Что такое гмп в автобусе

Устройство автомобилей

Гидромеханические коробки передач

Гидромеханическая передача является комбинированной, в которой наряду с гидротрансформатором применяется ступенчатая коробка передач. Обычно такую коробку передач сокращенно называют ГМП или ГМКП.

Гидротрансформатор, как и гидромуфта был изобретен немецким профессором Германом Феттингером в начале прошлого века. Прежде чем найти применение на автомобилях, эти гидродинамические передачи использовались в судостроении.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро¬трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.

В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и вальные ступенчатые коробки передач с автоматическим управлением.

Устройство и работа гидротрансформатора, а также его отличие от гидромуфты подробнее рассмотрено здесь.

В некоторых случаях гидротрансформатор устанавливается дополнительно к стандартному фрикционному сцеплению и ступенчатой коробке передач, при этом переключение передач происходит ручным способом.
В такой конструкции достаточно однодискового сцепления, так как оно служит только для отключения первичного вала коробки передач от турбинного колеса трансформатора при переключении передач, а плавность увеличения крутящего момента обеспечивает гидротрансформатор.
Достоинством такой передачи является относительная простота конструкции и управления по сравнению с автоматизированной передачей. Однако наиболее часто гидротрансформатор используется в сочетании двух- или трехступенчатой коробкой передач без стандартного фрикционного сцепления.
Коробки передач выполняются вальными или чаще планетарными. Управление переключением передач автоматическое или полуавтоматическое.

Двухступенчатая вальная коробка передач

Гидротрансформатор в сочетании с двухступенчатой вальной коробкой передач применяется в гидромеханической передаче автобуса ЛиАЗ-677М (рис. 1).
Она представляет собой редуктор с расположенными внутри него валами: первичным 3, вторичным 11 и промежуточным 15. Первичный вал связан с турбиной гидротрансформатора, а вторичный вал – с карданной передачей трансмиссии. Первая (понижающая) передача имеет передаточное число 1,79, а вторая передача – прямая, т. е. ее передаточное число равно единице.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Особенностью такой коробки передач является то, что для включения передач наряду с зубчатой муфтой используются многодисковые муфты (фрикционы), работающие в масле.
Ведущие диски фрикционов – стальные, а ведомые – металлокерамические. Они устанавливаются на внутренних или наружных шлицах и имеют возможность незначительного перемещения в осевом направлении. В разъединенном положении пакет дисков удерживают пружины, сжимание дисков происходит от воздействия масла, подаваемого в цилиндр включения фрикциона.

При включении первой передачи срабатывает фрикцион 5, который блокирует зубчатое колесо 4 с первичным валом 3. Муфта 8 при этом смещается влево и блокирует зубчатое колесо 7 с вторичным валом 11.
Крутящий момент передается через зубчатое колесо 4 первичного вала, зубчатые колеса 16 и 14 промежуточного вала и зубчатое колесо 7 на вторичный вал 11. При включении второй передачи срабатывает фрикцион 6, который блокирует первичный вал 3 с вторичным валом 11. Муфта 8 устанавливается в нейтральное положение.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Для движения задним ходом муфта 8 перемещается в правое положение и блокирует зубчатое колесо 10 с вторичным валом 11, затем включается фрикцион 5. Крутящий момент передается через зубчатые колеса 4, 16, 13, 12, 10 на вторичный вал 11 коробки передач.

При включении фрикциона 2 происходит блокировка гидротрансформатора, когда турбинное и насосное колеса жестко соединяются друг с другом, и он переходит в режим гидромуфты.

Трехступенчатая планетарная коробка передач

В гидромеханических передачах наибольшее применение нашли планетарные коробки передач. Они обладают компактностью, пониженным уровнем шума при работе и длительным сроком службы. Переключение передач в них происходит практически без разрыва потока мощности.

Основным звеном планетарной коробки передач является планетарный ряд (рис. 2), состоящий из эпициклического (коронного) зубчатого колеса 1, солнечного зубчатого колеса 2, водила 3 и сателлитов 4.
Оси сателлитов установлены на водиле и вращаются вместе с ним, т. е. они подвижны. В зависимости от того, какой элемент планетарного ряда является ведущим, а какой заторможен, происходит изменение передаточных чисел планетарного ряда.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Двухступенчатые коробки передач имеют один планетарный ряд. Многоступенчатые могут иметь два и более планетарных рядов, которые связаны друг с другом.
Торможение элементов планетарных рядов при переключении передач производится фрикционными муфтами (фрикционами) или ленточными тормозными механизмами.

Конструкция гидромеханической передачи легкового автомобиля, в которой гидротрансформатор сочетается с трехступенчатой планетарной коробкой передач представлена на рис. 3.

Гидротрансформатор 1 состоит из трех колес с лопастями. Вал 2 турбинного колеса является ведущим валом коробки передач. Ведомый вал 12 коробки передач расположен соосно с ведущим валом. Коробка передач включает два одинаковых планетарных ряда 7 и 8, три многодисковых фрикциона 5, 6, 9 и два ленточных тормозных механизма 4, 10.

Переключение передач осуществляется включением фрикционов и тормозных механизмов в различных комбинациях (рис. 4).
В нейтральном положении включен тормозной механизм 10 (рис. 3) и сблокирована муфта 13 свободного хода. Ведомый вал 12 не вращается.

На первой передаче включены фрикцион 6 и тормозной механизм 10, а также включена муфта 13 свободного хода. Эпициклическое зубчатое колесо планетарного ряда 8 вращается с угловой скоростью ведущего вала 2, а солнечное зубчатое колесо заторможено, водило вращает эпициклическое зубчатое колесо планетарного ряда 7, в котором солнечное зубчатое колесо также заторможено. Ведомым является водило этого ряда, выполненное заодно с ведомым валом 12. Муфта свободного хода 13 включена.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

На второй передаче включены фрикцион 5 и тормозной механизм 10. Эпициклическое зубчатое колесо планетарного ряда 8 вращается свободно, а планетарного ряда 7 – с угловой скоростью ведущего вала 2.
Так как солнечное зубчатое колесо заторможено, то вращается водило и ведомый вал 12. Муфта свободного хода 13 включена.

На третьей передаче включены фрикционы 5 и 6, а также тормозной механизм 10. Эпициклическое зубчатое колесо и водило планетарного ряда 8 ведущие. С такой же угловой скоростью вращаются эпициклические зубчатые колеса и водило планетарного ряда 7, т. е. ведущий и ведомый валы вращаются с одинаковой частотой.

На передаче заднего хода включен фрикцион 6 и тормозной механизм 4. Водило планетарного ряда 8 заторможено, а эпициклическое зубчатое колесо ведущее.
Солнечное зубчатое колесо вращается в обратном направлении, в этом же направлении вращается солнечное зубчатое колесо планетарного ряда 7. Так как эпициклическое зубчатое колесо планетарного ряда 7 заторможено, ведомым является водило, связанное с ведомым валом 12.
Муфта свободного хода 13 заблокирована.

Источник

Что такое гмп в автобусе

Гидромеханическая передача (рис. 71) упрощает управление автобусом, особенно в условиях напряженного городского движения с частыми остановками. Переключение ГМП осуществляется автоматически в зависимости от скорости движения автобуса и степени нажатия на педаль акселератора. Это облегчает труд водителя, повышает безопасность и комфортабельность движения, обеспечивает запуск двигателя буксировкой автобуса, торможение двигателем на любой передаче, а также движение накатом. Гидромеханическая передача соединена с двигателем карданной передачей, представляет собой сложную конструкцию, требующую серьезных знаний по ее эксплуатации и техническому обслуживанию.

Для лучшего понимания работы ГМП напомним основные свойства жидкости: текучесть и несжимаемость. Так же, как и твердые тела, жидкость может передавать механическую энергию. В коробках передач автомобилей масло необходимо для смазывания подшипников и деталей. В ГМП роль масла возрастает. Помимо смазывания, масло используется для охлаждения, включения, переключения передач и для передачи крутящего момента двигателя. Масло в ГМП называют рабочей жидкостью.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:

Рис. 71. Общий вид гидромеханической передачи:
1 — рычаг привода центробежного регулятора; 2 — корпус поршня включения заднего хода; 3 — крышка механизма переключения передач; 4 — трубка клапана блокировки; 5 — крышка соединительной панели механизма гидравлического переключателя; 6 — переключатель периферийных золотников с крышкой в сборе; 7 — картер гидротрансформатора; 8 — клапан блокировки в сборе; 9 — корпус опоры гидротрансформатора; 10 — клапан слива; 11 — ведущий фланец; 12 — кронштейн передней опоры; 13 — пробка редукционного клапана; 14 — картер коробки передач; 1S — крышка смотрового люка; 16 — поддон; 17 — трубка поддона; 18 — датчик привода спидометра; 19 — магнитная пробка; 20 — ведомый фланец; 21 — кронштейн задней опоры

У автобуса ЛиАЗ-5256 ГМП состоит из гидротрансформатора, механической трехступенчатой коробки передач, масляной системы, системы управления, системы охлаждения и гидродинамического замедлителя.

Принцип работы гидротрансформатора. Рассмотрим модель: вытекающая из бака под действием напора струя жидкости ударяет в лопасти колеса и вращает его. Энергия напора жидкости превращается в кинетическую энергию струи жидкости, которая сообщается колесу и расходуется на привод рабочего механизма. Если.представить себе обратную картину — лопастное колесо вращается от какого-то постороннего двигателя, тогда, наоборот, колесо будет сообщать кинетическую энергию жидкости, находящейся на лопатках колеса.

Гидротрансформатор автобуса ЛиАЗ-5256 состоит из колеса 1 насоса (рис. 72, а), колеса 2 турбины и колес 3 реактора (статора). Колеса реактора установлены на реактивном валу на муфтах свободного хода, поэтому гидротрансформатор может работать в режиме гидромуфты.

Колесо насоса является рабочим колесом, между внутренним и наружным торцом которого отлиты рабочие лопасти; с наружной стороны колеса — вентиляционные лопасти, служащие для обдува гидротрансформатора. Колесо насоса соединено с насосным валом и двигателем. Колесо турбины состоит из рабочего колеса с лопастями, соединенного с турбинным валом и ведущим валом коробки передач. Реактор (статор) состоит из двух лопастных рабочих колес, соединенных муфтами свободного хода, которые подобно муфте включения стартера дают возможность реактору вращаться в одну сторону свободно, а в другую нет.

Внутренняя полость гидротрансформатора заполняется рабочей жидкостью. При работе двигателя вращаются колесо насоса и жидкость, помещенная внутри. Лопатки колеса передают жидкости кинетическую энергию, полученную от двигателя. Жидкость начинает перемещаться от меньшего радиуса колеса к большему. Жидкость с лопаток колеса насоса попадает на лопатки колеса турбины и отдает им полученную кинетическую энергию. Жидкость с лопаток колеса турбины поступает на лопатки колеса реактора. Лопатки колеса реактора изменяют направление потока жидкости таким образом, чтобы он попадал на лопатки колеса насоса под определенным углом. Благодаря наличию колеса реактора происходит изменение величины крутящего момента на колесе турбины.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 72. Гидротрансформатор

В момент трогания автобуса колесо турбины неподвижно, на него действует наибольшее давление жидкости и происходит наибольшее увеличение крутящего момента. При разгоне автобуса по мере увеличения оборотов колеса турбины крутящий момент на нем уменьшается и при определенном передаточном отношении становится равным крутящему моменту на колесе насоса. Давление жидкости на лопатки реактора меняет свое направление на противоположное и вызывает расклинивание муфты свободного хода. Реакторы начинают вращение в одном направлении с колесом турбины и колесом насоса в общем потоке жидкости.

Гидротрансформатор, как уже отмечалось выше, работает в режиме гидромуфты. Крутящий момент на колесе турбины в этом режиме несколько ниже, чем на колесе насоса, так как между колесами отсутствует жесткая связь. Для увеличения коэффициента полезного действия гидротрансформатора на прямой передаче колесо насоса и колесо турбины блокируются передним фрикционом.

Примерная форма лопаток колеса насоса и колеса турбины гидротрансформатора и крутящие моменты показаны на рис. 72, б. Стрелками обозначен путь жидкости и направление действия крутящего момента, передаваемого жидкостью на лопатки колес. Изменение величины крутящего момента на турбинном колесе происходит плавно и бесступенчато. Изменение крутящего момента гидротрансформатором недостаточно для различных условий движения автобуса, поэтому он работает с двух- (автобус ЛиАЗ-677М) или трехступенчатой (автобус ЛиАЗ-5256) коробкой передач.

Механическая трехступенчатая коробка передач. Картер механической коробки передач передним фланцем соединен с картером гидротрансформатора. На задней стенке картера устанавливается статор замедлителя. Сверху на картере установлен корпус переключателя расположены ведущий вал с шестернями, ведомый вал с шестерней, первый и второй промежуточные валы. На первом промежуточном валу на шлицах установлены фрикцион первой и второй передач, ведущая шестерня и ротор замедлителя. По обе стороны фрикциона расположены шестерни 15 и 18 первой и второй передач. На втором промежуточном валу установлены двойной фрикцион 6 третьей передачи и фрикцион передачи заднего хода, а также ведущая шестерня. По обе стороны фрикциона расположены шестерни третьей передачи и шестерня передачи заднего хода.

В первом и втором промежуточных валах имеются отверстия для подвода масла к двойным фрикционам. Двойные фрикционы обеспечивают переключение передач и передачу крутящего момента через соответствующие шестерни к ведомому валу.

Двойной фрикцион состоит из ведущего барабана (рис. 74), образующего два гидроцилиндра, поршней ведомых и ведущих дисков и возвратных пружин, опорных колец 9. На поверхности барабана имеются площадки для установки периферийных клапанов 5, включающих и выключающих фрикционы. Масло к клапанам постоянно подведено от главной магистрали. Кольцо обеспечивает одновременное перемещение периферийных золотников. При перемещении периферийных золотников от нейтрального положения вправо или влево масло под давлением поступает в цилиндр под поршень соответствующего фрикциона. Поршень, перемещаясь, сжимает пакет дисков. Крутящий момент передается от ступицы дисков на шестерню и далее на промежуточный вал.

Масляный поддон с литыми ребрами для охлаждения закрывает снизу картер механической коробки передач и служит резервуаром для масла. В днище поддона имеются отверстия, через которые осуществляется доступ к маслоприемникам и производится смена фильтрующих элементов. Масло сливается через отверстие, закрываемое магнитной пробкой.

Гидродинамический замедлитель состоит из статора (рис. 75), установленного в задней стенке картера механической коробки передач, ротора на заднем конце первого промежуточного вала. В статоре имеются масляные каналы, размешены гильза главного золотника и шестерня привода спидометра. Снизу к статору прикреплен корпус клапана управления замедлителем. К крышке замедлителя прикреплен корпус силового регулятора с эксцентриком. Управление гидромеханическим замедлителем осуществляется краном управления или пневматическими клапанами, расположенными в кабине водителя.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 73. Механическая трухступенчатая коробка передач

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 74. Промежуточный вал с двойным фрикционом

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 75. Гидромеханический замедлитель с силовым и центробежным регуляторами и приводом главного золотника:
1 — статор; 2 — ротор; 3 — главный золотник; 4 — гильза главного золотника; 5 — крышка замедлителя; 6 — шестигранная головка толкателя; 7 — регулировочный винт; 8, 13 — крышки; 9 — главный рычаг силового регулятора; 10 — чашка центробежного регулятора; 11 — шарнк; 12 — водило центробежного регулятора; 14 — клапан управления замедлителем

Масляная система (рис. 76).. Система имеет два масляных насоса: большой и малый. Привод большого насоса осуществляется от ступицы насосного колеса, малого — от переднего конца первого промежуточного вала, постоянно вращающегося при движении автобуса, что позволяет обеспечивать пуск двигателя буксировкой автобуса. Масло из поддона через маслоприемники поступает к большому масляному насосу, далее через обратный клапан в главную магистраль и к регулятору давления масла. Давление масла в магистрали поддерживается регулятором режима давления. На рабочих режимах ГМП давление масла составляет 395—685 кПа. Подает масло в главную магистраль и малый насос через фильтр тонкой очистки, запорный шариковый клапан. Избыток масла через регулятор давления поступает на слив во всасывающую полость большого насоса, который работает на себя. Как только подача малым масляным насосом будет достаточна для питания масляной системы ГМП и поддержания в ней рабочего давления, происходит автоматическое отключение большого масляного насоса от главной магистрали. Обратный клапан закрывается и питание всей системы ГМП обеспечивается малым масляным насосом. Регулятор давления управляет подпиткой гидротрансформатора. Масло в гидротрансформатор поступает под давлением не менее 372 кПа.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 76. Принципиальная схема масляной системы:
/ — вход воздуха из крана управления замедлителем; II — привод от центробежного регулятора; III— привод от переключателя периферийных золотников; IV— привод от педали подачи топлива; 1 — замедлитель; 2, 19 — малый и большой масляные насосы; 3 — фильтр тонкой очистки масла; 4 — обратный клапан; 5 — предохранительный клапан; б — клапан блокировки; 7 — регулятор давления масляной магистрали; 8 — регулятор давления гидротрансформатора; 9 — фрикцион блокировки; 10 — гидротрансформатор; 11 — включатель блокировки; 12 — выключатель третьей передачи; 13 — включатель второй передачи; 14 — главный золотник; 15 — кольцо переключателя; 16 — золотник периферийных клапанов; 17 — регулятор режима давления; 18 — обратный клапан; 20 — маслоприемник; 21 — клапан управления замедлителем (тормозной режим); 22 — клапан управления замедлителем (тяговый режим); 23 — теплообменник

Из главной магистрали масло поступает к клапану блокировки, периферийным золотникам двойных фрикционов, главному золотнику, клапану управления замедлителем, в механическую коробку передач. Из гидротрансформатора масло поступает через регулятор давления гидротрансформатора, через клапан управления замедлителем к теплообменнику и далее через тот же клапан управления замедлителем в поддон ГМП. Регулятор давления поддерживает в полости гидротрансформатора избыточное давление масла, необходимое для включения фрикциона блокировки. Регулятор открывает слив масла при давлении 294 кПа и поддерживает расход масла через гидротрансформатор в пределах 26—40 л/мин. При меньшем давлении регулятор закрывает слив из гидротрансформатора. Через клапан масло поступает из главной магистрали в полость фрикциона блокировки. По каналам в механической коробке передач, статора замедлителя масло поступает к главному золотнику. По мере увеличения скорости движения автобуса главный золотник перемещается и подает масло к включателю третьей передачи и далее к включателю блокировки.

Включение гидродинамического замедлителя происходит при подаче воздуха от крана управления, при этом золотник клапана перемещается, занимая определенные (уравновешенные) положения, при которых происходит регулируемое наполнение рабочей полости замедлителя маслом, чем и достигается эффективность замедления. При выключении замедлителя его рабочая полость соединяется со сливом.

Масло в ГМП охлаждается в водомасляном теплообменнике, который установлен в автобусе и включен в систему охлаждения двигателя. Допустимый предел температур масла на сливе из гидротрансформатора или замедлителя не должен превышать 130 °С. Для контроля теплового режима ГМП предусмотрены датчики температуры масла в поддоне и аварийного перегрева масла на сливе из гидротрансформатора и замедлителя. На щитке приборов кабины водителя установлены указатель температуры масла и сигнальная лампа перегрева.

Система управления. Она обеспечивает автоматическое переключение передач переднего хода в зависимости от скорости движения автобуса и положения педали подачи топлива, а также включение и управление гидродинамическим замедлителем. Принудительно может быть включена понижающая передача для определенных условий движения и передача заднего хода. Узлы системы управления установлены как на гидропередаче, так и в кабине автобуса. На гидропередаче имеются: центробежный и силовой регуляторы и их приводы, главный золотник, включатель блокировки, включатели третьей и второй передач, переключатели периферийных золотников, периферийные золотники (см. рис. 76) и их приводы, клапан 6 блокировки и клапан управления замедлителем.

В кабине автобуса установлены: кран управления замедлителем, контроллер (рис. 77), компенсатор хода в приводе силового регулятора. Положение контроллера обеспечивает режим работы гидромеханической передачи: N — нейтраль, все элементы системы управления отключаются от электропитания; 2А — происходит последовательное автоматическое включение первой, второй и третьей передач с блокировкой гидротрансформатора; ЗА — происходит последовательное автоматическое включение первой, второй передач и второй с блокировкой гидротрансформатора; 1 — принудительно включается первая передача; R — включается передача заднего хода. При нейтральном положении все фрикционы выключены, ведущий вал, промежуточные валы второй (рис. 78) и первый, а также ведомый вал разъединены. Для движения автобуса с автоматическим переключением передач на контроллере устанавливаются положения. При установке первого положения на контроллере через замкнутые контакты микропереключателей, включателей третьей и второй передач ток, включающий первую передачу, поступает к электромагниту.

Первая передача включается фрикционом. Шестерня жестко соединена с первым промежуточным валом. Мощность от двигателя передается через насосное и турбинное колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, первый промежуточный вал, шестерни к ведомому валу. При увеличении скорости движения центробежный регулятор начинает передвигать главный золотник, который соединяет главную масляную магистраль с каналом включателя первой передачи. Срабатывает микропереключатель. Электромагнит первой передачи выключается, включается электромагнит, включающий вторую передачу. Вторая передача включается фрикционом, шестерня жестко соединена с первым промежуточным валом. Мощность от двигателя передается через колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, первый промежуточный вал, шестерни к ведомому валу.

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 77. Клавишный контроллер ГМП

Что такое гмп в автобусе. Смотреть фото Что такое гмп в автобусе. Смотреть картинку Что такое гмп в автобусе. Картинка про Что такое гмп в автобусе. Фото Что такое гмп в автобусе

Рис. 78. Схема работы гидромеханической передачи автобуса ЛиАЗ-5256: / — первая передача; II — вторая передача; III — третья передача; IV — третья передача с блокированием гидротрансформатора; V — передача заднего хода; VI — работа гидромеханического замедлителя: 1 — колесо насоса гидротрансформатора; 2 — колесо турбины гидротрансформатора; 3 — колесо реактора (статора); 4 — реактивный вал (вал реактора); 5 — передний фрикцион; 6 — муфта свободного хода; 7, 8, 15. 17. 20 — шестерни; 9 — ведущий вал; 10 — второй промежуточный вал; 11 — шестерня третьей передачи; 12 — фрикцион третьей передачи; 13 — фрикцион передачи заднего хода; 14 — шестерня передачи заднего хода; 16, 21 — шестерня первой передачи; 18 — ведомый вал; 19 — ротор замедлителя; 22 — фрикцион первой передачи; 23 — фрикцион второй передачи; 24 — шестерня второй передачи; 25 — первый промежуточный вал

Третья передача включается фрикционом. Шестерня жестко соединена с вторым промежуточным валом. Мощность от двигателя передается через колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, второй промежуточный вал, шестерни к ведомому валу.

Передача заднего хода включается фрикционом. Шестерня жестко соединена с вторым промежуточным валом. Мощность от двигателя передается через колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, второй промежуточный вал, шестерни к ведомому валу.

При установке второго положения на контроллере происходит последовательное автоматическое включение первой и второй передач с блокировкой гидротрансформатора.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *