Что такое гистограмма частот
Полигон частот и гистограмма частот
Вы будете перенаправлены на Автор24
Полигон частот
Пусть нам дан ряд распределения, записанный с помощью таблицы:
То есть, для построения полигона частот необходимо на оси абсцисс откладывают значения вариант, а по оси ординат соответствующие частоты. Полученные точки соединяют ломанной:
Рисунок 2. Полигон частот.
Помимо обычной частоты существует еще понятие относительной частоты.
Получаем следующую таблицу распределения относительных частот:
То есть, для построения полигона частот необходимо на оси абсцисс откладывают значения вариант, а по оси ординат соответствующие относительные частоты. Полученные точки соединяют ломанной:
Рисунок 4. Полигон относительных частот.
Гистограмма частот
Помимо понятия полинома для непрерывных значений существует понятие гистограммы.
Рисунок 5. Гистограмма частот.
Готовые работы на аналогичную тему
Рисунок 6. Гистограмма относительных частот.
Примеры задачи на построение полигона и гистограммы
Пусть распределение частот имеет вид:
Построить полигон относительных частот.
Получим следующий полигон относительных частот.
Дан ряд непрерывного распределения частот:
Получаем следующую гистограмму частот:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 25 02 2021
3. Интервальный вариационный ряд.
Гистограмма относительных частот
На предыдущем уроке по математической статистике (Занятие 1) мы разобрали дискретный вариационный ряд (Занятие 2), и сейчас на очереди интервальный. Его понятие, графическое представление (гистограмма и эмпирическая функция распределения), а также рациональные методы вычислений, как ручные, так и программные. В том числе будут рассмотрены задачи с достаточно большим количеством (100-200) вариант – что делать в таких случаях, как обработать большой массив данных.
Предпосылкой построения интервального вариационного ряда (ИВР) является тот факт, что исследуемая величина принимает слишком много различных значений. Зачастую ИВР появляется в результате измерения непрерывной характеристики изучаемых объектов. Типично – это время, масса, размеры и другие физические характеристики. Подходящие примеры встретились в первой же статье по матстату, вспоминаем Константина, который замерял время на лабораторной работе и Фёдора, который взвешивал помидоры.
Для изучения интервального вариационного ряда затруднительно либо невозможно применить тот же подход, что и для дискретного ряда. Это связано с тем, что ВСЕ варианты многих ИВР различны. И даже если встречаются совпадающие значения, например, 50 грамм и 50 грамм, то связано это с округлением, ибо полученные значения всё равно отличаются хоть какими-то микрограммами.
Поэтому для исследования ИВР используется другой подход, а именно, определяется интервал, в пределах которого варьируются значения, затем данный интервал делится на частичные интервалы, и по каждому интервалу подсчитываются частоты – количество вариант, которые в него попали.
Разберём всю кухню на конкретной задаче, и чтобы как-то разнообразить физику, я приведу пример с экономическим содержанием, кои десятками предлагают студентам экономических отделений. Деньги, строго говоря, дискретны, но если надо, непрерывны :), и по причине слишком большого разброса цен, для них целесообразно строить интервальный ряд:
По результатам исследования цены некоторого товара в различных торговых точках города, получены следующие данные (в некоторых денежных единицах): 
Требуется составить вариационный ряд распределения, построить гистограмму частот, гистограмму и полигон относительных частот + бонус – эмпирическую функцию распределения.
Такое обывательское исследование проводит каждый из нас, начиная с анализа цены на пакет молока вот это дожил в нескольких магазинах, и заканчивая ценами на недвижимость по гораздо бОльшей выборке. Что называется, не какие-то там унылые сантиметры.
Поэтому представьте свой любимый товар / услугу и наслаждайтесь решением🙂
Очевидно, что перед нами выборочная совокупность объемом 
Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только ручка, карандаш, тетрадь и калькулятор.
Тактика действий похожа на исследование дискретного вариационного ряда. Сначала окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае напрашиваются промежутки единичной длины. Записываем их на черновик:
Теперь начинаем вычёркивать числа из исходного списка и записывать их в соответствующие колонки нашей импровизированной таблицы: 
После этого находим самое маленькое число в левой колонке и самое большое значение – в правой. Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)

Вычислим размах вариации:

Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт существует формула Стерджеса:



* есть на любом более или менее приличном калькуляторе
В нашем случае получаем:

Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии задачи прямо сказано, на какое количество интервалов нужно проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует придерживаться именно этого указания.
Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную группировку:

И коль скоро мы прибавили 0,04, то по 5 частичным интервалам у нас получается «перебор»: 





– убеждаемся в том, что самая большая варианта 
Далее подсчитываем частоты по каждому интервалу. Для этого в черновой «таблице» обводим значения, попавшие в тот или иной интервал, подсчитываем их количество и вычёркиваем: 
Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11 штук) и вычеркнул и так далее.
Правило: если варианта попадает на «стык» интервалов, то её следует относить в правый интервал. У нас такая варианта встретилась одна: 

В результате получаем интервальный вариационный ряд: 
при этом обязательно убеждаемся в том, что ничего не потеряно: 
Изобразим ряд графически. Для этого по каждому интервалу нужно найти (не пугаемся): плотность частот 




В том случае, если интервалы имеют разные длины 

Дело за чертежами. Один за другим.
Гистограмма частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим плотностям частот: 
При этом вполне допустимо использовать нестандартную шкалу по оси абсцисс, в данном случае я начал нумерацию с четырёх.
Площадь гистограммы частот в точности равна объёму совокупности: 



Гистограмма относительных частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим плотностям относительных частот: 
Площадь такой гистограммы равна единице: 
И для ИВР чаще всего строят гистограмму именно относительных частот. А вместе с ней нередко и полигон таковых частот. Без проблем, полигон относительных частот – это ломаная, соединяющая соседние точки 


По сути, здесь мы приблизили интервальный ряд дискретным, выбрав в качестве вариант 
Автоматизируем решение в Экселе:

(видео с неточностями, скоро исправлю и перезалью)
И бонус – эмпирическая функция распределения. Она определяется точно так же, как в дискретном случае:


Но вот построить её для интервального ряда намного проще. Находим накопленные относительные частоты:
И строим кусочно-ломаную линию, с промежуточными точками 



При этом 



Напоминаю, что данная функция не убывает, принимает значения из промежутка 
Эмпирическая функция распределения является аналогом функции распределения НСВ и приближает теоретическую функцию 
Помимо перечисленных графиков, вариационные ряды также можно представить с помощью кумуляты и огивы частот либо относительных частот, но в классическом учебном курсе эта дичь редкая, и поэтому о ней буквально пару абзацев:
Кумулята – это ломаная, соединяющая точки:




* 
В последнем случае кумулята относительных частот 
Огива – это обратная функция по отношению к кумуляте – здесь варианты откладываются по оси ординат, а накопленные частоты либо относительные частоты – по оси абсцисс.
С построением данных линий, думаю, проблем быть не должно, чего не скажешь о другой проблеме. Хорошо, если в вашей задаче всего лишь 20-30-50 вариант, но что делать, если их 100-200 и больше? В моей практике встречались десятки таких задач, и ручной подсчёт здесь уже не торт. Считаю нужным снять небольшое видео:

Ну, теперь вы монстры 8-го уровня 🙂
Но не всё так сурово. В большинстве задач вам предложат готовый вариационный ряд, и на счёт молока, то, конечно, была шутка:
Выборочная проверка партии чая, поступившего в торговую сеть, дала следующие результаты:
Требуется построить гистограмму и полигон относительных частот, эмпирическую функцию распределения
Проверяем свои навыки работы в Экселе! (исходные числа и краткая инструкция прилагается) И на всякий случай краткое решение для сверки в конце урока. Должен признаться, я немного усложнил это задание, сделав интервалы разной длины – для лучшего понимания материала.
Что ещё важного по теме? Время от времени встречаются ИВР с открытыми крайними интервалами, например:
В таких случаях, что убийственно логично, интервалы «закрывают». Обычно поступают так: сначала смотрим на средние интервалы и выясняем длину частичного интервала: 
Ну вот, пожалуй, и вся практически важная информация по ИВР.
На очереди числовые характеристики вариационных рядов и начнём мы с их центральных характеристик, а именно – Моды, медианы и средней.
Пример 7. Решение: в данной задаче интервалы имеют разные длины 
Построим гистограмму относительных частот:
Построим полигон относительных частот:
Построим эмпирическую функцию распределения:
Автор: Емелин Александр
(Переход на главную страницу)

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5




















