Что такое гидродинамика определение
Основы гидравлики
Основы гидродинамики
Гидродинамикой называют раздел гидравлики, в котором изучается движение жидкости, обусловленное действием приложенных к ней внешних сил.
Состояние реальной движущейся жидкости в каждой ее точке характеризуется не только плотностью и вязкостью, но и скоростью частиц жидкости, а также гидродинамическим давлением.
Под частицей в гидродинамике понимают условно выделенный объем жидкости, который настолько мал, что можно пренебречь изменением его формы при движении.
При изучении законов движения реальной жидкости необходимо учитывать ее вязкость, что усложняет решение задач гидродинамики, поэтому рассмотрим вначале уравнения движения идеальной жидкости, а затем внесем в них поправки, учитывающие свойства реальной жидкости.
Движение жидкости может быть равномерным и неравномерным.
Равномерным называют движение, при котором скорости в сходственных точках двух смежных сечений потока жидкости равны между собой. В противном случае движение неравномерное.
Если обратиться к предыдущему опыту с сосудом и конической трубкой, то можно заметить, что истечение жидкости через коническую трубку в обоих случаях (с постоянным и переменным уровнем в сосуде) равномерным не будет. Коническая трубка имеет непостоянное сечение, и скорость жидкости при движении по ней будет непрерывно изменяться.
Если заменить в этом опыте коническую трубку цилиндрической, то движение жидкости в ней будет равномерным.
Для того чтобы движение жидкости можно было считать полностью определенным, необходимо знать распределение величины и направления скорости частиц в потоке, а также зависимость этого распределения от времени.
Живым сечением элементарной струйки называют поверхность, нормальную (перпендикулярную) к вектору скорости, т. е. к линии тока. Скорость движения частиц жидкости во всех точках каждого живого сечения элементарной струйки можно считать одинаковой ввиду незначительных размеров сечения, а сами сечения по той же причине можно считать плоскими.
Живое сечение потока определяют как сумму живых сечений элементарных струек, из которых он состоит. Следовательно, живое сечение потока представляет собой поверхность, во всех точках которой скорости частиц жидкости нормальны к элементам этой поверхности.
Следует отметить, что живое сечение может иметь форму плоской поверхности лишь для идеальной жидкости, в общем случае (для реальных жидкостей) оно имеет форму сложной криволинейной поверхности, т. е. скорости частиц потока жидкости распределены в любом его живом сечении неравномерно.
Для труб круглого сечения, заполненных жидкостью, гидравлический радиус определяют по формуле:
Аналогично определяют гидравлический радиус в трубах других сечений:
для эллиптических труб с осями a и b :
для трубы в виде равностороннего треугольника со стороной a :
для трубы в виде прямоугольника со сторонами a и b :
для квадратной трубы со стороной a :
Кратко о гидродинамике: уравнения движения
Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.
В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.
Понятие сплошной среды
В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.
Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.
Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.
Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.
Уравнение неразрывности. Закон сохранения массы
Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:
И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):
где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.
В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:
Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.
Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:
Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:
Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:
которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.
Уравнение Эйлера. Закон сохранения импульса
Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.
Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:
Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:
Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.
В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:
Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.
Учёт вязкости. Уравнение Навье-Стокса
Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.
Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:
По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:
Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:
Оно допускает любой закон для вязкости.
Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:
в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:
где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости
носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:
Точные решения
Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.
Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.
Потенциальные течения
Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:
Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.
Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):
которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.
Простые течения вязкой жидкости
Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.
Сдвиговое течение Куэтта
Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.
В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:
Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.
Течение Пуазейля
Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:
На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.
Стекание слоя жидкости по наклонной плоскости
Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.
В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.
Гидродинамика
Полезное
Смотреть что такое «Гидродинамика» в других словарях:
гидродинамика — гидродинамика … Орфографический словарь-справочник
Гидродинамика — раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью,… … Энциклопедия техники
ГИДРОДИНАМИКА — (от греч. hydor вода и динамика), раздел гидроаэромеханики, в к ром изучается движение несжимаемых жидкостей и их вз ствие с тв. телами. Г. исторически наиболее ранний и сильно развитый раздел механики жидкостей и газов, поэтому иногда Г. не… … Физическая энциклопедия
ГИДРОДИНАМИКА — (от гидро. и динамика) раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в… … Большой Энциклопедический словарь
ГИДРОДИНАМИКА — ГИДРОДИНАМИКА, в физике раздел МЕХАНИКИ, который изучает движение текучих сред (жидкостей и газов). Имеет большое значение в промышленности, особенно химической, нефтяной и гидротехнике. Изучает свойства жидкостей, такие как молекулярное… … Научно-технический энциклопедический словарь
ГИДРОДИНАМИКА — ГИДРОДИНАМИКА, гидродинамики, мн. нет, жен. (от греч. hydor вода и dynamis сила) (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Толковый словарь Ушакова. Д.Н.… … Толковый словарь Ушакова
гидродинамика — сущ., кол во синонимов: 4 • аэрогидродинамика (1) • гидравлика (2) • динамика (18) … Словарь синонимов
ГИДРОДИНАМИКА — часть гидромеханики, наука о движении несжимаемых жидкостей под действием внешних сил и о механическом воздействии между жидкостью и соприкасающимися с нею телами при их относительном движении. При изучении той или иной задачи Г. применяет… … Геологическая энциклопедия
Гидродинамика — раздел гидромеханики, изучающий законы движения несжимаемых жидкостей и взаимодействия их с твердыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок и т. д. EdwART. Толковый Военно морской… … Морской словарь
гидродинамика — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN hydrodynamics … Справочник технического переводчика
ГИДРОДИНАМИКА — раздел (см.), изучающий законы движения несжимаемой жидкости и её взаимодействие с твёрдыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок, судов на подводных крыльях и т.д … Большая политехническая энциклопедия
Гидродинамика
Общие понятия гидродинамики
Описывает взаимодействие жидкости (реального газа) с движущимися и неподвижными поверхностями.
Перемещение жидкости принципиально отличается от движения твердых тел. В своем движении жидкость не может сохранять неизменным расстояние между ее частицами. Если рассматривать движение элементарного объема жидкости, то его можно представить как сумму трех движений: поступательного и вращательного перемещения всего объема жидкости как целого, и движение разных частиц рассматриваемого объема по отношению друг к другу. При движении жидкости следует учитывать массовые силы и силы трения (вязкость).
Задачи гидродинамики
Жидкость, находящаяся в движении обычно характеризуется при помощи двух параметров: скорости течения () и гидродинамического давления (
). Следовательно, к основным задачам гидродинамики относят определения этих параметров при известной системе действующих внешних сил.
В процессе движения жидкости и
способны изменяться в зависимости от времени и точки в пространстве. При этом выделяют два типа движения жидкости установившееся и неустановившееся.
Движение, при котором и
являются постоянными во времени для любой точки жидкости в пространстве и являются функция координат, называют установившимся. При неустановившемся течении скорость и давление являются функциями и от времени и от координат.
В гидродинамике используют понятие жидкой частицы. Это условно выделяемый элементарный объем жидкости, изменением формы которого можно пренебречь. Частица жидкости при своем движении описывает кривую, которая носит название траектории движения.
Потоком жидкости считают перемещающуюся массу жидкости, которая полностью или частично ограничена поверхностями. Эти поверхности могут образовываться самой жидкостью на фазовой границе или быть твердыми. Границы потоков – это стенки трубы, канала, поверхность, которую жидкость обтекает, открытая поверхность жидкости.
Небольшая сжимаемость жидкости позволяет во многих случаях полностью пренебречь изменением ее объема. Тогда говорят о несжимаемой жидкости. Это идеализация, которую часто используют. Говорят, что несжимаемая жидкость – предельный случай сжимаемой жидкости, когда для получения бесконечно больших давлений, достаточно бесконечно малых сжатий.
Жидкость, в которой при любом ее движении не возникают силы внутреннего трения, называют идеальной. Иначе говоря, в идеальной жидкости существуют только силы нормального давления, которые однозначно определяются степенью сжатия и температурой жидкости. Модель идеальной жидкости используют тогда, когда скорости изменения деформаций в жидкости малы.
Физическая величина, которая определяется нормальной силой, с которой жидкость действует на единицу площади поверхности, называют давлением ():
Давление при равновесии жидкости подчиняется закону Паскаля:
Давление в любой точке покоящейся жидкости одинаково во всех направлениях. Давление одинаково передается во всем объеме, которое жидкость занимает.
Сила давления на нижние слои жидкости больше, чем на верхние. Вследствие этого на тело, погруженное в жидкость (газ) действует выталкивающая сила, называемая силой Архимеда ():
где – плотность жидкости;
– объем тела, погруженного в жидкость.
В состоянии равновесия жидкости (газа) давление () меняется в зависимости от плотности (
и температуры (
) и однозначно определено ими. Соотношение:
в состоянии равновесия называют уравнением состояния.
Основные уравнения равновесия и движения жидкостей
Силы, действующие в жидкости, обычно разделяют на массовые (объемные) и поверхностные. Примером массовых сил может служить сила тяжести. Обозначим – объемную плотность массовых сил. Поверхностные силы – это силы, которые действуют на каждый объем жидкости, благодаря нормальным и касательным напряжениям, действующим на его поверхности со стороны соседних частей жидкости.
Основным уравнением гидростатики является выражение:
Уравнение (4) показывает, что при равновесии жидкости плотность силы, действующая на единицу объема жидкости ( есть градиент скалярной функции. Это необходимое и достаточное условие консервативности плотности силы
. Получается, что для равновесия жидкости надо, чтобы поле сил, в котором находится жидкость, было консервативным. В неконсервативных силовых полях равновесие не возможно.
В координатной форме формулу (4) запишем как:
Основным уравнением гидродинамики идеальной жидкости является выражение:
где ускорение жидкости в рассматриваемой точке. Уравнение (6) называется уравнением Эйлера.
Уравнением Бернулли получено швейцарским физиком Д. Бернулли в 1738 г. Это выражение закона сохранения энергии относительно установившегося течения идеальной жидкости:
где – статическое давление – давление жидкости на поверхности тела, которое она обтекает;
— динамическое давление;
— гидростатическое давление;
— высота столба жидкости.
Графически движение жидкости изображают при помощи линий тока. Их проводят так, что касательные к ним совпадают по направлению с вектором скорости в соответствующих точках пространства. Жидкость, ограниченную линиями тока называют трубкой тока. При стационарном течении жидкости форма и расположение линий тока не изменяется.
Движение несжимаемой жидкости подчиняется уравнению неразрывности, которое записывают как:
и
– сечения трубки тока.
Примеры решения задач
Задание | Запишите уравнение равновесия жидкости в случаях: а) когда массовых сил нет; б) жидкость находится в поле тяжести. Поясните, что следует из записанных уравнений? |
Решение | а) Если массовые силы равны нулю ( |
Следовательно, при равновесии давление одинаково по всему объему жидкости.
б) Если жидкость находится в поле тяжести, то . Направим ось Z вертикально вверх. Тогда основные уравнения равновесия можно записать как:
Из уравнений (1.2) следует, что при механическом равновесии давление не зависит от координат x, y. Оно остается постоянным в любой горизонтальной плоскости . Горизонтальные плоскости являются плоскостями равного давления. Так, свободная поверхность жидкости является горизонтальной, так как она находится под постоянным атмосферным давлением. Из третьего уравнения системы (1.2) следует, что для механического равновесия надо, чтобы
являлось функцией только от
. Если зависимостью ускорения свободного падения от широты и долготы пренебречь, то плотность изменяется только в зависимости от высоты. А из уравнения состояния:
следует, что при механическом равновесии давление, температура и плотность жидкости зависят только от и не могу зависеть от
.
Пусть жидкость однородна и несжимаема, что означает:
Кроме того будем считать, что , тогда проинтегрировав уравнение
, имеем:
где – давление жидкости на высоте
. Формула (5) определяет давление жидкости на дно и стенки сосуда, на поверхность тела погруженного в жидкость.
Задание | Считая жидкость идеальной, определите, какова скорость течения жидкости из маленького отверстия, сделанного в стенке сосуда, если высота уровня жидкости над ним составляет |
Решение | Сделаем рисунок. |
В качестве основы для решения задачи используем уравнение Бернулли, которое запишем в виде:
Запишем уравнение неразрывности:
Принимая во внимание последнее неравенство в (2.2) уравнение Бернулли (2.1) представим в виде:
Из формулы (2.3) выразим искомую скорость:
Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.