгое время ученых очень беспокоило то обстоятельство, что подавляющая часть ДНК не содержит никаких генов и вообще как бы ни на что не влияет – ее назвали «мусорной» ДНК. Этой осенью выяснилось, что как минимум 80% этого генетического «мусора» – вовсе даже не мусор, а сложная и пока совсем непонятная система, управляющая работой генов.
Не дает о себе забыть и Крейг Вентер, «охулиганивший» геномику XXI века. Несколько лет назад он и сотрудники исследовательского института, которому было присвоено его имя, создали бактериальную клетку, работающую на искусственно синтезированном геноме. Тем самым он застолбил совершенно новую тему – тему создания искусственных организмов, тему этически очень спорную, но теоретически реализуемую.
А совсем недавно Вентер выступил с еще одним фантастическим предложением – искать на Марсе микроорганизмы (он уверен в их существовании), секвенировать их на месте, пересылать по радио на Землю их цифровую копию, а здесь воссоздавать с помощью 3D-биопринтера.
В этом смысле Вентер играет роль своеобразного метронома, подбрасывающего миру импульс за импульсом, постоянно напоминающего, что у геномики есть еще множество возможностей, о которых никто пока даже не успел подумать.
«Мы сейчас очень много знаем, и даже довольно много умеем, но очень мало понимаем», – говорил о геномике «Газете.Ru» профессор МГУ Михаил Пантелеев. Каждый ген может иметь много функций и работать по-разному в зависимости от того, как он управляется генетическим «мусором», какое у него соседство, в какой компании он работает и так далее. И пока мы во всем этом не разберемся, а это может случиться очень нескоро, в каждый момент нас могут ожидать сюрпризы, чаще неприятные, чем приятные. Ученые пока только накапливают информацию и только-только приступают к нелегкой задаче ее понимания.
«Красивая биологическая задача»
К счастью, в этой области исследований российские ученые имеют ряд неплохих результатов. Так, профессор биоинформатики, заместитель директора по науке Института проблем передачи информации РАН, доктор биологических наук Михаил Гельфанд отметил деятельность Алексея Кондрашова, лауреата «мегагранта», создавшего на факультете биоинформатики и биоинженерии в Московском университете лабораторию эволюционной геномики.
«На мегагрант он купил хороший секвенатор. Чем мне нравится эта группа – это то, что они делают не очередной геном человека или раковый геном, – рассказал Михаил Гельфанд, – у них очень оригинальные биологические задачи и самый интенсивно работающий секвенатор в России.
Они делают что-то и для коллег из других институтов, но, если говорить непосредственно про них, у них очень красивая биология. Например, есть такие рыбки – колюшки – которые бывают пресноводные и морские. В 1970-е годы этих колюшек заселили в озера, которые образовались на месте ГУЛАГовских карьеров на севере страны. Группа Кондрашова съездила, поймала колюшек и посмотрела те места, где геномы морской и пресноводной колюшек у этих гибридов различаются. Они нашли две дюжины мест в геноме, где жестко зафиксировались пресноводные варианты. Это то, что, по-видимому, действительно отвечает за жизнь в пресной воде. Биологически – это очень красивая задача».
Гельфанд также упомянул и открытие Денисовского человека, о котором говорилось выше, и которое стало одним из самых крупных открытий последних лет не только в биологии, но и во всей науке. «Нам страшно повезло, что Денисова пещера находится у нас на Алтае, – говорит Михаил Гельфанд. – От России тут только кости, но на самом деле молодцы археологи, что научились аккуратно с костями работать, так что они пригодны для того, чтобы определять генетическую последовательность. Но это крупнейшее открытие за последние годы, фактически третья ветвь человечества: неандертальцы, мы и, наконец, денисовцы. Там куча разных вопросов сразу возникает, потому что по ядерному геному они ближе к неандертальцам, а по митохондриальному дальше и от нас, и от неандертальцев, дальше, чем мы с неандертальцами друг от друга. То есть по материнской линии они происходят совершенно непонятно от кого, от каких-то эректусов, по-видимому. Там, на самом деле, история почти детективная. Россия участвует костями, последовательность определяют в Германии, но это потрясающе интересно».
На сайте группы популяционной иммуногенетики Института общей генетики имени Н. И. Вавилова РАН (ИОГ РАН) приводятся некоторые полученные этой группой результаты, процитируем их: «Впервые проведено сравнительное генетико-демографическое изучение трех мегаполисов: Москвы, Минска и Харькова… Отмечено накопление редких уникальных аллелей для основных этносов в изученных мегаполисах. Так, например, у белорусов в Минске выявлено всего три уникальных редких аллеля, у русских в Москве и украинцев в Харькове – по тринадцать аллелей, что хорошо соотносится с установленным более низким уровнем миграции и средним радиусом миграции в Минске».
Большое количество результатов представлено на сайте лаборатории популяционной генетики Медико-генетического научного центра РАМН. Сотрудники лаборатории участвуют в международных проектах по популяционной генетике (в частности, в проекте «Генография» – The Genographic project), в рамках которых производится анализ особенностей разных этносов и попытка восстанавливать историю на основе этого.
Одним из ведущих сотрудников этой лаборатории является Олег Балановский, о работах которого рассказывала «Газета.Ru».
На базе Санкт-Петербургского академического университета РАН под руководством еще одного лауреата «мегагранта» – профессора Павла Певзнера была создана Лаборатория алгоритмической биологии. Главная ее задача – решение важнейших алгоритмических и вычислительных задач современных геномики и протеомики. Лаборатория разрабатывает новые подходы к секвенированию и сборке геномов, а также к идентификации и секвенированию белков, антител и антибиотиков. На сайте лаборатории говорится, что ее первым рубежом «будет одна из наиболее важных задач современной биоинформатики – создание сборщика геномов (fragment assembler), работающего лучше, чем существующие алгоритмы сборки». «Мы хотим разработать ассемблер, который сможет аккуратно собирать не только геномы культивируемых бактерий, как сейчас, но и любые другие – включая некультивируемые. Это критически важно для исследования микробиома (то есть совокупность микробных генов, оказывающих влияние на среду, а данном случае – человеческий организм) человека и разработки новых антибиотиков», – пишут ученые.
Как уже говорилось, десять лет назад стоимость расшифровки генома человека составляла миллионы долларов, а сейчас – приближается к тысяче. Эксперты сходятся во мнении, что в недалеком будущем расшифровка генома станет такой же обыденной процедурой, как и анализ крови. «Действительно, это уже сейчас вполне может быть частью рутинного медицинского обследования, – говорит Михаил Гельфанд. – Причем там получаются удивительные вещи. Вообще, врачи плохо знают генетику, и появляется куча сложностей с интерпретацией. Например, вы видите мутацию, она в важном гене, но, хотя вы знаете, что это важный ген, вы не знаете, сама по себе эта мутация вредная или нет. У меня есть коллеги, работающие в США, они создали программу, которая позволяет определить потенциальный вред от мутации белка – окажется белок с такой мутацией работоспособным или нет. Изначально это был чисто академический проект. Сейчас они страшно нервничают, потому что уровень ответственности стал совершенно другой, потому что этим врачи реально начинают пользоваться. Из лаборатории приходит распечатка мутаций, а дальше их надо как-то интерпретировать. И это, по-видимому, довольно быстро будет развиваться в разных направлениях.
Еще одна вещь, которую начинают делать в медицине, – молекулярная диагностика рака. Сначала была классификация по локализации. Потом была по цитологии, по клеточному происхождению. А сейчас постепенно начинаются диагнозы рака молекулярные, то есть выясняется, что именно в клетках сломалось. Стало ясно, что раки неоднородны, а это влияет и на диагноз, и на прогноз, и на выбор лечения. Дальше оказывается, что если вы имеете такой молекулярный диагноз, то вы можете использовать лекарство, которое в принципе было сделано для другого типа рака, для рака другой локализации. Поскольку молекулярная поломка та же самая, а лекарство уже одобрено к применению, вы можете пытаться его применять для лечения и в других случаях. То есть такой перенос лекарств на основе сходства молекулярных мишеней. И это, по-видимому, вполне может оказаться какой-то разумной областью. Примеры такого сорта уже есть».
Еще одно из направлений будущего – создание на основе расшифровки генома социальной сети, с помощью которой можно установить степень родства для двух любых людей или же собрать людей с одинаковыми предрасположенностями.
Подобный проект – 23andMe – стартовал в 2007 году. Название фирмы происходит от количества пар хромосом в каждой здоровой ядросодержащей соматической клетке человека. Любой желающий может отправить в компанию образцы слюны, а затем получить данные о своих генетических особенностях, в частности, о склонностях к болезням. Этой информацией он по своему желанию сможет делиться с другими участниками проекта, с врачами и родственниками. Вероятно, в ближайшие годы именно социальная сеть, разработанная 23andMe, станет «генетическим фейсбуком», так как компания пользуется поддержкой Google (от нее 23andMe получила 3,9 млн долларов, а один из основателей Google, Сергей Брин, женат на основательнице 23andMe – Анне Войжитски).
Пока 23andMe не работает с пользователями из России. Причина этого – российское законодательство, запрещающее гражданам отсылать какой-либо биологический материал для проведения генетического анализа за пределы страны без специального разрешения Министерства здравоохранения России (впрочем, пока никто не может запретить человеку вывезти за пределы страны самого себя). «Конечно, у нас есть заинтересованность в том, чтобы наладить здесь наш сервис; и мы это сделаем, как только российские законы это позволят», – говорят представители компании 23andMe.