Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция β€” это функция, значСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊ значСниям Π΅Ρ‘ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числа T (ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚ нуля).

Ѐункция y=f(x) называСтся пСриодичСской, Ссли сущСствуСт Ρ‚Π°ΠΊΠΎΠ΅ число Tβ‰ 0, Ρ‡Ρ‚ΠΎ для любого x ΠΈΠ· области опрСдСлСния этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ равСнства:

Число T Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x).

Из опрСдСлСния слСдуСт, Ρ‡Ρ‚ΠΎ значСния x-T ΠΈ x+T Ρ‚Π°ΠΊΠΆΠ΅ входят Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x).

Бвойства пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1) По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для любого x ΠΈΠ· области опрСдСлСния y=f(x) Ссли T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ f(x-T)= f(x)=f(x+T).

2) Для любого x ΠΈΠ· области опрСдСлСния y=f(x) Ссли T1 β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ

Π’Π°ΠΊ ΠΊΠ°ΠΊ T2 Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x), Ρ‚ΠΎ для Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° x-T1

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, число T1+T2 являСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x).

3) Π­Ρ‚ΠΎ свойство нСпосрСдствСнно Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· свойства 2, Ссли T Π²Π·ΡΡ‚ΡŒ Π² качСствС слагаСмого n Ρ€Π°Π·.

4) Если T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x), Ρ‚ΠΎ для Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° kx+b

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π½Π°Ρ‡ΠΈΡ‚ число T/k β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(kx+b).

5) Π­Ρ‚ΠΈ свойства ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ нСпосрСдствСнно ΠΈΠ· опрСдСлСния.

НапримСр, для суммы f(x) ΠΈ g(x):

Из свойства 3 слСдуСт, Ρ‡Ρ‚ΠΎ каТдая пСриодичСская функция ΠΈΠΌΠ΅Π΅Ρ‚ бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ².

Если срСди всСх ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) сущСствуСт наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄, Ρ‚ΠΎ Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π³Π»Π°Π²Π½Ρ‹ΠΌ (ΠΈΠ»ΠΈ основным) ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1) ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ для любого x Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ равСнства

Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x ΠΈ y=cos x ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСриодичСскими с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=2Ο€.

2) Π’Π°ΠΊ ΠΊΠ°ΠΊ для любого x ΠΈΠ· области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=tg x выполняСтся равСнство

tg (x-Ο€)=tg x =tg (x-Ο€), Ρ‚ΠΎ y=tg x β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=Ο€.

Аналогично, y=ctg x β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=Ο€.

3) Π’Π°ΠΊ ΠΊΠ°ΠΊ для любого Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа x ΠΈ любого Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа k выполняСтся равСнство D(x+k)=D(x), Ρ‚ΠΎ функция Π”ΠΈΡ€ΠΈΡ…Π»Π΅ D(x) β€” пСриодичСская с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ k∈Q, kβ‰ 0.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ k β€” любоС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ наимСньшСС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, функция Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°.

4) Рассмотрим частный случай Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=b, b β€” Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число (b∈R). Π­Ρ‚Π° функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π° мноТСствС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈ ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ СдинствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y=b, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ для любого Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа m (m∈R), y(x)=y(x+m)=b.

Π—Π½Π°Ρ‡ΠΈΡ‚ y=b β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=m, Π³Π΄Π΅ m∈R, mβ‰ 0.

Π’Π°ΠΊ ΠΊΠ°ΠΊ m β€” любоС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, ΠΎΠ½ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ наимСньшСго ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ значСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ функция y=b Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°.

5) Π’Π°ΠΊ ΠΊΠ°ΠΊ для любого Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ x ΠΈ любого Ρ†Π΅Π»ΠΎΠ³ΠΎ k выполняСтся равСнство =, Ρ‚ΠΎ функция Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ части числа y= β€” пСриодичСская с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ kβˆˆΞ–, kβ‰ 0.

НаимСньшим ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ†Π΅Π»Ρ‹ΠΌ числом являСтся Π΅Π΄ΠΈΠ½ΠΈΡ†Π°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, T=1 β€” Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=.

Π“Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=sin x ΠΈ y=cos x T=2Ο€.

Π“Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=tg x ΠΈ y=ctg x T=Ο€.

Если T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x, Ρ‚ΠΎ sin (x-2Ο€)=sin x = sin (x-2Ο€) для любого x.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎ Π΅ΡΡ‚ΡŒ любой ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ 2Ο€n, n∈Z.

НаимСньшСС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΏΡ€ΠΈ n=1 ΠΈ ΠΎΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ T=2Ο€.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, 2Ο€ β€” Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x.

Аналогично Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ утвСрТдСния ΠΎ Π³Π»Π°Π²Π½ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=cos x, y=tg x ΠΈ y=ctg x.

Из 4-Π³ΠΎ свойства пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ нСпосрСдствСнно слСдуСт, Ρ‡Ρ‚ΠΎ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=sin (kx+b) ΠΈ y=cos (kx+b) (kβ‰ 0) наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π° для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=tg (kx+b) ΠΈ y=ctg (kx+b) (kβ‰ 0) наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ повторяСтся Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ T (Π½Π° оси Ox).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π°Π½Π° Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°

ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ T.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, выполняСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ пСрСнос этой части Π³Ρ€Π°Ρ„ΠΈΠΊΠ° вдоль оси Ox Π½Π° Β±T, Β±2T,… :

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если F(x) β€” функция Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° x, Ρ‚ΠΎ ΠΎΠ½Π° называСтся пСриодичСской, Ссли Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ΅ число T, Ρ‡Ρ‚ΠΎ для любого x F(x + T) = F(x). Π­Ρ‚ΠΎ число T ΠΈ называСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈ нСсколько. НапримСр, функция F = const для Π»ΡŽΠ±Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π° ΠΏΠΎΡ‚ΠΎΠΌΡƒ любоС число ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π΅Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ.

ΠžΠ±Ρ‹Ρ‡Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° интСрСсуСт наимСньший Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΉ Π½ΡƒΠ»ΡŽ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π•Π³ΠΎ для краткости ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ просто ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ.

Если F(x) β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T, ΠΈ для Π½Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° производная, Ρ‚ΠΎ эта производная f(x) = Fβ€²(x) β€” Ρ‚ΠΎΠΆΠ΅ пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T. Π’Π΅Π΄ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x Ρ€Π°Π²Π½ΠΎ тангСнсу ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π΅Π΅ ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ оси абсцисс, Π° ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ пСрвообразная пСриодичСски повторяСтся, Ρ‚ΠΎ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡ‚ΡŒΡΡ ΠΈ производная. НапримСр, производная ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ sin(x) Ρ€Π°Π²Π½Π° cos(x), ΠΈ ΠΎΠ½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½Π°. БСря ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos(x), Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ –sin(x). ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ сохраняСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎ.

Однако ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ Π½Π΅ всСгда Π²Π΅Ρ€Π½ΠΎ. Π’Π°ΠΊ, функция f(x) = const пСриодичСская, Π° Π΅Π΅ пСрвообразная F(x) = const*x + C β€” Π½Π΅Ρ‚.

Если F1(x) ΠΈ F2(x) β€” пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈ ΠΈΡ… ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹ T1 ΠΈ T2 соотвСтствСнно, Ρ‚ΠΎ сумма этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ пСриодичСской. Однако Π΅Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ простой суммой ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² T1 ΠΈ T2. Если Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ дСлСния T1/T2 β€” Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚ΠΎ сумма Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½Π°, ΠΈ Π΅Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΌΡƒ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΠΊΡ€Π°Ρ‚Π½ΠΎΠΌΡƒ (НОК) ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² T1 ΠΈ T2. НапримСр, Ссли ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 12, Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π²Ρ‚ΠΎΡ€ΠΎΠΉ β€” 15, Ρ‚ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΈΡ… суммы Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ НОК (12, 15) = 60.

Наглядно это ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ: Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ΄ΡƒΡ‚ с Ρ€Π°Π·Π½ΠΎΠΉ Β«ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ шага», Π½ΠΎ Ссли ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΈΡ… ΡˆΠΈΡ€ΠΈΠ½ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ Ρ€Π°Π½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ·Π΄Π½ΠΎ (Π° Ρ‚ΠΎΡ‡Π½Π΅Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‡Π΅Ρ€Π΅Π· НОК шагов), ΠΎΠ½ΠΈ снова ΡΡ€Π°Π²Π½ΡΡŽΡ‚ΡΡ, ΠΈ ΠΈΡ… сумма Π½Π°Ρ‡Π½Π΅Ρ‚ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ пСриодичСскими функциями ΠΌΡ‹ встрСчаСмся Π² школьном курсС Π°Π»Π³Π΅Π±Ρ€Ρ‹. Π­Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, всС значСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄. Как Π±ΡƒΠ΄Ρ‚ΠΎ ΠΌΡ‹ ΠΊΠΎΠΏΠΈΡ€ΡƒΠ΅ΠΌ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° β€” ΠΈ повторяСм этот ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ Π½Π° всСй области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НапримСр, β€” пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π°Π΄ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

НапримСр, β€” пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Но Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСриодичСскими. Если Π²Ρ‹ ΡƒΡ‡ΠΈΡ‚Π΅ΡΡŒ Π² матклассС ΠΈΠ»ΠΈ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ курсС Π²ΡƒΠ·Π° β€” Π²Π°ΠΌ ΠΌΠΎΠ³ΡƒΡ‚ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒΡΡ Π²ΠΎΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π•Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ Π΄Π²ΡƒΠΌ ΠΈ НайдитС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСния

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π²ΠΎΡ‚ Ρ‚Π°ΠΊ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Π²Π΅Π΄Π΅Ρ‚ сСбя функция Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… β€” ΠΌΡ‹ Π½Π΅ Π·Π½Π°Π΅ΠΌ. Но Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ состоит ΠΈΠ· ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ элСмСнтов Π΄Π»ΠΈΠ½ΠΎΠΉ 2, Ρ‡Ρ‚ΠΎ ΠΈ нарисовано.

2. Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ‡Π΅Ρ‚Π½ΠΎΠΉ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ совпадаСт с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΎΡ‚ 0 Π΄ΠΎ 1; ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ f(4 ).

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ функция чСтная, Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ симмСтричСн ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΡ€ΠΈ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ части Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΡ‚ 0 Π΄ΠΎ 1.

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 2. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠΌ пСриодичСски участок Π΄Π»ΠΈΠ½Ρ‹ 2, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡƒΠΆΠ΅ построСн.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

3. НайдитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ получаСтся ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сТатиСм Π² 3 Ρ€Π°Π·Π° ΠΏΠΎ оси X (смотри Ρ‚Π΅ΠΌΡƒ Β«ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ).

РассуТдая Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ На ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ укладываСтся Ρ€ΠΎΠ²Π½ΠΎ 5 ΠΏΠΎΠ»Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

4. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 12, Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 8. НайдитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΌΡƒ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΠΊΡ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² слагаСмых.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Β§ 13. Бвойства тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ОбъяснСниС и обоснованиС

лСния этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииНапримСр, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” это ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ

окруТности. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, Ссли Ρ‚ΠΎΡ‡ΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ, a это Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ½Π°Ρ…ΠΎΠ΄ΠΈΡ‚-

Π²Π΅Ρ€Ρ‚ΠΈ, Ρ‚ΠΎ Π΅Π΅ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, ΠΈ поэтому Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ‚ΠΎΠΆΠ΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½.

Аналогично, учитывая, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” это абсцисса ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ,

ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ>0 Π² I ΠΈ IV чСтвСртях (абсцисса Ρ‚ΠΎΡ‡ΠΊΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°)

ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииЀункция y = f (x) называСтся пСриодичСской с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T β‰  0, Ссли для

любого x ΠΈΠ· области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ числа (x + T) ΠΈ (x – T) Ρ‚Π°ΠΊΠΆΠ΅

Из ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ опрСдСлСния ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ f (x – T) = f ((x – T) + T) =

= f (x), Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, Ссли T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f (x), Ρ‚ΠΎ ΠΈ – T Ρ‚ΠΎΠΆΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ этой

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииУчитывая, Ρ‡Ρ‚ΠΎ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности числам (ΡƒΠ³Π»Π°ΠΌ) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ³Π΄Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функциисоотвСтствуСт ΠΎΠ΄Π½Π° ΠΈ Ρ‚Π° ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ° (рис. 71), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎΠ³Π΄Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииявляСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈ k = 1 ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” это ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ эти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ мСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅-

Ρ€ΠΈΠΎΠ΄. Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Π±ΠΎΠ³ΠΎ значСния x выполняСтся равСнство cos (x + T) = cos x. Взяв x = 0,

ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ cos T = 1. Но это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности ΠΏΡ€ΠΈ

ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ Π½Π° ΡƒΠ³ΠΎΠ» T Ρ‚ΠΎΡ‡ΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииснова ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ,

Π³Π΄Π΅ k ∈ Z. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, любой ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ косинуса Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ косинуса.Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ sin x, достаточно Π² равСнствС sin (x + T) = sin x, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π²Ρ‹ΠΏΠΎΠ»-

няСтся для Π»ΡŽΠ±Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ x, Π²Π·ΡΡ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииНо это

ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅ Π½Π° ΡƒΠ³ΠΎΠ» Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ‚ΠΎΡ‡ΠΊΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ‚ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ A (0;1)

(рис. 71), Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,

любой ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ синуса Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ΠΈΡ‚,

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈβ€” наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ косинуса.Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииЕсли ΡƒΡ‡Π΅ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности Ρ‚ΠΎΡ‡ΠΊΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡΠ²Π»ΡΡŽΡ‚ΡΡ

Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌΠΈ, Ρ‚ΠΎ этим Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ соотвСтствуСт ΠΎΠ΄Π½Π° ΠΈ Ρ‚Π° ΠΆΠ΅

Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π° Π»ΠΈΠ½ΠΈΠΈ тангСнсов (рис. 72) ΠΈΠ»ΠΈ Π½Π° Π»ΠΈΠ½ΠΈΠΈ котангСнсов (рис. 73). Π’ΠΎΠ³Π΄Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ‚Π°ΠΊΠΆΠ΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ tg x ΠΈ ctg x являСтся Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ(k β‰  0, k ∈ Z).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаимСньшим ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ tg x ΠΈ ctg x явля-

Стся Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ это, достаточно Π² равСнствС tg (x + T) = tg x Π²Π·ΡΡ‚ΡŒ x = 0.

Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ tg T = 0. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, T =Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π³Π΄Π΅ k ∈ Z. Π˜Ρ‚Π°ΠΊ, любой

ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ тангСнса Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΊΡ€Π°Ρ‚Π½Ρ‹ΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ° Π·Π½Π°Ρ‡ΠΈΡ‚, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ— наимСньший ΠΏΠΎ-

Π»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ тангСнса. Аналогично Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌ равСнствС

для ctg x достаточно Π²Π·ΡΡ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρ†ΠΈΠΈ y = f (x), Π½Π°ΠΏΠΎΠΌΠ½ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f (x)

ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (x; y) = (x; f (x)). ΠŸΠ΅Ρ€Π²Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° для Ρ‚ΠΎΡ‡Π΅ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π²Ρ‹-

бираСтся ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ ΠΈΠ· области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΊΠ°ΠΊ

ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x + T (ΠΈΠ»ΠΈ Π² ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅ β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅

x + kT ΠΏΡ€ΠΈ Ρ†Π΅Π»ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ k) ΠΈ ΡƒΡ‡Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ для пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

f(x + T) = f(x – T) = f (x) (Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС f (x + kT) = f (x)). Π’ΠΎΠ³Π΄Π° Π³Ρ€Π°Ρ„ΠΈ-

ΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f (x) Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ° M1 ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ

плоскости с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ:

(x + T; y) = (x + T; f (x + T)) = (x + T; f (x)).

Π½Ρ‹ΠΌ пСрСносом вдоль оси Ox Π½Π° T Π΅Π΄ΠΈΠ½ΠΈΡ† (рис. 74). Π’ ΠΎΠ±Ρ‰Π΅ΠΌ случаС Ρ‚ΠΎΡ‡ΠΊΡƒ

рСносом вдоль оси Ox Π½Π° kT Π΅Π΄ΠΈΠ½ΠΈΡ†. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ T

Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡ‚ΡŒΡΡ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для

построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T достаточно

ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π½Π° любом ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ T(Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π° ΠΏΡ€ΠΎΠΌΠ΅-

ΠΆΡƒΡ‚ΠΊΠ΅ [0;T]), Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ линию ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ пСрСнСсти Π²ΠΏΡ€Π°Π²ΠΎ

ΠΈ Π²Π»Π΅Π²ΠΎ вдоль оси Ox Π½Π° расстояниС kT, Π³Π΄Π΅ k β€” любоС Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ число. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡

Π—Π°Π΄Π°Ρ‡Π° 1 ΠŸΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Ρ€ΠΈΠ³ΠΎ-

номСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°Π΄Π°Ρ‡Π° 1 Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅: Ссли функция y = f (x) пСриодичСская

с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T, Ρ‚ΠΎ функция y = Af (kx + b) Ρ‚Π°ΠΊΠΆΠ΅ пСриодичСская

с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ(A, k, b β€” Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа ΠΈ k β‰  0).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ Π² Π·Π°Π΄Π°Ρ‡Π΅ 2 для нахоТдСния ΠΏΠ΅Ρ€ΠΈΠΎ-

1) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииСсли функция sin x ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ функция sin 4x ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

2) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ функцииСсли функция tg x ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ,Ρ‚ΠΎ функция Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Вопросы для контроля

Π± *) ΠžΠ±ΠΎΡΠ½ΡƒΠΉΡ‚Π΅ Π·Π½Π°ΠΊΠΈ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈ-

2. Π°) КакиС ΠΈΠ· тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌΠΈ, Π° ΠΊΠ°ΠΊΠΈΠ΅

Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌΠΈ? ΠŸΡ€ΠΈΠ²Π΅Π΄ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ использования чСтности ΠΈ нСчСтности

для вычислСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π± *) ΠžΠ±ΠΎΡΠ½ΡƒΠΉΡ‚Π΅ Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈΠ»ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈ-

3. Π°) Какая функция называСтся пСриодичСской? ΠŸΡ€ΠΈΠ²Π΅Π΄ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹.

Π± *) ΠžΠ±ΠΎΡΠ½ΡƒΠΉΡ‚Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π£ΠΊΠ°ΠΆΠΈ-

Ρ‚Π΅ наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ для синуса, косинуса, тангСнса

ΠΈ котангСнса ΠΈ обоснуйтС, Ρ‡Ρ‚ΠΎ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ случаС этот ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒ-

Π½ΠΎ являСтся наимСньшим ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ.

УпраТнСния

1. ΠŸΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅-

ской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅:

1) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ2) sin (–750Β°); 3) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ4) ctg 945Β°;

5) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ6) cos (–3630Β°); 7) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ8) tg 600Β°.

2*. Π‘Ρ€Π΅Π΄ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ пСриодичСскиС ΠΈ ΡƒΠΊΠ°ΠΆΠΈΡ‚Π΅ наимСньший

ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ…:

1) f(x)= x^2; 2) f(x)= sin 2x; 3) f(x)= | x |; 4) f(x)= tg 3x; 5)f(x) = 3.

3. НайдитС ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

1) y= cos 2x; 2)y = tg 5x; 3) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ4) y = ctg 3x; 5) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

4. На ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· рисунков 75–78 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ΅Ρ€ΠΈΠΎ-

дичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T. ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [–2T; 3T].

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *