Что такое гомогенный катализ в химии
Катализ и катализаторы
Катализ – это процесс изменения скорости химической реакции при помощи катализаторов – веществ, принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.
Одни катализаторы ускоряют реакцию (положительный катализ), другие – замедляют (отрицательный катализ). Отрицательный катализ называют ингибированием, а катализаторы, понижающие скорость химической реакции – ингибиторами.
Различают гомогенный и гетерогенный катализ.
Гомогенный катализ.
При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом агрегатном состоянии и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO2 и SO3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).
Гетерогенный катализ.
В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN3 до NO в присутствии Pt (катализатор – твердое вещество).
Механизм действия катализаторов
Действие положительных катализаторов сводится к понижению энергии активации реакции Еа(исх), действие ингибиторов – противоположное.
Так, для реакции 2HI = H2+I2 Еа(исх)=184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt, то Еа(исх)=104 кДж/моль, соответственно.
Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.
SO2 +1/2 O2 = SO3 протекает очень медленно, а если использовать катализатор NO
то реакции NO +1/2О2 = NO2 и NO2 +SO2 = SO3 +NO протекают быстро.
Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры, на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.
Каталитические яды и промоторы.
Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами. Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO2.
Применение катализаторов
Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:
Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.
Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.
ГОМОГЕННЫЙ КАТАЛИЗ
ускорение хим. р-ции в присутствии катализатора, к-рый находится в одной фазе с исходными реагентами (субстратами) в газовой фазе или р-ре. При Г. к., как и при гетерогенном катализе, катализатор в р-ции не расходуется, однако является ее необходимым участником; без катализатора р-ция протекает гораздо медленнее или не идет вовсе.
затруднено из-за высокого окислит.-восстановит. потенциала пары Т1 2+ /Т1 + (для пары Т1 3+ /Т1 2+ этот потенциал значительно ниже). В присут. ионов Мп р-ция протекает по многостадийному механизму:
В радикально-цепных процессах в присут. нек-рых в-в может ускоряться образование радикалов в р-циях зарождения или разветвления цепи. Так, при окислении орг. в-ва RH в присут. ионов Со в небольшой концентрации ускоряется разветвление цепи, а при высокой концентрации этих же ионов-также и развитие цепи. Каталитич. механизм распада гидропероксида включает следующие стадии:
Развитие цепи каталитически ускоряется по схеме:
При гетеролитич. присоединении по кратным связям молекулы AD (А-акцепторная, D-донорная часть молекулы) катализатором м. б. более сильный, чем AD, акцептор (электрофил) А или донор (нуклеофил) D. Напр., при гидратировании олефинов к-та Н + служит катализатором, т. к. облегчает последующее взаимод. с водой:
В металлокомплексном Г. к. р-ции ускоряются в присут. комплексных соед. Ti, Fe, Cu, Pt и др. переходных металлов, к-рые способны к образованию комплексов с молекулами субстратов. Каталитич. активность м. б. обусловлена след. факторами: 1) пространств. близостью молекул субстратов, входящих как лиганды в координац. сферу металла, 2) ослаблением хим. связей в молекулах субстратов и снижением энергии активации при их разрыве; 3) усилением вследствие электронных эффектов донорных или акцепторных св-в молекул субстратов, входящих в металлокомплекс; 4) снятием запретов по симметрии молекулярных орбиталей благодаря участию d-орбиталей металлов; 5) возможностью многоэлектронных р-ций с использованием d-электронов переходных металлов в некомплементарных окислит.-восстановит. р-циях с субстратами, для к-рых последовательное одноэлектронное окисление или восстановление термодинамически затруднено. Комплексы переходных металлов, кроме того, иногда облегчают образование своб. радикалов, что обеспечивает возможность катализа радикальных и радикально-цепных р-ций. Металлокомплексные соед. катализируют гидрирование, окисление, полимеризацию, карбонилирование олефинов и ацетиленов, фиксацию азота, диспропорционирование олефинов, активацию и разл. р-ции алканов и др. Типичный механизм металлокомплексного Г. к. рассмотрен на примере каталитич. гидрирования олефинов. Он включает стадии окислит. присоединения Н 2 (1), образование комплекса с олефином (2), внедрение молекулы олефина по связи МЧН (3), восстановит. отщепление алкана (4):
Т. обр., во всех типах Г. к. катализатор, как правило, обеспечивает новый хим. механизм процесса. Каталитич. р-ции происходят в неск. стадий, в одной из к-рых частица катализатора входит в каталитич. цикл, а в другой выделяется в своб. состоянии, чтобы вновь участвовать в р-ции. В этом смысле гомогенно-каталитич. р-ции подобны цепным; их принципиальное отличие заключается в том, что в цепных р-циях скорость образования продукта больше скорости образования активного центра (скорости инициирования цепи) в v раз (v- длина цепи), тогда как в каталитич. процессах скорость образования активного центра катализатора больше скорости образования продукта или этот активный центр присутствует в системе заранее.
Кинетика гомогенно-каталитич. р-ций определяется их механизмом (см. Каталитических реакций кинетика).
Лит.: Гам мет Л., Основы физической органической химии, пер. с англ., М., 1972, с. 407-45; Джен к с В., Катализ в химии и энзимологии, пер. с англ., М., 1972; Литвиненко Л. М., Олейник Н. М., Органические катализаторы и гомогенный катализ, К., 1981; Parshall G. W., Homogeneous catalysis, N.Y., 1980. А. Е. Шилов.
Катализ
Содержание:
Катализ (греч. κατάλυσις от καταλύειν «разрушение») — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который, согласно теории промежуточных соединений, многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.
На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.
Катализ
Катализ—процесс увеличения скорости химической реакции при участии катализаторов. Катализаторами могут быть вещества в состоянии атомов, молекул, ионов или поверхности раздела фаз, которые взаимодействуют с исходными химическими соединениями, резко изменяют скорость реакции и выделяются на последующих стадиях в химически неизменном виле. Вещества, которые не ускоряют, а замедляют реакцию (увеличивают E*), называют ингибиторами.
Катализ может быть гомогенным, если реагирующие вещества и катализатор находятся в одной фазе. Примером гомогенного катализа может служить реакция
которая идет при высоких температурах и резко ускоряется в присутствии небольшой примеси паров воды.
Катализ называют гетерогенным, если реагирующие вещества и катализатор находятся в разных фазах и имеют границу раздела, например процессы окисления аммиака на платиновом катализаторе
и разложение пероксида водорода в присутствии твердого оксида марганца (IV)
Для некоторых веществ термодинамически допустимо не одно, а несколько направлений превращения. С помощью специально подобранных катализаторов можно ускорять одни и замедлять другие превращения. Так, одно и то же вещество—этиловый спирт—в присутствии оксидов алюминия или тория разлагается с образованием этилена и воды
а в присутствии серебра и меди разлагается с образованием уксусного альдегида и водорода
Каталитическая активность различных катализаторов может резко изменяться в присутствии некоторых веществ иной химической природы, которые сами не являются катализаторами, но резко увеличивают его каталитическую активность—такие вещества называют промоторами или активаторами. Так, каталитическая активность твердого оксида 


ядом является ничтожная примесь соединений мышьяка.
Впервые явление катализа было открыто в 1806 г. Н. Клеманом и Ш. Дезормом в камерном процессе получения серной кислоты. Они установили каталитическое действие оксидов азота на скорость окисления 



Первым промышленным производством, в котором был использован гетерогенный катализ, явился процесс Дикона (получение хлора)
хорошо идущий в присутствии солей меди.
В промышленном синтезе газообразного водорода используют процессы
И
в первом, из которых катализаторами служат оксилы железа, во втором—различные никелевые катализаторы.
Особенно большие успехи в деле промышленного использования катализа были достигнуты в процессах органического синтеза. Каталитическая гидрогенизация соединений с двойными связами; синтетическое моторное топливо; крекинг нефти; десульфуризация нефтепродуктов; синтез каучука, этанола и метанола, окиси этилена, изопропилового спирта, ацетона, акролеина, дивинила, изопрена, бензола, толуола; получение синтетических волокон и других высокополимерных веществ; каталитическая очистка технологических газов—вот далеко не полный перечень продуктов, которые получают в промышленном масштабе с использованием широкого ассортимента катализаторов.
Каталитические реакции бывают одностадийными (слитными) и многостадийными, проходящими через последовательные стадии, из которых одна является лимитирующей, т. е. стадией с наименьшей скоростью. Рассмотрим слитный механизм каталитического процесса на примере бимолекулярной реакции
где X — катализатор; (А— X)* — активированный комплекс. Скорость этой реакции v — 

Константа скорости такой каталитической реакции может быть существенно больше константы той же реакции в отсутствие катализатора из-за уменьшения энергии активации.
В случае двустадийной реакции

Если 
Скорость второй односторонней стадии равна

Объединив выражения (16.1) и (16.2), получаем
Вещество АХ, которое иногда называют промежуточным веществом Аррениуса, реально существует, его можно экспериментально определить методами спектрального анализа, ЭПР и др. Обычно концентрация этого вещества мала (в этом случае мало значение константы 
Гомогенно-каталитические процесс
Гомогенно-каталитические процессы в газовой фазе встречаются редко, так как газообразные катализаторы почти неизвестны. Примером может служить процесс пиролиза ацетальдегида, катализируемый парообразным иодом,
В этом процессе катализатор снижает энергию активации с 198 до 134 кДж/моль.
Гомогенный катализ наиболее распространен в растворах. В связи с большим числом конкретных примеров гомогенно-каталитические реакции этого типа принято делить на кислотно-основные и окислительно-восстановительные с участием комплексных соединений. К кислотноосновному катализу относят процессы изомеризации, гидратации и дегидратации, гидролиза, этерификации, алкилирования, деполяризации. В зависимости от типа основания или кислоты эти реакции условно делят на четыре группы:
1) специфический кислотный катализ ионами
2) специфический основной катализ ионами ОН-;
3) общий кислотный катализ (любыми кислотами);
4) общий основной катализ (любыми основаниями).
Если процесс, катализируемый кислотой или основанием, идет в растворе, то общая скорость реакции будет равна сумме скоростей реакций, катализируемых соответствующими катализаторами, а именно:
где 
(здесь 



первая стадия 
вторая стадия (промежуточная)

Первая стадия — быстрая, почти мгновенная, идет до равновесия 
вторая стадия — медленная, лимитирующая, для нее

подставив (16.4) в (16.5), получим
третья стадия, процесс распада активированного комплекса, приводит к образованию продуктов реакции.
Перейдем к рассмотрению гомогенного катализа комплексными соединениями переходных металлов. При таком катализе в присутствии комплексных катализаторов (чаще всего катионов переходных металлов) осуществляют реакции восстановления и окисления, гидрирования и гидратации, полимеризации и изомеризации. Примером может служить метод промышленного окисления этилена до ацетальдегида в водной среде в присутствии палладиевого катализатора
Окисление образующегося металлического палладия осуществляется ионом
и, наконец, Си4- окисляется кислородом воздуха до
Этот процесс в промышленных условиях идет сначала без доступа воздуха, образовавшийся ацетальдегид отгоняют, после чего ведут продувку воздуха. Если в этом процессе заменить хлор на бром, скорость реакции возрастет в 17 раз; если вести процесс в уксуснокислой среде, из эгилена образуется винилацетат. Приведенный пример показывает, что, воздействуя на катализатор, можно изменить не только скорость, но и химическую схему каталитической реакции.
Остановимся на характеристике гомогенно-каталитического ферментативного катализа, который осуществляется при использовании биологических катализаторов—ферментов, представляющих собой природные белки, входящие в состав тканей. Ферментативный катализ является основой управления сложных жизненных процессов в растениях и животных организмах. Так, фотосинтез, брожение, дыхание, пищеварение, синтез белков, сокращение мышц являются каталитическими процессами, использующими в качестве катализаторов различные ферменты.
Среди других видов каталитических реакций ферментативный катализ является самым высокоорганизованным, поскольку ферменты отличаются высокой избирательностью, специфичностью и каталитической активностью. Ферменты—это высокомолекулярные белки, состоящие из различных аминокислот, связанных пептидными связями. Нативная конформация молекулы фермента образует активный каталитический центр, содержащий полярные


Гетерогенно-каталитические процессы занимают особое место в кинетике, они протекают на границе раздела фаз твердое тело — газ, твердое тело—жидкость. Эти процессы широко используют в промышленной практике. В табл. 16.1 приведены примеры таких каталитических процессов и катализаторов.
Преимущество гетерогенно-каталитических процессов перед гомогенным катализом объясняется большим удоб-
ством гетерогенных катализаторов, легкостью их отделения от реагирующих веществ. Важнейшая характеристика гетерогенного катализатора—величина его активной поверхности. Часто катализаторы получают нанесением активной формы на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве таких носителей применяют активированный уголь, силикагель, оксид хрома(Ш) и др. Многие катализаторы получают осаждением из растворов в виде гидроксидов 
Большая роль в гетерогенном катализе принадлежит процессам адсорбции —физической адсорбции и хемосорбции. Физическая адсорбция является результатом межмолекулярного взаимодействия между частицами (атомами, ионами, молекулами) поверхностного слоя твердой фазы и молекулами газовой фазы или раствором. Хемосорбция (химическая сорбция) завершается химическим взаимодействием адсорбированного вещества с поверхностью твердой фазы. Адсорбирующее твердое вещество называют адсорбентом; вещество, которое адсорбируется,—адсорбтивом. Адсорбция—экзоэргический процесс, сопровождающийся ростом концентрации упорядоченности адсорбтива на поверхности адсорбента. В табл. 16.2 приведены значения тепловых эффектов хемосорбции. Величину адсорбции (Г), т. е. концентрацию веществ на адсорбирующей поверхности, измеряют в молях на м2.
Гетерогенно-каталитические процессы идут через несколько стадий: например, процесс

протекающий на железо-оксидных катализаторах, можно разделить на следующие стадии: подход молекул СО и





где 
реакции, которая пропорциональна 
Первичной стадией гетерогенно-каталитического процесса является процесс адсорбции (т. е. увеличение концентрации реагирующих веществ), однако главная сущность каталитического влияния заключена в химическом взаимодействии реагирующих молекул с поверхностью катализатора по схеме 
Гетерогенный катализ—сложное явление, требующее глубокого теоретического анализа. Наиболее распространенные варианты теории были развиты в работах академика А. А. Баландина (мультиплетная теория катализа) и Н. И. Кобозева (теория активных ансамблей).
Услуги по химии:
Лекции по химии:
Лекции по неорганической химии:
Лекции по органической химии:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.































