Что такое генотип в задачах по генетике
Задачи по генетике: примеры, решение с объяснениями
Умение решать задачи по генетике очень важно, особенно, если школьник собирается сдавать Единый Государственный Экзамен по предмету биология. На первый взгляд, генетические задачи представляют собой что-то запутанное и непонятное. Но если разобраться в процессе решения, то все окажется не так уж и страшно. Давайте разберемся, как решать задачи по генетике.
История
Несмотря на то, что имя этого выдающегося ученого фигурирует во многих учебниках как имя первооткрывателя данной биологической области, не стоит думать, что он первый задумался о наследственности. За его открытиями и тремя постулатами генетики стоит титанический труд его последователей, пытавшихся изучить данную область. Ведь, как показывает история, уже более шестисот лет назад люди понимали примитивные закономерности наследования, но не могли их объяснить.
Законы Менделя
Без знания трех основных законов наследования и изменчивости невозможно заниматься решением задач по генетике.
Первый закон объясняет принципы единообразия гибридов первого поколения и звучит следующим образом:
При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, все первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.
Данный закон означает, что если скрестить две чистые линии по одному признаку, например, зеленый и желтый горох, то абсолютно у всех потомков проявится только один цвет (либо желтый, либо зеленый), в зависимости от того, чей признак более сильный (доминантный).
Второй закон, который объясняет расщепление признаков, звучит следующим образом:
Это означает, что у родителей, которые не являются чистыми линиями, в любом случае, с меньшей вероятностью, но появится у потомства внешнее различие, не говоря уже о генотипе.
Третий закон о независимом наследовании звучит как:
При скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.
Это означает то, что один независимо наследуемый признак никак не может повлиять на проявление или не проявление другого независимого признака.
Общие правила
Чтобы научиться решать задачи по генетике, необходимо:
Оформление
Задачи по биологии на генетику имеют свою специфику оформления, для который необходимо знать и уметь пользоваться особой символикой. Данные символы представлены в таблице.
Пользование данной символикой поможет облегчить решение задач и уменьшит громоздкие записи сложных заданий.
Решетка Пеннета
Если задачи по теме генетика даются школьнику с трудом, то рекомендовано решать даже самые легкие из них с помощью этой решетки. Она поможет правильно расписать генотип, не запутавшись.
Многибридное скрещивание
Теперь, когда основные генетические принципы рассмотрены, можно приступать к объяснению задач по генетике. Начнем изучение с самых простых примеров на моногибридное скрещивание, в которых рассматривается только одна пара признаков.
Возьмем такой пример задачи по генетике: ген глухоты является рецессивным, в отличие от гена нормального слуха. У неслышащего мужчины и нормальной женщины родился ребенок с нарушением слуха. Необходимо определить генотипы всех членов семьи.
Как решить задачу по генетике? Начнем разбор по-порядку:
Дигибридное скрещивание
Решение задач по биологии на генетику такого типа предполагает использование решеток Пеннета. В данных задачах рассматривается наследование двух независимых признаков.
Итак, условие, взятое из учебника:
У томатов красная окраска плодов доминирует над желтой, а гладкая кожица плодов доминирует над опушенной. Скрестили между собой гомозиготные растения томатов с красными и гладкими плодами с гомозиготным растением томатов с желтыми и опушенными плодами. Определите генотип и фенотип потомства.
Приступим к решению данной задачи по генетике:
Задачи с решеткой Пеннета
Рассмотрим задачи по генетике также с дигибридным скрещиванием, но уже по-сложнее.
Возьмем потомков первого поколения из условия выше, то есть томаты с красной гладкой кожицей и генотипом АаВв и скрестим их с рецессивной чистой линией (аавв).
Чтобы узнать генотипы и фенотипы потомков, для удобства нам необходимо составить таблицу.
Родители | АВ | Ав | аВ | ав |
ав | АаВв | Аавв | ааВв | аавв |
Теперь по известным генотипам очень легко определить внешний вид потомков:
Вот так легко решается задача по генетике на скрещивание по двум и более признакам.
Наследование, сцепленное с полом
Помимо признаков, наследуемых по аутосомному типу, у человека и животных существует огромное количество признаков, которые локализуются в половых хромосомах.
Известно, что у человека, не страдающего какими-либо серьезными генетическими отклонениями, их две (ХХ у женщин; ХУ у мужчин). Большинство признаков несет именно Х хромосома.
Рассмотрим пример решения задач по генетике на данную тему. Возьмем условие из учебника:
От родителей, по фенотипу имеющих нормальное зрение, родилось несколько детей с нормальным зрением и один мальчик-дальтоник (не различает красный и зеленый цвета). Чем это объяснить? Каковы генотипы родителей и детей?
Решение данной биологической задачи по генетике будет следующим:
Таким образом мы определили все генотипы в данной задаче по генетике.
Задачи на группы крови
Это особый тип задач, при решении которых надо знать, каким именно образом наследуется та или иная группа крови. Для этого необходимо воспользоваться специальной таблицей, изображенной на рисунке ниже.
Разберем задачу по-порядку:
Попробуем решить еще одну задачу, но уже на резус-фактор. Для этого воспользуемся другой показательной таблицей, представленной на рисунке.
Ответ: по результатам теста на определение отцовства, ребенок не будет являться родным. Так как положительный резус-фактор означает, что он должен иметь хотя бы одного родителя с положительным резус-фактором.
Задачи повышенной сложности
Рассмотрев, простые задачи по генетике, давайте попытаемся решить более сложные. Возьмем, пример, задачу, которая будет содержать в совокупности и аутосомные признаки и половые.
Итак, дано: у человека генетически обусловлено доминирование карих глаз над голубыми. А дальтонизм считается рецессивным по отношению к нормальному зрению.
Кареглазая женщина с нормальным зрением, отец которой имел голубые глаза и страдал цветовой слепотой, выходит замуж за голубоглазого мужчину с нормальным зрением. Составьте схему решения задачи. Определите генотипы родителей и возможного потомства, вероятность рождения в этой семье детей — дальтоников с карими глазами и их пол.
Решаем пошаговым способом:
Наглядные генотипы готовы. Теперь осталось определить вероятность появления в этой семье кареглазых детей с нарушениями цветовосприятия и определить их пол. Для этого внимательно рассмотрим таблицу. Кареглазый дальтоник появится только в одном случае, и это будет мальчик. Таким образом вероятность его появления равна 1/8.
Генетика в Едином Государственном Экзамене
Выпускники, нацеленные на сдачу биологии в этом году, должны знать, что встречаются в ЕГЭ задачи по генетике. Чтобы успешно сдать экзамен, не достаточно уметь решать простые задания на изменчивость и наследование, но еще обладать навыками решения более сложных заданий.
Согласно статистке в Едином государственном тестировании встречаются несколько вариантов генетических задач, как в первой части, так и в последней, которая дает большее количество баллов.
Задачи по генетике на моногибридное скрещивание очень часто фигурируют в части А демонстрационных вариантов, под номерами (7, 8 и 30).
А вот задания на дигибридное и полигибридное скрещивание, на половое наследование и на группы крови чаще всего составляют последнюю, саму сложную часть вопросов Единого Государственного экзамена. Они фигурируют под номером 6.
За правильно решенную и, что немаловажно, правильно оформленную задачу могут дать три балла.
Также возможно встретить и смешанный тип, который рассмотрен в данной статье как задачи повышенной сложности. Им тоже необходимо уделять внимание при подготовке к поступлению, потому что на первом курсе профиля естественных наук будут решаться такие задачи.
Чтобы успешно сдать ЕГЭ, необходимо уделять внимание не только теоретической подготовке, но и практиковаться в решении задач. Систематичность и регулярность в этом деле вознаградят выпускников высокими баллами за экзамен и поступлением в выбранный институт на хорошую специальность.
Как решать задачи по генетике на ЕГЭ?
Кажется, что задачи по генетике в ЕГЭ — это «я, конечно, не селекционер, но кареглазых отслежу». И в какой-то степени так и есть. Но будьте вы даже богом генетики — без теории для ЕГЭ набрать заветные баллы не получится.
Какие бывают типы задач по генетике в ЕГЭ?
Существует четыре типа задач по генетике в ЕГЭ. У каждого из них есть свои особенности и методы решения, поэтому рассматривать их стоит в отдельности.
Генеалогический метод
Задачи по генетике в ЕГЭ, решающиеся с помощью генеалогического метода, — это та самая игра в «угадай болезнь». Даются предки с их генами: кто носитель, кто болеющий или просто чист, — и по их генотипу определяется предрасположенность к болезни потомков. Для этого требуется составить генеалогическое древо — родословную.
Решение задачи по генетике ЕГЭ этого типа будет выглядеть примерно так:
Кодоминирование (взаимодействие генов)
Кодоминирование — это задачи по генетике в ЕГЭ, в основе которых смешение признаков. У обоих родителей противоположные признаки выражены одинаково ярко, например, синий и красный цвет бутонов. В таком случае у детей проявятся оба признака — бутоны будут фиолетовыми.
В задачах по генетике в ЕГЭ этого типа определяется скорее вероятность получения того или иного результата. Чаще всего, на экзамене проверяется умение работать с группами крови по системе АВ0.
Моно- и дигибридное скрещивание
В задачах на генетику в ЕГЭ скрещивается пара с одним или двумя альтернативными признаками. Это значит, что нужно определить, например, только цвет глаз потомства (моногибридное скрещивание) или цвет глаз и кожи (дигибридное скрещивание). В первом случае, в задании будет информация только о генах, отвечающих за цвет глаз, а во втором — еще и о генах, отвечающих за цвет кожи.
Сцепление генов
Сцепление генов в задачах на генетику ЕГЭ обычно означает сцепление с полом. Это гены, которые находятся в одной хромосоме, а потому передаются вместе друг с другом. Чаще всего это задания на гемофилию — болезнь крови, носителями которой могут быть люди обоих полов, но болеющими — только мужчины.
Разбор решения задач по генетике в ЕГЭ
Скрещивание — один из самых популярных типов задач по генетике в ЕГЭ. Давайте посмотрим на задачу с единорогами: длинный рог — доминантный признак А, короткий — рецессивный а. И у нас есть пара мелких единорожков, у одного из которых рог длинный, а у другого — короткий. Какие гены у их родителей?
У единорожка с коротким рогом не может быть гена с длинным, так как он бы проявился, значит, его генотип — аа. Следовательно, у мамы-единорога с длинным рогом должен быть ген короткого рога (иначе такого детеныша просто не было бы!). Генотип мамы — Аа.
Генотип короткорогого папы — как и у его короткорогого детеныша, потому что любой доминантный признак бы проявился. Следовательно, генотип папы — аа.
А теперь усложним условия задачи на генетику в ЕГЭ — доминантный признак неизвестен + добавим цвет гривы (черный или белый). Мама — черная, с длинным рогом. Папа — белый, с длинным рогом. И родилось у них восемь единорожков — три с длинным рогом и черной гривой в маму, три с длинным рогом с белой гривой в папу и по одному с коротким рогом — черный и белый.
Что мы имеем на практике?
6/8 — длиннорогие, а 2/8 — короткорогие. Следовательно, длинный рог — доминантный А, короткий рог — рецессивный а. И раз у нас есть короткорожки, значит, родители не гомозиготны — у них есть подавленный рецессивный признак. Генотип родителей по длине рога — Аа.
Что касается цвета гривы, то тут у нас один из родителей точно будет гомозиготным, но какой цвет рецессивный так сразу и не определишь. Поэтому мы выбираем для рецессивности любой из них — например, белый. И раз в потомстве есть беляши, то у мамы генотип по цвету — Вb, а у папы — bb.
AABb — длиннорогие, черногривые — 1/8
AAbb — длиннорогие, белогривые — 1/8
AaBb — длиннорогие, черногривые — 2/8
Aabb — длиннорогие, белогривые — 2/8
aaBb — короткорогие, черногривые — 1/8
aabb — короткорогие, белогривые — 1/8
Итого: черногривых и длиннорогих детей — 3/8, белогривых и длиннорогих — 3/8, белогривых с коротким рогом — 1/8, черногривых с коротким рогом — 1/8. Условие задачи по генетике для ЕГЭ выполнено.
Чему нужно уделить особенное внимание?
Теория по генетике для подготовки к ЕГЭ
Для того чтобы успешно решать задачи по генетике для ЕГЭ, нужно владеть терминологией и базовыми генетическими законами.
Базовые понятия — генотип и фенотип. Генотип — набор генов организма. Фенотип — внешнее их проявление. Гены могут быть доминантными — проявляющимися всегда — и рецессивными — проявляется, только если нет доминантного. При этом, гены, относящиеся к одному признаку (например, цвету), называются аллелями.
Организм, в аллели которого два доминантных или два рецессивных гена, называется гомозиготой. Если же в аллели есть и доминантный, и рецессивный ген, то это гетерозигота.
Основные законы для решения задачи на генетику в ЕГЭ — это три закона Менделя.
Первый закон — первое поколение от родителей, генотип которых различается по одной аллели, генотипически и фенотипически одинаково, то есть выглядит один-в-один.
Второй закон — потомство от детей первого поколения — фенотипически 3:1, а генетически 1:2:1.
Третий закон — дети от родителей, генотип которых различается по нескольким аллелям, перенимают признаки родителей во всевозможных сочетаниях генов.
Методы генетики
Существует три метода в решении задачи по генетике ЕГЭ:
Задачи на генетику в ЕГЭ требуют немного логики, много внимательности при выявлении генотипа потомков и крупицу удачи, чтобы единороги не оказались разноцветными, больными гемофилией и потомками Романовых в десятом поколении. А там — прорвемся!
Подготовка к ЕГЭ. Решение генетических задач
Разделы: Биология
Абитуриенты, поступающие на биологические факультеты университетов и педагогических институтов, а также в медицинские и сельскохозяйственное высшие учебные заведения, нередко показывают невысокие знания по генетике — одному из наиболее трудных, но важных разделов школьной программы по биологии и показывают слабое развитие компетенций третьего уровня. Третий уровень (уровень рассуждений) от обучающихся требует найти закономерности, провести обобщение и объяснить или обосновать полученные результаты. Данный вид компетенций, по моему мнению, развивается при решении биологических задач. Вторая часть экзаменационной работы включает задание на решение генетических задач.
При оформлении таких задач необходимо уметь пользоваться символами, которые приняты в традиционной генетике.
Символ | Характеристика |
женский организм | |
мужской организм | |
X | знак скрещивания |
Р | родительские организмы |
F1, F2 | потомки, гибриды первого и второго поколений |
А, В, С, D. | гены, которые кодируют доминантные признаки |
а, в, с, d. | гены (парные, аллельные), которые кодируют рецессивные признаки |
АА, ВВ, СС, DD. | генотипы моногомозиготных особей по доминантному признаку |
аа, bb, сс, dd. | генотипы моногомозиготных особей по рецессивному признаку |
Аа, Bb, Сс, Dd. | генотипы моногетерозиготных особей |
ААВВ,ААВВСС | генотипы ди- и тригомозиготных особей |
АаВв, АаВвСс | генотипы ди- и тригетерозиготных особей |
генотипы дигетерозигот в хромосомном виде при независимом наследовании признаков | |
генотипы дигетерозиготвхромосомном виде при сцепленном наследовании признаков | |
А; В; С; D. AB; Ab; ABc. |
Вторая часть экзаменационной работы включает задания со свободным развернутым ответом. С их помощью наряду со знаниями проверяются умения четко, логично и кратко письменно излагать свои мысли, аргументировать ответ, обосновывать и доказывать изложенные в ответе факты, правильно делать вывод.
Вывод к задачам, в которых действует закон единообразия гибридов первого поколения:
Вывод к задачам, в которых действует закон расщепления при моногибридном скрещивании:
Расщепление по генотипам определяется генотипом родителей. Расщепление по фенотипам определяется генотипами родителей и формами взаимодействия генов: взаимодействие аллельных генов и взаимодействие неаллельных генов
Расщепление по генотипам и фенотипам при разных формах взаимодействия аллельных генов:
Моногибридное скрещивание с полным доминированием:
Моногибридное скрещивание при неполном доминировании:
Моногибридное скрещивание при кодоминировании
Расщепление по генотипам и фенотипам при разных формах взаимодействия неаллельных генов
Дигибридное скрещивание при комплементарном действии генов
Наблюдается расщепление по фенотипу 9:3:4 или 9:6:1
Дигибридное скрещивание при эпистазе (ген А- супрессор)
Наблюдается расщепление по фенотипу 9:3:4 или 13:3
Дигибридное скрещивание при полимерии
Наблюдается так же расщепление по фенотипу 1:4:6:4:1
Сцепленное наследование неаллельных генов
При неполном сцеплении между генами может происходить кроссинговер (нарушение сцепления) и дигетерозиготный организм (АаВb) продуцирует четыре типа гамет (кросоверные и некросоверные). Гены могут наследоваться как вместе, так и порознь. Общее количество кросоверных гамет и кросоверных организмов в потомстве пропорционально расстоянию между сцепленными генами. Некросоверных гамет в сумме больше 50%, а кросоверных меньше 50%.
При полном сцеплении кроссинговер не происходит, дигетерозиготный организм (АаВb) формирует два типа гамет (по 50% некросоверных гамет каждого типа), гены наследуются только совместно, как один ген.
Поскольку гомогаметный организм продуцирует только один тип гамет по половым хромосомам, гетерогаметный – два, пол потомков зависит от того, какую половую хромосому несет гамета гетерогаметного организма, участвующая в оплодотворении. Вероятность рождения мальчика равно 50%, и вероятность рождения девочки равна 50%.
Закономерность наследования генов, локализованных в половых хромосомах (наследование, сцепленное с полом)
Существует несколько правил, которые помогут учащимся в решение генетических задач.
Правило первое. Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.
Попробуем решить задачу, используя это правило.
Задача. При скрещивании двух морских свинок с черной шерстью получено потомство: 5 черных свинок и 2 белых. Каковы генотипы родителей?
Из условия задачи нетрудно сделать вывод о том, что черная окраска шерсти доминирует над белой, и не потому, что в потомстве черных особей больше, чем белых, а потому, что у родителей, имеющих черную окраску, появились детеныши с белой шерстью. На основе этого введем условные обозначения: черная окраска шерсти — А, белая — а.
Запишем условия задачи в виде схемы:
Р А? X А?; F1 А? аа
Используя названное выше правило, мы можем сказать, что морские свинки с белой шерстью (гомозиготные по рецессивному признаку) могли появиться только в том случае, если их родители были гетерозиготными. Проверим это предположение построением схемы скрещивания:
Р Аа X Аа G А, а; А, а; F1 АА; Аа; Аа; аа
Расщепление признаков по фенотипу — 3:1. Это соответствует условиям задачи.
Убедиться в правильности решения задачи можно построением схем скрещивания морских свинок с другими возможными генотипами.
Схема 1
Р АА X АА G А; А F1 АА
Схема 2
Р Аа X АА G А а; А F1 АА; Аа
В первом случае в потомстве не наблюдается расщепления признаков ни по генотипу, ни по фенотипу. Во втором случае генотипы особей будут различаться, однако феиотипически они будут одинаковыми. Оба случая противоречат условиям задачи, следовательно, генотипы родителей — Аа; Да.
Правило второе. Если в результате скрещивания особей, отличающихся феиотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей была гетерозиготна, а другая — гомозиготна по рецессивному признаку.
Задача. При скрещивании вихрастой и гладкошерстной морских свинок получено потомство: 2 гладкошерстные свинки и 3 вихрастые. Известно, что гладкошерстность является доминантным признаком. Каковы генотипы родителей?
Используя второе правило, мы можем сказать, что одна свинка (вихрастая) имела генотип Аа, а другая (гладкошерстная) — аа.
Проверим это построением схемы скрещивания:
Р Аа X аа Г А, а; а F1 Аа; аа
Расщепление по генотипу и фенотипу — 1:1, что соответствует условиям задачи. Следовательно, решение было правильным.
Правило третье. Если при скрещивании феиотипически одинаковых (по одной паре признаков) особей в первом поколении гибридов происходит расщепление признаков на три фенотипические группы в отношениях 1:2:1, то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны.
Задача. При скрещивании петуха и курицы, имеющих пеструю окраску перьев, получено потомство: 3 черных цыпленка, 7 пестрых и 2 белых. Каковы генотипы родителей?
Согласно третьему правилу, в данном случае родители должны быть гетерозиготными, Учитывая это, запишем схему скрещивания:
Р Аа X Аа G А, а; А, а F АА; Аа; Аа; аа
Из записи видно, что расщепление признаков по генотипу составляет соотношение 1:2:1. Если предположить, что цыплята с пестрой окраской перьев имеют генотип Аа, то половина гибридов первого поколения должны иметь пеструю окраску. В условиях задачи сказано, что в потомстве из 12 цыплят 7 были пестрыми, а это действительно составляет чуть больше половины. Каковы же генотипы черных и белых цыплят? Видимо, черные цыплята имели генотип АА, а белые — аа, так как черное оперение, или, точнее, наличие пигмента, как правило, доминантный признак, а отсутствие пигмента (белая окраска) — рецессивный признак. Таким образом, можно сделать вывод о том, что в данном случае черное оперение у кур неполно доминирует над белым; гетерозиготные особи имеют пестрое оперение.
Правило четвертое. Если при скрещивании двух феиотипически одинаковых особей в потомстве происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были дигетерозиготными.
Задача. При скрещивании двух морских свинок с черной v. вихрастой шерстью получены 10 черных свинок с вихрастой шерстью, 3 черных с гладкой шерстью, 4 белых с вихрастой шерстью и 1 белая с гладкой шерстью. Каковы генотипы родителей?
Итак, расщепление признаков у гибридов первого поколения в денном случае было близко к соотношению 9:3:3:1, т. е. к тому отношению, которое получается при скрещивании дигетерозигот между собой (АаВв Х АаВв, где А — черная окраска шерсти, а — белая; В — вихрастая шерсть, в — гладкая). Проверим это.
Р АаВв X АаВв Г АВ, Ав, аВ, ав; АВ, Ав, аВ, ав F1 1 ААВВ, 2 ААВв, 2 АаВВ, 4 АаВв 1 ААвв, 2 Аавв, 1 ааВВ, 2 ааВв, 1 аавв
Расщепление по фенотипу 9:3:3:1.
Решение показывает, что полученное расщепление соответствует условиям задачи, а это значит, что родительские особи были дигетерозиготными.