Что такое гнилостные бактерии в биологии

ГНИЛОСТНЫЕ БАКТЕРИИ

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

В группу гнилостных бактерий входят микроорганизмы, вызыва­ющие глубокий распад белков. При этом образуется ряд веществ, обладающих неприятным запахом, вкусом, нередко и ядовитыми свой­ствами. Гнилостные бактерии могут быть как аэробы, так и анаэро­бы, споровые и бесспоровые.

К факультативно аэробным бесспоровым гнилостным бактериям часто встречающимся в молоке, относятся грамотрицательные па­лочки Proteus vulgaris (протей), способные активно пептонизировать молоко с выделением газа. При развитии этих микроорганизмов в молоке кислотность его вначале несколько повышается (вследствие образования жирных кислот), а затем снижается в результате на­копления щелочных продуктов. Бесспоровые бактерии, например Proteus vulgaris, могут попадать в молоко с оборудования, из воды и других источников. При пастеризации молока Proteus vulgaris по­гибают.

К аэробным споровым бактериям относятся Вас. subtilis (сеннаяая палочка), Вас. mesentericus (картофельная палочка), Вас. mycoides, Вас. megatherium и пр. Все они подвижны, красятся по Граму положительно, быстро развиваются в молоке, активно разлагая белки. При этом сна­чала молоко свертывается без существенного повышения кислотно­сти, затем с поверхности сгустка наступает пептонизация молока. У некоторых споровых палочек (например, сенной) пептонизацпя молока начинается без предварительного свертывания казеина. Из анаэробных споровых гнилостных бактерий в молоке встре­чаются Вас. putrificus и Вас. polymyxa.

Вас. putrificus — подвижная палочка, разлагающая белки с обиль­ным образованием газов (аммиака, углекислоты, водорода, серово­дорода), Вас. polymyxa — подвижная палочка, образующая в молоке газ, кислоты (уксусную, муравьиную), этиловый и бутиловый спир­ты и другие продукты.

Высокая чувствительность к понижению реакции среды харак­терна для всех гнилостных бактерий. Этой особенностью определя­ются крайне ограниченные возможности для развития данной груп­пы бактерий при производстве кисломолочных продуктов. Очевидно, что во всех случаях, когда молочнокислый процесс развивается ак­тивно, жизнедеятельность гнилостных бактерий прекращается. В производстве кисломолочных продуктов развитие гнилостных бактерий возможно только в исключительных случаях (в результа­те развития бактериофага полностью пли в значительной мере ос­тановлен молочнокислый процесс, утрачена активность закваски и т. д.). Споры многих гнилостных бактерий могут содержаться в пасте­ризованном молоке. Однако практически они не играют роли при производстве и хранении этого продукта. Это объясняется тем, что основную остаточную микрофлору после пастеризации составляют молочнокислые бактерии, они же обсеменяют молоко при розливе, поэтому на фоне развития (хотя и слабого, из-за низких температур

хранения) молочнокислого процесса возможность размножения спо­ровых микроорганизмов в пастеризованном молоке ничтожна. При производстве же и хранении стерилизованного молока спо­ровые бактерии играют немаловажную роль. Даже незначительные нарушения режимов стерилизации могут привести к попаданию спор в стерилизованное молоко и вызвать в последующем его пор­чу при хранении.

ДРОЖЖИ

В основу классификации дрожжей положены различия в харак­тере их вегетативного размножения (деление, почкование). спорообразования, а также морфологические и физиологические признаки.

По способности к спорообразованию дрожжи делят на спорообразующие и неспорообразующие. В кисломолочных продуктах из спорообразующих встречаются дрожжи родов Saccharomyces, Zygosacc-haromyces, Fabospora и Debaromyces, из неспоровых — родов Torulopsis it Candida. С. А.

Королев (1932) разделил дрожжи, встречающиеся в молоч­ных продуктах, по их биохимическим свойствам на три группы.

Первая группа — дрожжи, не способные к спиртовому брожению, хотя и потребляющие некоторые углеводы путем непосредственного окисления; к ним относятся виды Mycoderma, цветные бесспоровые дрожжи Tornla.

Вторая группа — дрожжи, не сбраживающие лактозу, но сбражи­вающие другие сахара; могут развиваться лишь в совместной культу­ре с микроорганизмами, обладающими ферментом лактазой, гпдролизующей молочный сахар на моносахара; к ним относятся отдель­ные виды дрожжей рода Saccharomyces. Как показали исследования В. И. Кудрявцева (1954) и A.M. Скородумовой (1969), в кисломолочных продуктах, приготовленных на естественных заквасках, основ­ными представителями этого рода являются дрожжи вида Sacch. cartilaginosus, сбраживающие мальтозу и галактозу. По мнению В. И. Кудрявцева, дрожжи этой группы могут положительно влиять на вкус и аромат кисломолочных продуктов, однако при чрезмерном их развитии возникает порок — вспучивание. Они относятся к так называемым диким дрожжам и при производстве кисломолочных продуктов их не применяют. Однако возможно, что среди дрожжей этой группы могут быть найдены производственно-ценные куль­туры.

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

Третья группа — дрожжи, сбражнвающпе лактозу. Исследования А. М. Скородумовой (1969) показали, что среди дрожжей, выделен­ных из кисломолочных продуктов (приготовленных на естественной закваске), число дрожжей, самостоятельно сбраживающих лактозу, сравнительно невелико — из 150 штаммов — 32 (21%). Наибольший процент дрожжей, сбражпвающих лактозу, был выделен из кефир ных грибков и закваски (34,1%). Дрожжи, сбраживающие лактозу, были идентифицированы А. М. Скородумовой как Fabospora fragilis, Saccharomyces lactis, реже Zygosaccharomyces lactis. Способностью сбраживать лактозу обладают также некоторые ви­ды Candida и Torulopsis — Candida pseudotropicalis var. lactosa, Torulopsis kefir, Torylopsis sphaerica, выделенные из кефир­ного грибка (В. И. Буканова, 1955).

Исследования, проводившиеся в Японии Т. Наканиши и Дж. Араи (1968, 1969), показали также, что наиболее распространенны­ми видами лактозосбраживающих дрожжей, выделенных из сырого молока, являются Saccharomyces lactis, Torulopsis versatilis, Toru­lopsis sphaerica, Candida pseudotropicalis.

Оптимальная температура развития дрожжей 25—30° С, что следует учитывать при выборе температуры для созревания продук­тов, в состав микрофлоры которых они входят. По данным В. II. Букановой (1955) основным фактором, регулирующим развитие дрож­жей разных видов в кефире, является температура. Так, повышен­ная температура (30—32° С) стимулирует развитие Torulopsis sphaerica п дрожжей, не сбраживающих лактозу. Дрожжи, сбраживающие лактозу, достаточно хорошо развиваются и при 18—20° С, однако повышение температуры до 25 и 30° С, как правило, стимулирует их размножение.

Большинство дрожжей предпочитает для своего развития кислую реакцию среды. Следовательно, в кисломолочных продуктах условия для них благоприятны.

Дрожжи очень широко распространены в кисломолочных продук­тах и могут быть обнаружены почти в любом образце продукта, при­готовленного на естественных заквасках. Однако дрожжи развива­ются гораздо медленнее, чем молочнокислые бактерии, поэтому в кис­ломолочных продуктах они обнаруживаются в меньшем количестве, чем молочнокислые бактерии.

Роль дрожжей и производстве кисломолочных продуктов исклю­чительно велика. Обычно дрожжи рассматривают главным образом как возбудителей спиртового брожения. Но эта функция, по-види­мому, не основная. Дрожжи активизируют развитие молочнокис­лых бактерий, витаминизируют продукты (С. Аскалонов, 1957). Дрожжи, сбраживающие лактозу и другие сахара, способны выра­батывать антибиотические вещества, активные против туберкулез­ной палочки и других микроорганизмов (А. М. Скородумова, 1951, 1954; В. И. Буканова, 1955).

Интенсивное развитие дрожжей незаквасочного происхождения нередко приводит к вспучиванию и изменению вкуса таких продук­тов, как сметана, творог и сладкие творожные изделия. Излишнее развитие дрожжей, содержащихся в кефирной закваске при наруше­нии технологических режимов, также может вызвать газообразова­ние в кефире (“глазки”) и даже его вспучивание.

Источник

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

ГК «Униконс»

Продвижение и реализация комплексных пищевых добавок, антисептиков и др. продукции.

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

«Антисептики Септоцил»

Септоцил. Бытовая химия, антисептики.

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

«Петритест»

Микробиологические экспресс-тесты. Первые результаты уже через 4 часа.

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

«АльтерСтарт»

Закваски, стартовые культуры. Изготовление любых заквасок для любых целей.

Гниение

Микроорганизмы играют большую роль в процессах разрушения белковых веществ. Последние в громадном масштабе происходят в природе, являясь составной частью круговорота веществ.

Обычно гниением называют целый ряд внешне сходных, а по существу весьма различных процессов. Это порча мяса, рыбы, плодов, овощей, древесины, а также процессы, происходящие в почве, навозе и др.

В более узком понимании гниением принято считать процесс разложения белков или субстратов, богатых белком, под влиянием микроорганизмов.

Разрушение молекул белка микроорганизмами ведется с различных позиций — одни продукты расщепления необходимы в качестве пластического материала для построения своего тела, другие используют их как энергетический материал. Последние вызывают более глубокий распад.

С этих позиций порчу древесины, в которой крайне мало белка, нельзя назвать гниением. Термин «гниение» неприменим также к портящимся фруктам и овощам, в которых основная масса сухого вещества приходится на углеводы. Кроме того, следует иметь в виду, что плоды, ягоды, овощи являются живыми организмами и к ним более применимо понятие «микробиологическое заболевание», а не «гниение».

Расщеплять белки с помощью выделенных во внешнюю среду ферментов способны многие микроорганизмы.

Некоторые виды гнилостных бактерий расщепляют белки до пептонов и аминокислот. Другие вызывают более полное расщепление белка с образованием более простых азотистых и безазотистых продуктов — индола, скатола, фенола, жирных кислот, аммиака, метана, углекислоты, водорода. Многие из этих соединений отличаются неприятным запахом.

Гниение легко протекает как при доступе воздуха, так и в условиях полного анаэробиоза.

Первые этапы микробиологического воздействия на белки всегда сводятся к протеолитическому расщеплению сложной белковой молекулы в зависимости от глубины процесса на отдельные составные части — пептоны, полипептиды и аминокислоты.

Схематично этот этап сводится к следующему:

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

Дальнейшие превращения могут протекать по двум различным направлениям.

Дезаминирование заключается в отщеплении от аминокислот аминной группы в виде аммиака. Различают дезаминирование окислительное, гидролитическое и восстановительное. В каждом случае образуются различные продукты. Ниже рассматривается дезаминирование аминокислот в различных условиях на примере аланина.

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

Возможны и другие пути дезаминирования, приводящие к образованию иных продуктов, например ненасыщенных соединений.

Декарбоксилирование заключается в отщеплении от аминокислот карбоксильной группы в виде углекислого газа. Декарбоксилирование активнее протекает в кислой среде. В результате, помимо углекислого газа, образуются амины — кадаверин, путреецин и агматин (трупные яды). В настоящее время ядовитость их не считается подтвержденной. Схема образования некоторых аминов приведена ниже:

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

В практических условиях декарбоксилирование и дезаминирование протекают часто совместно. В результате образуется большое число различных соединений — кислот, спиртов и др. Например, продолжая рассматривать разрушение аминокислот на примере аланина, можно убедиться в возможности образования этих веществ:

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

При глубоком разрушении серосодержащих аминокислот (метионина и пестеина) образуются сероводород, аммиак, меркаптаны — вещества, обладающие неприятным запахом, ощущаемым даже при ничтожных концентрациях:

Что такое гнилостные бактерии в биологии. Смотреть фото Что такое гнилостные бактерии в биологии. Смотреть картинку Что такое гнилостные бактерии в биологии. Картинка про Что такое гнилостные бактерии в биологии. Фото Что такое гнилостные бактерии в биологии

Разрушение в процессе гниения аминокислот, имеющих циклическое строение, приводит к образованию веществ, имеющих специфический неприятный запах индола и скатола.

Из аэробных микроорганизмов наиболее часто в процессах гниения принимают участие следующие.

Микоидес — подвижная почвенная бацилла; образует споры овальной формы разной величины; на агаре дает характерные ветвистые колонии, по внешнему виду напоминающие мицелий гриба; широко распространена в природе; белки разрушает без образования сероводорода.

Сенная палочка (бациллюс субтилис) — короткая, подвижная споровая палочка с округленными концами; образует морщинистые колонии; широко распространена в природе, энергично вызывает глубокое разрушение белка.

Картофельная палочка (бациллюс мезентерикус) — по свойствам близка к палочке, известна как возбудитель картофельной болезни хлеба.

Бацилла мегатериум — подвижная споровая палочка, часто образующая цепочки; в отличие от бациллы микоидес продуцирует много сероводорода; колонии ее имеют слизистую поверхность.

Бактерия флуоресценс — небольшая подвижная палочка; на питательных средах дает зеленую опалесцирующую окраску за счет образуемого пигмента флуоресцеина.

Бактерия продигиозум (палочка чудесной крови) — мелкая подвижная палочка; образует кроваво-красные колонии или сплошной налет красного, розового цветов на различных продуктах.

По способности разрушать белки к этой группе относят кишечную палочку и палочку протея, являющиеся условными анаэробами.

Среди анаэробных бактерий активными возбудителями гниения являются путрификус, спорогенес и др.

Путрификус — подвижная споровая палочка; разлагает белки с выделением газообразных веществ; встречается в гниющих пищевых продуктах, почве, консервах, навозе.

Спорогенес — подвижная споровая палочка; характерна активным образованием сероводорода при гниении.

Источник

Гнилостные бактерии

Гнилостные бактерии

Оказывается, у гнилостных бактерий, как вообще у многих бактерий, имеются органы движения, знакомые уже нам жгутики, при посредстве которых они могут самостоятельно передвигаться.

Как ни благодетельствуют нас эти наши друзья, без которых самая жизнь наша была бы невозможна, однако, надо быть с ними настороже; все бактерии коварны. В то время как тело животного только что начало разлагаться и еще нисколько не напоминает собой порченного мяса, в нем могут под влиянием бактерий образоваться страшные яды, унесшие в могилу немало людей, съевших такое ядовитое мясо. Особенно часты случаи отравления так называемым рыбным ядом, который при страшной силе действия на организм, ничем не выдает своего присутствия. При дальнейшем тлении трупов, эти яды сами разлагаются и исчезают.

Животное уже при жизни выбрасывает значительное количество воспринятых питательных элементов в виде кала и мочи. Все эти отбросы также перерабатываются микробами и минерализируются, после чего могут служить пищей для растений. Уже выше было сказано, что в кишечнике человека и животных имеется колоссальное количество бактерий. Они разлагают гнилостными процессами каловые массы уже внутри тела, а затем довершают разложение после того, как они извергнуты наружу.

Когда мы отвозим навоз в поле, мы часто не знаем, что это удобрение становится доступным для наших культурных растений только после переработки его микробами, незаметными кормильцами растений. Значительная часть азота, принятого в пищу животным, выделяется в виде мочи.

Азот — самый ценный для растений элемент, которого они жадно ищут повсюду и с которым обходятся крайне бережно. И вот, азот мочи становится доступным для растений, благодаря особому виду бактерий, производящих брожение мочи, открытое Пастером. Эти оригинальные химики разлагают главную составную часть мочи человека, мочевину, на углекислый газ и аммиак, производя таким образом, ее полную минерализацию. А воспринятый растениями азот аммиака переходит в них в такие питательные вещества, которые поддерживают жизнь животных и человека. Таким образом, бактерии брожения мочи также являются нашими благодетелями.

Безазотистые органические вещества, количество которых особенно велико в растениях, после смерти организма разлагаются прежде всего в громадных количествах в процессах спиртового, молочнокислого и маслянокислого брожения.

Дрожжи, поселяющиеся всегда там, где имеется запас сахара, на оболочках всех плодов, на ягодах винограда и других растений, только и ждут возможности проникнуть внутрь плода и вызвать там массовое разложение сахара с образованием спирта и углекислого газа. Образовавшийся спирт подхватывается сопровождающими дрожжи бактериями уксуснокислого брожения, которые превращают спирт в уксусную кислоту, то есть частично сжигая его.

Те же самые бактерии при недостатке спирта действуют дальше и сжигают уксусную кислоту до углекислого газа и воды, но чаще это довершение минерализации сахара производят другие бактерии, не представляющие собой таких узких специалистов как возбудители разных брожений и обеспечивающие себе существование своей неприхотливостью и способностью при дыхании сжигать самое плохое топливо. Совокупность всех только что описанных работ микробов превращает сахар в минеральные продукты — углекислый газ и воду.

Другой путь минерализации безазотистого вещества, имеющий колоссальное распространение в природе, ведет через маслянокислое брожение. Бактерии, производящие это брожение, принадлежат к различным видам.

Поэтому то при брожении виноградного сока можно не прибавлять искусственно дрожжей.

В недрах сырой земли, на дне болот, в топях ила, всюду, куда не проникает живительный луч солнца, где царит мрак и смрад, неустанно работает могучий маслянокислый микроб и количество разложенного им материала значительно превышает те массы растительного происхождения, которые перерабатывает человек в своей технике. Если в искусственной культуре дать микробу хорошо подходящие ему условия, то из сосуда будет течь непрерывная струя газа, результат великолепной химической работы бактерии.

Газ состоит из углекислоты и горючего водорода. В несколько минут мы можем набрать полный большой баллон этих газов и в природе такой процесс идет в необъятных размерах, не останавливаясь ни днем, ни ночью. Изумительные работники не знают ни минуты отдыха. Как жалка по своим размерам вся фабрично-заводская техника человечества по сравнению с гигантским размахом химического производства, идущего в природе при содействии различных микробов брожений. II с какой легкостью работают микроорганизмы спиртового и маслянокислого брожений.

Как будто ничего не может быть проще превращения сахара и других безазотистых соединений в различные газы и кислоты, или спирты. А между тем, мы, люди, несмотря на все старания, пока еще не в состоянии произвести этих явлений в наших богато обставленных химических лабораториях, хотя бы в малом размере. Мы можем только изумляться…и учиться у бесконечно малых существ. Мы не будем рассматривать здесь всех брожений, число которых весьма велико, мы только познакомимся с парой примеров разрушения крайне прочных веществ, прежде всего с брожением клетчатки.

Клетчатка представляет собой вещество, из которого построен остов, скелет растений. Она составляет главную массу тела крупных растений, особенно деревьев и, несомненно, по своей массе стоит на первом месте среди всех горючих органических веществ на земле. В химическом отношении клетчатка замечательна тем, что без нагревания почти не поддается действию самых едких жидкостей и почти ни в чем не растворяется. Даже крепкие кислоты и щелочи не растворяют клетчатки при обыкновенной температуре.

Очищенная вата, лучшие сорта пропускной (фильтровальной) бумаги представляют собой почти химически-чистую клетчатку. Бумага непрочна и легко разрывается только потому, что представляет собой войлок тончайших нитей. Если, однако, спаять все эти нити в одну сплошную массу, то получается весьма прочный материал; в Америке такую клетчатку применяют для выделки вагонных шин и других предметов, требующих большой прочности. Древесина представляет собой слегка измененную клетчатку, пропитанную некоторыми веществами, придающими ей большую хрупкость, меньшую гибкость и прочность, но за то также способность всасывать в себя больше воды.

После смерти растения белковые и другие питательные вещества, из которых состоит их живое тело, быстро уничтожаются различными микроорганизмами, а остов, состоящий из клетчатки, остается в течение долгого времени нетронутым, так как вследствие своей прочности легко противостоит натиску мелких живых существ. Всякий, кому приходилось гулять по буковому или дубовому лесу, не мог не обратить внимания на толстый упругий ковер сухих листьев, в которых тонет нога и который накапливается в течение нескольких лет.

Это все остовы листьев, состоящие из клетчатки. Однако, с течением времени и клетчатка исчезает, разрушается и переходит в простейшие минеральные соединения. Солома в навозе, также состоящая из клетчатки, при благоприятных условиях также истлевает и уничтожается каким-то способом, который долгое время оставался таинственным. В настоящее время мы знаем, что существуют некоторые бактерии, способные производить брожение клетчатки. Их обнаружить можно так: приготовив раствор необходимых для микробов минеральных солей, прибавляют к нему в качестве питательного материала только нарезанную полосками фильтровальную бумагу и заражают такую жидкость крошечным кусочком навоза.

В навозе имеется огромное разнообразие микробов, но почти ни один из них не развивается из-за недостатка пищи. Кормиться одной только бумагой не под силу даже неприхотливым бактериям. Прекрасно чувствуют себя лишь специалисты по сбраживанию клетчатки; они разъедают бумагу и производят брожение, с выделением газов, от которых бумага всплывает на поверхность, увлекаемая током пузырьков. Этот процесс имеет, конечно, колоссальное значение в круговороте веществ: благодаря ему органическое вещество, находившееся в огромном количестве в форме, недоступной для обыкновенных живых существ, минерализируется и снова становится им доступно.

Какова же должна быть мощность тех химических средств, которыми располагают удивительные микробы, так легко и бурно разлагающие такой прочный материал! Еще один случай, наводящий химика на глубокие размышления о том, как бы выведать у бесконечно малых их секрет и применить его в широких размерах на пользу науки и техники.

Существуют в природе и другие способы массовой переработки клетчатки, а также иных близких к ней веществ. При этом происходит как бы медленное тление, сопровождаемое обугливанием. Так накопились огромные массы торфа и каменного угля, фундамент современной техники. Когда эти залежи будут истреблены, промышленность должна будет либо сойти на нет, либо обратиться за помощью к науке, в поисках нового источника энергии. И, по всем видимостям, такой момент должен в конце концов наступить.

Само собой разумеется, что работа всех описанных микроорганизмов, вызывающих брожения, полезна человеку только по случайному совпадению. По существу бактерии направляют свою деятельность на разложение веществ сложного состава, из которых образуются более простые. Это и составляет общий принцип, их деятельности. В некоторых отдельных случаях такое разложение вещества может быть, наоборот, вредно для человека потому, что оно разрушает продукты его техники. Так, например, уксуснокислое брожение может причинить большие убытки, если оно разовьется само собой в ценных напитках, содержащих спирт. Маслянокислое брожение, столь необходимое в природе, весьма нежелательно в том случае, если оно разойдется в пищевых продуктах.

Всегда вредна и нежелательна для человека деятельность некоторых грибков, разрушающих древесину. Из них особой известностью пользуется один вид так называемого домового гриба. Он превращает постройки, особенно сооруженные из сырого дерева, в мягкую труху; это явление сопряжено с растворением клетчатки, которое гриб производит, повидимому, с большой легкостью, так же, как бактерии, с которыми мы только что познакомились, но никакого брожения клетчатки с выделением газов домовый гриб, повидимому, не вызывает. Вследствие тайной работы этого неустанного вредителя, разрушено много деревянных домов и других построек.

Брожение селитры представляет собой очень нежелательное и невыгодное для земледельца явление. Азот в почве часто находится в недостаточном количестве, а потому земледельцу приходится дорожить им больше, чем всеми другими питательными элементами в земле; урожай главным образом зависит от азотного питания растений. Из всех форм, в которых может оказаться азот в почве, наиболее пригодна для растений селитра; не даром ее привозят в огромных количествах из Южной Америки и употребляют в качестве удобрения. Целый ряд бактерий разлагает в почве селитру, пользуясь этим процессом для добывания жизненной энергии. При бактериальном брожении селитры весь азот улетает в воздух и становится недоступным для растении. Таким образом, коварный микроб не только лишает азотного питания другие более высоко организованные растения, но при этом и сам то азотом селитры не пользуется, а только уменьшает и без того небольшие запасы полезного азота в почве.

Все микроорганизмы, вызывающие брожения, почти никогда не производят полной минерализации органического вещества. Они ограничиваются тем, что более сложно составленные соединения разлагают на более простые. Но целая армия других микробов сразу же нападает на продукты брожения и довершает превращение их в простейшие, так называемые минеральные вещества, уже не способные дальше разлагаться с выделением тепла. Все эти организмы, сопровождающие бродильных микробов на подобие того, как шакалы следуют за львом, чтобы доедать остатки его трапезы, чаще всего бывают неприхотливы и неразборчивы в выборе питания. Они не производят строго-специализированных брожений, но они сжигают при своем дыхании разнообразные вещества, на которые среди более разборчивых организмов нашлось бы мало охотников. В общей работе минерализации сложных веществ они играют не показную роль, но они совершенно необходимы для завершения этого важного процесса.

Однако и среди таких микробов, которые производят не брожения, а сжигания простых соединений, встречаются некоторые узкие специалисты, работа которых незаменима и бросается в глаза своей оригинальностью. Чудеса, открытые микробиологией, были бы недостаточно описаны, если бы мы не обратили наше внимание на подобного рода работников, которым мы в первую голову обязаны обеспечением постоянства жизни на земле.

С тех пор, как великий французский химик Лавуазье открыл закон вечности материи, мы знаем, что количество каждого основного простейшего вещества на нашей планете неизменно и определенно. Поэтому, если такое вещество необходимо для построения тела животных и растений, оно неизбежно должно после смерти этих живых существ переходить в такую форму, в которой может быть снова использовано растениями в качестве питательного материала. От растений оно с пищей будет передано животным, после смерти как тех, так и других организмов снова попадет в почву и будет непрерывно совершать все тот же круговорот.

Таким образом, ограниченное, строго определенное количество одного физиологически-важного элемента, благодаря круговороту, может поддерживать жизнь животных и растений в течение бесконечно долгого времени, на подобие того, как ограниченное количество денежных знаков при непрерывном круговороте их из казны в частные руки и обратно, может в течение неопределенно долгого времени поддерживать товарообмен в государстве.

Молочнокислые бактерии

Молочнокислые бактерии широко распространены в природе.

В определенных условиях они могут вызвать порчу многих пищевых продуктов. По морфологическим признакам их делят на стрептококки и палочки…

Протеолитическая активность бактерий как дифференциальный тест была испытана в связи с установленным свойством аэромонад активно разжижать желатин. Ранее этот тест не применялся, поскольку его постановка обычным способом занимала 1—5 и более суток.[ …]

Некоторые виды спорообразующих бактерий, (обладающие выраженными протопекти-назными и протеолитическими свойствами, обладают фитопатогенным действием. Ткани пораженных растений и плодов подвергаются мацерации, болезнь выражается в побурении или загнивании.[ …]

В этом случае о наличии на секторах среды Эндо бактерий группы кишечных палочек судят по обнаружению колоний грамотрицательных неспороносных палочек, сбраживающих глюкозу до кислоты и газа при (37 ± 0,5) °С и не обладающих протеолитической активностью.[ …]

К аминогетеротрофам принадлежит большинство патогенных бактерий, молочнокислые бактерии, риккетсии и т. д. Эти микроорганизмы нуждаются в готовых аминокислотах. Многие из них имеют активные протеолитические ферменты, при помощи которых осуществляют расщепление белков до аминокислот, используемых затем для построения клеточных белков.[ …]

Патогенные и токсигенные спорообразующие анаэробы

Некоторые из протеолитических и сахаролитических бактерий могут быть возбудителями болезней, особенно таких, как гангрена и столбняк (так называемые раневые инфекции). Возбудителями газовой гангрены являются такие виды анаэробных спороносных бактерий, как CI. perfringens, CI. histolyticum, CI. septicum, CI. oedematiens, CI. bifermentans.

Возбудитель столбняка — CI. tetani. Хотя патогенные бактерии не так часто встречаются в медицинской практике, как другие патогенные микроорганизмы, но вызываемые ими заболевания очень опасны, протекают быстро и часто с фатальным исходом.[ …]

Например, амилазы — ферменты, которые используются в хлебопечении,— получают из грибов и бактерии Вас. subtilis; протеолитические ферменты, расщепляющие белки, — из актиномицета Act. griseus; кератиназа и протеиназа продуцируются акти-номицетом Act. fradiae.[ …]

Интересны попытки ряда исследователей качественно и количественно охарактеризовать различные физиологические типы бактерий, которые участвуют в неметаногенной ферментации. При этом авторы использовали метод селективных питательных сред, содержащих в качестве единственного источника углерода и энергии определенные органические субстраты. Недостатком данного метода является то, что на таких средах при подсчете могут быть пропущены бактерии, способные разлагать и использовать внесенный в среду субстрат в конструктивном обмене, но не способные получать из него энергию, и наоборот.

К сожалению, большая часть этих работ выполнена без применения анаэробной техники культивирования и касается аэробных и факультативно анаэробных бактерий, роль которых в процессах ферментации органических веществ, очевидно, менее значительна, чем анаэробных организмов.[ …]

Другие физиологические группы анаэробов участвуют в круговороте азотсодержащих веществ: разлагают белки, аминокислоты, пурины (протеолитические, пуринолитические бактерии).

Многие же способны активно фиксировать атмосферный азот, переводя его в органическую форму. Эти анаэробы способствуют повышению плодородия почв. Количество клеток протеолитических и сахаролитических анаэробов в 1 г плодородных почв достигает даже миллионов.

Особое значение имеют те группы микроорганизмов, которые участвуют в разложении труднодоступных форм органических соединений, таких, как пектиновые вещества и целлюлоза. Именно эти вещества составляют большую долю растительных остатков и являются главным источником углерода для почвенных микроорганизмов.[ …]

Изменение активности ферментов. Микроорганизмы, окисляющие спирты, отличались высокой активностью внеклеточных ферментов, особенно протеолитических. Микробные протеазы являются, как правило, внеклеточными ферментами и, как видно из данных табл.5.4 и 6.5, обладают широкой видовой специфичностью.

Внеклеточные и внутриклеточные протеазы микроорганизмов, окисляющих алканы, нафтены и арены, отличались различной активностью. У большинства исследованных нами видов и физиологических групп бактерий (см. табл. 4.5 и 5.4) протеазная активность в клетках выше, чем в культуральной жидкости. С другой стороны, активность клеточных протеаз более стабильна, чем в культуральной жидкости, и меньше подвержена влиянию внешних воздействий, включая и действие высоких концентраций солей.

В отличие от этого протеазная активность культуральной жидкости микроорганизмов, окисляющих спирты, превышала активность клеточных ферментов (табл. 6.5).[ …]

Денитрификация, являясь микробиологическим процессом, представляет собой лишь особую форму дыхания при нехватке кислорода.

Множество бактерий в установке по биологической очистке сточных вод, главным образом протеолитических бактерий, может обеспечить сокращение содержания азота и нитратов при отсутствии свободного кислорода и в присутствии пригодного субстрата, служащего источником водорода. Тем самым, химически связанный кислород может использоваться для метаболических процессов этих бактерий. Способность к денитрификации приобретается бактериями в процессе адаптации.

Углеводородный источник должен быть дозирован в минимальной пропорции, соответствующей содержанию нитратов.[ …]

Допускается высев из пробирок и флаконов производить на среду Эндо с добавкой молока или желатина, что даст возможность дифференцировать бактерии группы кишечных палочек от других водных сапрофитов, обладающих протеолитической активностью.[ …]

Резкое нарушение санитарного режима водоема наблюдается и при массовом отмирании водорослей.

При распаде синезеленых водорослей в результате деятельности протеолитических и аммонифицирующих- бактерий повышается содержание аммонийного азота, диоксида углерода, резко снижается содержание растворенного кислорода, что является причиной массовой гибели рыб. При массовом развитии водорослей затрудняется работа водозаборных сооружений, ухудшается фильтрация воды. Водоросли образуют на поверхности фильтров слизистую, не проницаемую для воды пленку, поэтому необходима частая промывка фильтров.

Запахи и привкусы, появляющиеся у воды в период цветения, при применении обычной технологической схемы очистки питьевой воды не устраняются.[ …]

Г. П. Калина разработал еще одну комбинированную среду — молочно-ингибиторную, введение в которую кристаллического фиолетового и теллурита калия обеспечивает элективные свойства в отношении большинства посторонних грамотрицательных и грамположительных бактерий.

Помимо этого, среда позволяет в одном посеве дифференцировать Str. faecalis (по редукции теллурита калия) и выделять протеолитический вариант по зоне про-теолиза вокруг колоний.[ …]

В образующем бактериальные клеточные оболочки мукопептиде содержится значительное количество остатков D-аналина с «неприродной» конфигурацией, что увеличивает устойчивость этих оболочек к действию протеолитических ферментов.[ …]

Очень любопытный тип взаимоотношений между растениями и насекомыми наблюдается у плотоядных («хищных») растений.

Известно около 450 видов этих растений, произрастающих в различных климатических зонах и использующих самые разнообразные типы ловушек. Добыча привлекается к ловушкам запахом душистых веществ или капельками нектара; в ее переваривании могут участвовать как собственные ферменты растения, так и симбиотические бактерии.

У тропических растений Nepenthes на внутренней поверхности конусовидной ловушки находятся специализированные пищеварительные железы (до 6000 желез на 1 см2), выделяющие протеолитические ферменты. Секрецию этих ферментов вызывает прикосновение насекомого к внутренней поверхности ловушки.[ …]

Принцип устройства ловчего аппарата непентесов почти идентичен ловушкам серраце-пиевых.

В верхней части внутренней стенки кувшина располагаются желёзки, сегрегирующие воск. По данным Б. Ю п и п е р а (1904), восковой налет — двуслойный; нижний слой состоит из тонкой сеточки выступов толщиной 1—2 мкм, а верхний — из налегающих друг на друга мельчайших чешуек, которые прилипают к лапкам насекомого и, отрываясь от нижнего слоя, заставляют насекомое, как па коньках, скользить вниз навстречу пищеварительным желёзкам на дно ловушки, погруженным в выделенную ими жидкость.

Каждая такая желёзка диаметром до 00 мкм прикрыта нависающей в виде свода внутренней эпидермой кувшина; предполагается, что свод защищает желёзку от механического повреждения ее насекомыми. И. Хеслоп-Харрисон (1978) показала, что пищеварительные желёзки иепентовых выделяют протеолитический фермент пепентесип, активный только в кислой среде.

Поэтому здесь же вырабатывается и муравьиная кислота, которая не только приводит фермент в активное состояние, но также играет роль антисептика. Полагают, что энергия переваривания белковых веществ у непентесов более высокая, чем у всех других насекомоядных растений: полная ассимиляция насекомого происходит за 5—8 ч.

Крупный кувшин напоминает желудок какого-нибудь солидного животного: количество жидкости, собирающейся в нем, доходит до 1—2 л, а насекомых, находящихся там, может быть несколько сотен.

В процессе разложения насекомых и размножения в жидкости бактерий появляется специфический запах гнили, привлекающий к растению новых насекомых.[ …]

Химический распад картофеля или мяса требует кипячения в растворе сильной кислоты, как это делается при проведении анализа на ХПК. Однако эти же самые продукты могут легко подвергаться разложению микроорганизмами или в желудке животного при намного более низкой температуре, без сильных минеральных кислот, но при наличии ферментов. Большинство ферментов не может быть экстрагировано из живых организмов без повреждения их функциональной способности.

Хотя вопрос об использовании ферментов не входит в рамки данной книги, специалисты в области санитарии должны знать, что ферментные добавки, продаваемые для ускорения процессов биологической очистки, неэффективны.

В этикетке на контейнере обычно употребляются в высшей степени научные термины для убеждения покупателя в достоинствах продукта, например: «Ферменты для сточной воды (или для анаэробного сбраживания, стабилизационных прудов, септиков и т. д.)… как минимум 10 млрд. колоний на грамм… отличная диастатическая, протеолитическая, ами-лолетическая и липолитическая активность… специальный состав ферментов, аэробных и анаэробных бактерий» и т.

д. В действительности бытовая сточная вода содержит в изобилии все эти ферменты, и добавлять их в нее по цене 5—10 долларов за фунт равносильно спуску денег в канализацию.[ …]

…Однажды ко мне на работу судмедэкспертами был доставлен гроб с телом утопленника, и оставался он там… четверо суток! Я видел, как открывали гроб и как люди, делавшие это, испачкались в выделениях трупа, а затем они брались за ручки двери, за кран умывальника…

Мне и другим также приходилось браться за эти предметы. Не знаю, как остальные, но для меня теперь каждое пятно на одежде, на руках ассоциируется с тем покойником, со страхом заражения трупным ядом.

Прокомментировать письмо согласилась врач-патологоанатом Ольга ШУСТРОВА.

Вид мертвого тела всегда очень тяжелое зрелище, особенно на последних стадиях разложения.

А тем более вид утопленника. Дело в том, что в воде процессы распада тканей идут во много раз быстрее, и тело утонувшего всегда вздутое, зеленого цвета, и от него исходит сильнейший запах. Это все, вместе взятое, может очень тяжело повлиять на психику неподготовленного человека.

И такое долгое нахождение тела вне специального места, на глазах публики — недопустимо с любой точки зрения.

Эти соединения достаточно токсичны и появляются, как правило, на третий-четвертый день после смерти, когда уже наступает процесс гниения. Однако заразиться этими веществами здоровому человеку практически невозможно. Даже если «трупный яд» попадет в кровь, он почти сразу будет инактивирован в печени человека, а затем выведен из организма.

Более реальная опасность заражения при контакте с мертвым телом исходит от вирусов и бактерий. Дело в том, что ни один человек не может существовать без кишечной флоры, которая помогает нам расщеплять и переваривать пищу.

Сюда входят и кишечная палочка, и различные молочные бактерии, и многие другие микроорганизмы. После смерти, когда начинается разложение тканей, все эти палочки, бактерии получают огромную питательную среду для размножения.

И тут большое значение имеет то, от чего скончался человек. Если больной умер от сердечной недостаточности, инсульта, малокровия, в результате травмы, то все процессы разложения тканей идут у него медленно. Особенно, если покойный находится в холодном помещении.

Если же человек умер от какого-то гнойного заболевания: от пневмонии, сепсиса, менингита, то в его теле продолжают жить бактерии этих болезней.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *