Что такое геометрическая фигура кратко

Геометрические фигуры. Особенности восприятия детьми формы предметов и геометрических фигур

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко Чукур Людмила Васильевна
Геометрические фигуры. Особенности восприятия детьми формы предметов и геометрических фигур

«ГЕОМЕТРИЧЕСКАЯ ФИГУРА.

ОСОБЕННОСТИ ВОСПРИЯТИЯ ДЕТЬМИ

ФОРМЫ ПРЕДМЕТОВ И ГЕОМЕТРИЧЕСКИХ ФИГУР»

Подготовила: ст. воспитатель Чукур Л. В.

1. Понятие «геометрическая фигура». Особенности развития представлений о форме предметов у детей дошкольного возраста

Одним из свойств окружающих предметов является их форма. Форма предметов получила обобщенное отражение в геометрических фигурах.

Наблюдая за предметами окружающего мира, люди заметили, что есть некоторое общее свойство, позволяющее объединить предметы в одну группу. Это свойство было названо геометрической фигурой. Геометрическая фигура – это эталон для определения формы предмета, всякое непустое множество точек; обобщенное абстрактное понятие.

Само определение понятия геометрической фигуры дали древние греки. Они определили, что геометрической фигурой является внутренняя область, ограниченная замкнутой линией на плоскости. Активно это понятие применял в своей работе Евклид. Древние греки классифицировали все геометрические фигуры и дали им названия.

Упоминание о первых геометрических фигурах встречается и у древних египтян и древних шумеров. Учеными-археологами был найден папирусный свиток с геометрическими задачами, в которых упоминались геометрические фигуры. И каждая из них называлась каким-то определенным словом.

Таким образом, представление о геометрии и изучаемых этой наукой фигурах имели люди с давних времен, но название, «геометрическая фигура» и названия всем геометрическим фигурам дали древнегреческие ученые.

В наше время знакомство с геометрическими фигурами начинается с раннего детства и продолжается на всём пути обучения. Дошкольники, познавая окружающий мир, сталкиваются с разнообразием форм предметов, учатся называть и различать их, а затем знакомятся и со свойствами геометрических фигур.

Форма – это внешнее очертание предмета. Множество форм бесконечно.

Представления о форме предметов возникают у детей достаточно рано. В исследованиях Л. А. Венгера выясняется, возможно ли различение формы предметов детьми, у которых еще не сформировался акт хватания. В качестве индикатора он использовал ориентировочную реакцию ребенка в возрасте 3-4 месяцев.

Л. А. Венгер заметил также, что что на геометрической фигуре с изменением пространственной ориентации возникает такое же зрительное сосредоточение, как и на новой геометрической фигуре.

Исследования М. Денисовой и Н. Фигурина показали, что грудной ребенок по форме на ощупь определяет бутылочку, соску, материнскую грудь. Зрительно дети начинают различать форму предметов с 5 месяцев. При этом индикатором различения являются движения рук, корпуса по направлению к экспериментальному объекту и схватывание его (при пищевом подкреплении).

В других исследованиях выявлено, что, если предметы отличаются цветом, то ребенок 3-х лет выделяет их форму только в том случае, если предмет знаком ребенку из практического опыта (опыт манипуляций, действий).

Это доказывает и тот факт, что ребенок одинаково узнает прямые и перевернутые изображения (может рассматривать и понимать знакомые картинки, держа книжку «вверх ногами», предметы, окрашенные в несвойственные цвета (черное яблоко, но квадрат, повернутый на угол, т. е. в виде ромба, не узнает, так как исчезает непосредственное сходство формы предмета, которого нет в опыте.

2. Особенности восприятия детьми дошкольного возраста формы предметов и геометрических фигур

Одним из ведущих познавательных процессов детей дошкольного возраста является восприятие. Восприятие помогает отличить один предмет от другого, выделить какие-то предметы или явления из других похожих на него.

Первичное овладение формой предмета осуществляется в действиях с ним. Форма предмета, как таковая, не воспринимается отдельно от предмета, она является его неотъемлемым признаком. Специфические зрительные реакции прослеживания контура предмета появляются в конце второго года жизни и начинают предшествовать практическим действиям. Действия детей с предметами на разных этапах различны.

Исследования психолога С. Н. Шабалина показывают, что геометрическая фигура воспринимается дошкольниками своеобразно. Если взрослый воспринимает ведро или стакан как предметы, имеющие цилиндрическую форму, то в его восприятие включается знание геометрических форм. У дошкольника происходит обратное явление.

В 4-5 лет ребенок начинает сравнивать геометрическую фигуру с предметом: про квадрат говорит «это как платочек».

В результате организованного обучения дети начинают выделять в окружающих предметах знакомую геометрическую фигуру, сравнивать предмет с фигурой (стаканчик как цилиндр, крыша как треугольник, учится давать правильное название геометрической фигуры и формы предмета, в их речи появляются слова «квадрат», «круг», «квадратный», «круглый» и т. п.

Проблему знакомства детей с геометрическими фигурамии их свойствами следует рассматривать в двух аспектах:

• в плане сенсорного восприятия форм геометрических фигур и использования их как эталонов в познании форм окружающих предметов;

• в смысле познания особенностей их структуры, свойств, основных свя-зей и закономерностей в их построении, т. е. собственно геометри-ческого материала.

Контур предмета это общее начало, которое является исходным как для зрительного, так и для осязательного восприятия. Однако вопрос о роли контура в восприятии формы и формировании целостного образа требует еще дальнейшей разработки.

Первичное овладение формой предмета осуществляется в действиях с ним. Форма предмета, как таковая, не воспринимается отдельно от предмета, она является его неотъемлемым признаком. Специфические зрительные реакции прослеживания контура предмета появляются в конце второго года жизни и начинают предшествовать практическим действиям.

Уже на втором году жизни дети свободно выбирают фигурупо образцу из таких пар: квадрат и полукруг, прямоугольник и треугольник. Но различать прямоугольник и квадрат, квадрат и треугольник дети могут лишь после 2,5 лет. Отбор же по образцу фигур более сложной формы доступен примерно на рубеже 4-5 лет, а воспроизведение сложной фигуры осуществляют дети пятого и шестого года жизни.

Под обучающим воздействием взрослых восприятие геометрических фигур постепенно перестраивается. Геометрические фигуры начинают восприниматься детьми как эталоны, с помощью которых познание структуры предмета, его формы и размера осуществляется не только в процессе восприятия той или иной формы зрением, но и путем активного осязания, ощупывания ее под контролем зрения и обозначения словом.

Совместная работа всех анализаторов способствует более точному восприятию формы предметов. Чтобы лучше познать предмет, дети стремятся коснуться его рукой, взять в руки, повернуть; причем рассматривание и ощупывание различны в зависимости от формы и конструкции познаваемого объекта. Поэтому основную роль в восприятии предмета и определении его формы имеет обследование, осуществляемое одновременно зрительным и двигательно-осязательным анализаторами с последующим обозначением словом. Однако у дошкольников наблюдается весьма низкий уровень обследования формы предметов; чаще всего они ограничиваются беглым зрительным восприятием и поэтому не различают близкие по сходству фигуры (овал и круг, прямоугольник и квадрат, разные треугольники).

Сравнение фигуры с формой того или иного предмета помогает детям понять, что с геометрическими фигурами можно сравнивать разные предметы или их части. Так, постепенно геометрическая фигура становится эталоном определения формы предметов.

3. Особенности обследования и этапы обучения обследованию детьми дошкольного возраста формы предметов и геометрических фигур

Известно, что в основе познания всегда лежит сенсорное обследование, опосредованное мышлением и речью. В исследованиях Л. Венгера с детьми 2-3 лет индикатором зрительного различения формы предметов служили предметные действия ребенка.

По исследованиям С. Якобсон, В. Зинченко, А. Рузской дети 2-4 лет лучше узнавали предметы по форме, когда предлагалось сначала ощупать предмет, а потом найти такой же. Более низкие результаты наблюдались тогда, когда предмет воспринимался зрительно.

Исследования Т. Гиневской раскрывают особенности движений рук при обследовании предметов по форме. Детям завязывали глаза и предлагали ознакомиться с предметом путем осязания.

В 3-4 года – движения исполнительные (катают, стучат, возят). Движения немногочисленны, внутри фигуры, иногда (однократно) по осевой линии, много ошибочных ответов, смешение разных фигур. В 4-5 лет – движения установочные (зажимают в руке). Количество движений увеличивается в два раза; судя по траектории, ориентированы на размер и площадь; крупные, размашистые, обнаруживаются группы близко расположенных фиксаций, относящихся к наиболее характерным признакам фигуры; дают более высокие результаты. В 5-6лет – движения обследовательские (прослеживание контура, проверка на упругость). Появляются движения, прослеживающие контур, однако они охватывают наиболее характерную часть контура, другие части оказываются необследованными; движения внутри контура, количество то же, высокие результаты; как и в предыдущий период, наблюдается смешение близких фигур. В 6-7 лет – движения по контуру, пересечение поля фигуры, причем движения сосредотачиваются на наиболее информативных признаках, наблюдаются отличные результаты не только при узнавании, но и при воспроизведении.

Таким образом, для того, чтобы ребенок выделил существенные признаки геометрических фигур, необходимо их зрительное и двигательное обследование. Движения рук организовывают движения глаз и этому детей необходимо научить.

Этапы обучения обследованию

Второй этап обучения детей 5-6 лет должен быть посвящен формированию системных знаний о геометрических фигурах и развитию у них начальных приемов и способов «геометрического мышления».

«Геометрическое мышление» вполне возможно развить еще в дошкольном возрасте. В развитии «геометрических знаний» у детей прослеживается несколько различных уровней.

Первый уровень характеризуется тем, что фигура воспринимается детьми как целое, ребенок еще не умеет выделять в ней отдельные элементы, не замечает сходства и различия между фигурами, каждую из них воспринимает обособленно.

На втором уровне ребенок уже выделяет элементы в фигуре и устанавливает отношения как между ними, так и между отдельными фигурами, однако еще не осознает общности между фигурами.

На третьем уровне ребенок в состоянии устанавливать связи между свойствами и структурой фигур, связи между самими свойствами. Переход от одного уровня к другому не является самопроизвольным, идущим параллельно биологическому развитию человека и зависящим от возраста. Он протекает под влиянием целенаправленного обучения, которое содействует ускорению перехода к более высокому уровню. Отсутствие же обучения тормозит развитие. Обучение поэтому следует организовывать так, чтобы в связи с усвоением знаний о геометрических фигурах у детей развивалось и элементарное геометрическое мышление.

Познание геометрических фигур, их свойств и отношений расширяет кругозор детей, позволяет им более точно и разносторонне воспринимать форму окружающих предметов, что положительно отражается на их продуктивной деятельности (например, рисовании, лепке).

Большое значение в развитии геометрического мышления и про-странственных представлений имеют действия по преобразованию фигур (из двух треугольников составить квадрат или из пяти палочек сложить два треугольника).

Все эти разновидности упражнений развивают пространственные представления и начала геометрического мышления детей, формируют у них умения наблюдать, анализировать, обобщать, выделять главное, существенное и одновременно с этим воспитывают такие качества личности, как целенаправленность, настойчивость.

Итак, в дошкольном возрасте происходит овладение перцептивной и интеллектуальной систематизацией форм геометрических фигур. Перцептивная деятельность в познании фигур опережает развитие интеллектуальной систематизации.

Источник

Фигура (в геометрии)

Фигура — термин, формально применимый к произвольному множеству точек; тем не менее обычно фигурой называют множества на плоскости, которые ограничены конечным числом линий. Например: квадрат, круг, угол.

Смотреть что такое «Фигура (в геометрии)» в других словарях:

ФИГУРА (в геометрии) — ФИГУРА, в геометрии термин, применяемый к разнообразным множествам точек; обычно фигурой называют такие множества, которые можно представить состоящими из конечного числа точек, линий или поверхностей, в частности сами точки, линии и поверхности … Энциклопедический словарь

Фигура (в геометрии) — Фигура в геометрии, термин, применяемый к разнообразным множествам точек; обычно Ф. называют такие множества, которые можно представить состоящими из конечного числа точек, линий и поверхностей, в частности сами точки, линии и поверхности … Большая советская энциклопедия

ФИГУРА — (лат. figura, от fingere лепить, ваять). 1) наружный вид предмета, внешнее очертание. 2) в геометрии: очерк плоскости, чертеж. 3) в картах: туз, король, дама, валет. 4) в риторике: украшение речи, оборот, употребляемый для красоты слога. 5) в… … Словарь иностранных слов русского языка

ФИГУРА — в геометрии термин, применяемый к разнообразным множествам точек; обычно фигурой называют такие множества, которые можно представить состоящими из конечного числа точек, линий или поверхностей, в частности сами точки, линии и поверхности. Напр.… … Большой Энциклопедический словарь

Фигура — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Фигура (лат. figura внешний вид, образ) многозначный … Википедия

Фигура (форма предмета) — Фигура (лат. figura внешний вид, образ) многозначный термин, входит в состав сложных терминов. Фигура внешнее очертание, вид, форма предмета. Фигура очертание человеческого тела, телосложение. Фигура скульптурное, живописное или графическое… … Википедия

ФИГУРА — ФИГУРА, фигуры, жен. (лат. figura вид). 1. Внешнее очертание, вид, форма чего нибудь (устар.). Фигура земли (мат., астр.). 2. В геометрии часть плоскости, ограниченная замкнутой ломанной или кривой линией, а также вообще совокупность определенно… … Толковый словарь Ушакова

ФИГУРА — ФИГУРА, ы, жен. 1. В геометрии: часть плоскости, ограниченная замкнутой линией, а также совокупность определённым образом расположенных точек, линий, поверхностей или тел. 2. Положение, принимаемое кем чем н. при исполнении чего н. в движении (в… … Толковый словарь Ожегова

ГЕОМЕТРИИ ОБЗОР — Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… … Энциклопедия Кольера

Фигура (шахматы) — Шахматы шахматные часы, шахматная доска, начальная расстановка шахматных фигур Количество игроков 2 Диапазон возрастов 5+ Время установки Обычно 10 60 секунд Длительность партии 10 секунд 7 часов * Сложность правил … Википедия

Источник

Геометрические фигуры и их названия

При изучении элементарной геометрии необходимо точно определить, что именно мы будем изучать. Каждая наука ставит в центр внимания определенные объекты, или понятия, которые должны быть четко и однозначно определены. Это нужно, чтобы у оппонентов не возникало причин для оспаривания полученных в ходе эксперимента или теоретических разработок выводов.

Геометрии это касается в полной мере. Это одна из самых древних наук, возникшая из необходимости измерения площадей земельных участков, длины пути, расстояния между городами. Позже предметом прикладной геометрии стали архитектурные проекты, определение положения звезд и вычисление размеров земли. Но сугубо прикладных функций, полезных в повседневной жизни, она не утратила.

Геометрические фигуры

Первый вопрос, на который нужно ответить при изучении раздела, является ли точка геометрической фигурой? Ответ сформулировал еще Эвклид — точка, это простейшая фигура, элемент, из которого состоят все остальные фигуры. Линия, как ошибочно думают многие, не элементарная фигура, а совокупность точек.

Из точек состоят все простые и сложные геометрические построения. Это единственная фигура, размеры которой нельзя определить и указать, как нельзя и ничего определенного сказать о количестве точек в длинной или короткой линии, как нельзя определить с достаточно высокой точностью количество атомов в массивном бесформенном куске железа или камня.

Простейшие фигуры

Из точек можно создать любые линии, прямые, закругленные, зигзагообразные. Вариантов множество. Линия — вторая по простоте фигура после точки. Все линии подразделяются на несколько видов:

Прямая — бесконечная последовательность точек, определяющая кратчайшее расстояние между двумя произвольными точками. Крайние пункты могут быть расположены как на расстоянии в несколько миллиметров, так и на противоположных концах Вселенной. Но важно одно, прямая проходит через эти точки и стремиться дальше, ни начала, ни конца у нее нет.

Отрезок — частичный случай прямой. Это то же расстояние между двумя точками, но линия начинается на одной из них, и заканчивается на другой. Длина отрезка — величина вполне определенная измеряемая при помощи линейки, циркуля или рулетки, в зависимости от того, где находится данный отрезок.

Луч — часть прямой, лежащая по одну сторону от выбранной точки. Луч имеет начало, но не имеет конца. Как пример геометрического луча можно привести луч фонарика или лазерной указки. Началом является лампочка или светодиод, а дальше луч распространяется как угодно далеко.

Ломаная линия — совокупность отрезков, которые имеют по одной общей точке (начало следующего отрезка является концом предыдущего), но не лежат на одной прямой. Ломаная линия может быть как замкнутой, так и незамкнутой. Если линия замкнута, то образует другой геометрический объект — плоскую фигуру.

Дуга — совокупность точек, которые находятся на одной линии, но не на одной прямой. Частичный случай — фрагмент окружности.

Как уже говорилось, замкнутые ломаные линии образуют плоские фигуры. Почему плоские, мы рассматриваем только линии, которые находятся в системе координат XY, то есть, всех их можно нарисовать на листе бумаги не прибегая к такой сложной технике, как перспектива.

Треугольник — самая простая и самая устойчивая плоская фигура. Образована тремя отрезками, соединенными последовательно. Чтобы построить треугольник, необходимо, чтобы сумма длин любых двух отрезков превышала длину третьего. В зависимости от длин отрезков и углов между ними, треугольники подразделяются на равносторонние, равнобедренные, прямоугольные и произвольные (с тупыми и острыми углами).

Четырехугольники

Ромб — преобразованный квадрат. Длина всех сторон одинакова, но углы не прямые. Иногда квадрат называют прямоугольным ромбом.

Трапеция — фигура, у которой параллельны только две противоположные стороны, которые называют основанием. В зависимости от расположения двух оставшихся сторон, трапеция бывает прямоугольной и непрямоугольной.

Многоугольники

Назвать все виды фигур в геометрии очень сложно. Но необходимо назвать многоугольники — это категория фигур, у которых количество сторон более 4. Их так и называют — пятиугольник, шестиугольник, восьмиугольник. В научной литературе многоугольники получили название «полигон». Соответственно, пятиугольник — пентагон, восьмиугольник — октагон и т.д.

Круги и овалы

Это фигуры, которые состоят не из отрезков, а из последовательно расположенных точек, находящихся на определенном расстоянии от центра. У кругов это расстояние одинаковое, у овалов — разное.

Объемные фигуры

Если рассматривать геометрические построения в пространстве координат XYZ, то получаются объемные фигуры, или тела. Это куб, конус, цилиндр, шар и другие. Но их изучение — предмет другой темы.

Источник

Геометрические фигуры — виды с названиями и основные свойства

Скопление точек и линий на плоскости образует геометрические фигуры. Их названия зависят от свойств и особенностей. Фигура ограничена линиями и это условие влияет на многообразие форм. Каждый предмет индивидуален, имеет свои предназначения и задачи. Существуют простые и сложные фигуры, различающиеся личными параметрами.

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Общая характеристика

Предметы в геометрическом изображении состоят из отдельных частей: точек, линий, лучей, отрезков и вершин. Отдельно взятый предмет имеет свое предназначение.

Основные понятия о составляющих

Когда все точки фигуры принадлежат одной плоскости, она является плоской. К ней относятся отрезок, прямоугольник. Существуют геометрические объекты, не являющиеся разновидностью плоскости, — куб, шар, пирамида, призма.

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Минимальным объектом геометрии является точка. Определение того, какой она должна быть известно из школьного математического курса. Учебник характеризует ее как объект, не имеющий измерительных особенностей. Точка (Т) не содержит стандартных свойств: высоты, длины, радиуса, важным является только ее расположение. Обозначается числом или большой заглавной буквой. Например, точка называется D, E, F или 1, 2, 3. Несколько точек бывают отмечены разными цветами или буквами для удобного различия.

Линия состоит из множества точек. Измеряется длина этого составляющего объекта и обозначается маленькими буквами (abc).

Виды линий:

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Задания из школьной программы кажутся школьникам скучными, неинтересным, но эти азы являются основой составления фигур простых и более сложных.

Существуют подвиды прямой линии: пересекающиеся, содержащие общую точку и когда две прямые линии соединяются в одной точке.

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Луч в математике представляет часть прямой, имеющей начальную точку, но не имеющую конец. Это продолжение в одну сторону. Если Т разделяет линию пополам — получается два луча. Лучевые линии совпадают, когда расположены на одной прямой, начинаются в точке или направляются в одну сторону.

Отрезок представляет составную часть прямой, ограниченной двумя точками — она имеет начало и конец, поэтому измеряется. Длина отрезка представляет расстояние между его первой и последней точками. Через одну Т проводится бесконечное число линий, а через две — кривые и только одна прямая.

Стандартные объекты

К основным фигурам геометрии на плоскости относятся прямоугольник, треугольник, квадрат, многоугольник и круг. Прямоугольник выглядит как фигура, состоящая из четырех сторон и четырех прямых углов (ПУ). Противоположные стороны равны между собой. В математике прямоугольник обозначается четырьмя латинским заглавными буквами. Все ПУ расположены под 90 градусов. Прямоугольник с равными, одинаковыми сторонами называется квадратом.

Фигура, имеющая 3 стороны и столько же углов (вершин), называется треугольником. Существует классификация этой фигуры по типу У.

Виды треугольника в зависимости от угла (У):

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Геометрическая фигура с углами разной формы называется многоугольником. Его вершины представлены точками, соединяющими отрезками.

Радиус круга — промежуток от середины окружности до любой ее точки. Диаметр — это отрезок, соединяющий две точки окружности, проходящий через ее середину.

Параллелепипед — это призма, у которой основанием является параллелограмм. Когда все ребра параллелепипеда равны, получается куб.

Многогранная фигура, у которой одна грань является многоугольником, а остальные грани (боковые) — треугольники с общей вершиной, называется пирамидой.

Семиугольник (гептагон) — это многоугольник с 7 углами. Многоугольник представляет замкнутую ломанную линию.

Основные фигуры перечислены, но геометрия включает еще сложные объекты, использующиеся в различных областях жизни.

Сложные модели

В сложной геометрии выделяют фигуры с пространственным, плоским и объемным наполнением. Существует понятие геометрического тела, 3D-моделирование и проекция.

Определение тела и пространства

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Геометрическое тело (ГТ) представляет часть пространства, отделенное замкнутой поверхностью наружной границы. Это понятие относится к компактному множеству точек, а две из них соединяют отрезком, проходящим внутри границы тела. Внешняя граница ГТ является его гранью, которых может быть несколько. Множество плоских граней определяет вершины и ребра ГТ. Все геометрические тела делятся на многогранники и тела вращения.

Тела вращения — объемные тела, образующиеся из-за вращения плоской фигуры, ограниченной кривой, вокруг оси. Эта ось расположена в той же плоскости. При вращении контуров фигур вокруг собственной оси возникает поверхность вращения, а если вращать заполненные контуры — возникают объекты (шар).

Шар представляет множество точек, расположенных от данной точки на небольшом пространстве. Точка является центром шара, а расстояние ограничено радиусом.

В сферу геометрии входят плоские (двухмерные) и объемные пространственные фигуры (трехмерные).

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Плоские фигуры представляют точка, круг, полукруг, окружность, овал, прямоугольник, квадрат, луч, ромб, трапеция.

Существуют двухмерные фигуры (2D), представленные углом, многоугольником, четырехугольником, окружностью, кругом, эллипсом и овалом. Объекты 3D выделены двугранным или многогранным углом. Среди них известны призма, параллелепипед, куб, антипризма, пирамида, тетраэдр икосаэдр, бипирамида, геоид, эллипсоид, сфера шар и другие. Плоские фигуры изучает планиметрия, а объемные — стереометрия.

Объемные фигуры:

Конус образуется из треугольника с прямыми углами, при вращении его вокруг одного из катетов. Тороид возникает из замкнутой плоскости (окружности), вращающейся вокруг прямой и не пересекающей ее. Многогранник называется полиэдр, представляет замкнутую поверхность, состоящую из многоугольников.

Виды многогранников:

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

В школьной программе имеются специальные разделы геометрии, позволяющие распределить знания и не путать их в будущем. Это касается плоских, объемных фигур — одни изучает стереометрия, другие планиметрия.

Познавательные игрушки детям

Геометрия является наукой, которой можно знакомить детей с раннего возраста. Лучше распечатать картинки, геометрические фигуры для детей, затем нарисовать их вместе на чистом листе. Малышу первого года подобное занятие будет не очень интересным и понятным, а у дошкольника вызовет интерес, особенно если объекты изучения будут разноцветными или в необычном исполнении.

Основной материал для обучения детей:

Увлекательные, забавные, задорные стихи «Веселая геометрия для малышей» помогут детям быстро познакомиться и усвоить много важной информации о фигурах и размерах предметов. Веселые стишки помогут юному читателю соотнести малопонятные геометрические знания с обыденными предметами обихода. Например, в женской юбке представлена трапеция, в блюдце— круг, а в трубе цилиндр.

Что такое геометрическая фигура кратко. Смотреть фото Что такое геометрическая фигура кратко. Смотреть картинку Что такое геометрическая фигура кратко. Картинка про Что такое геометрическая фигура кратко. Фото Что такое геометрическая фигура кратко

Учить детей начинают с плоских фигурок, сделанных из цветной бумаги или фетра. Не нужно ограничивать ребенка в фантазии, ведь он различает фигуры по цветам и форме — треугольник, овал, круг, ромб, квадрат. Увлекательным будет занятие с использованием сортеров, пирамидок из различных геометрических объектов.

Ближе к дошкольному возрасту переходят на объемные фигуры, кубики, конусы, кольца и цилиндры. В школьном возрасте знания накопятся, и дети будут осознанно различать равнобедренный, равносторонний треугольник, три понятия: луч, отрезок, окружность.

Раздел математики геометрия изучает пространственные отношения и формы. Фигура как понятие, рассмотренное во всех учебниках геометрии, является пространственной формой.

Геометрию можно обнаружить везде — в любых окружающих предметах. Это современные здания, архитектурные строения, формы, космическая станция, интерьер квартиры, подводные лодки.

Математические знания являются профессионально важными для современных специальностей: дизайнеров и конструкторов, рабочих и ученых. Без знания основ геометрии невозможно построить здание или отремонтировать квартиру.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *