Что такое градиент концентрации
Активный и пассивный транспорт через мембрану
Ты уже шаришь какое строение у биологических мембран, так что можно переходить к тому, как вся эта система работает. И начнем мы с транспорта веществ через мембрану. Довольно важная тема, без нее мы не поймем, как формируется потенциал действия, как в клетку попадают энергетические субстраты и вода. Так что присаживаемся поудобнее и поехали!
Виды транспорта через мембрану
Начнем с небольшой классификации. Транспорт можно разделить на пассивный и активный (никаких шуток про геев мне тут), такое разделение основано на затратах энергии. При пассивном транспорте — затрат энергии нет, а при активном транспорте — есть. Это может быть энергия заключенная в АТФ, либо энергия градиента концентрации. Не пугаемся, дальше все будем разбирать подробнее. Еще есть особенный транспорт — экзоцитоз и эндоцитоз (транспортируются макромолекулы), их скорее можно отнести к активному транспорту, но мы рассмотрим их отдельно.
Пассивный транспорт через мембрану
Здесь всего два вида — простая диффузия и облегченная диффузия. В чем отличие? При облегченной диффузии для молекулы, которая будет проходить через мембрану нужен проводник — белок переносчик. Для простой диффузии же переносчик не требуется, она и сама справляется.
Диффузия
Она идет по градиенту концентрации — если на одной стороне мембраны вещества много, то оно будет стремиться перейти на другую сторону. На самом деле диффузия зависит не только от градиента концентрации — еще на нее влияет заряд мембраны и частиц, которые пытаются пройти через мембрану, и давление.
Вспоминаем, что основа мембраны — это амфифильные липиды. Если вещество растворимо в липидах, то оно без проблем перейдет на другую сторону. Лучше всего растворимы в липидах неполярные и незаряженные молекулы (CO2,O2, стероидные гормоны). Но через мембрану могут проходить полярные молекулы и незаряженные (тонированные), но здесь все решает размер. Вода пройдет через мембрану, а вот глюкоза — нет. Вода хоть и проходит через мембрану, но хуже чем неполярные и незаряженные молекулы, поэтому для нее есть специальные поры (аквапорины). Кстати, возможно аквапорины еще нужны потому, что вода в растворе переходит в ион гидроксония.
А вот совсем не могут пройти заряженные и полярные молекулы — ионы натрия, калия, гидроксония. Поэтому простую диффузию разделим еще на два варианта:
1) Диффузия жирорастворимых веществ. Молекула растворима в мембране, то есть она неполярная и незаряженная. Она спокойно проходит через мембрану. Избранные молекулы проходят так — O2, CO2, стероидные и тиреоидные гормоны.
Отличие каналов и пор
Отличие каналов и пор в том, что первые открыты не всегда, а вторые постоянно. У натриевых и калиевых каналов есть шляпка (или ворота), которая открывается двумя способами — в зависимости от типа клетки. Первый способ — изменение электрического заряда мембраны (или ее потенциала). Потеря отрицательного заряда клеткой ведет к открытию натриевых каналов — это важно для потенциала действия. Второй способ — действие химического вещества. Есть ацетилхолиновые каналы, которые открываются под действием(угадайте сами чего)… Так нервные клетки передают сигнал о сокращении мышцам.
Представьте два входа в клуб и один отдельный выход из него. Перед каждым входом стоит фейсер, но в первом нет двери — там просто дверной проем, а у второго и третьего дверь есть и для нее нужен ключик. Первый вход — это пора, молекула воды подходит к нему и фейсер пропускает ее, но иногда в толпе воды может затеряться другая молекула, например, мочевина. Фейсер по ошибке пропускает ее, ну а что — за всеми не углядишь, и она попадает внутрь клетки. Ко второму входу подходит ион натрия, фейсер его пропускает, но войти он не может пока дверь не откроют ключом — изменением потенциала или ацетилхолином. У выхода из клуба тоже стоит фейсер, вот такой вот странный клуб, к нему подходит ион калия и ждет пока дверь откроется таким же ключом. Фейсеры — это часть канала или поры, которая отвечает за узнавание ионов и молекул, а дверь или проем — это сам канал. Ну вы поняли.
Почему клеткам просто не забить: убрать фейсеров и держать двери постоянно открытыми? Смотрите — внутри клетки много калия, но мало натрия. В межклеточном веществе наоборот, очень много натрия и мало калия. А это значит, что калий стремится сбежать из клетки, а натрий войти в клетку.
Во-первых, такая разница ионов создает заряд внутри клетки — отрицательный, если бы каналы были постоянно открыты, то такой разницы бы не существовало, клетка стала бы незаряженной. Что не очень хорошо, так как она не сможет создать потенциал действия. Во-вторых, натрий это любимчик воды и если в клетке его будет много, то будет много и воды. Клетка просто лопнет от такой тусовки.
Облегченная диффузия
Здесь молекуле, которая идет тоже по градиенту концентрации, необходим переносчик. Все это из-за того, что молекула слишком большая для перехода через мембрану самостоятельно. Переносчик — это интегральный белок, который пронизывает мембрану, у него тоже есть фейсер (только здесь это участок связывания). При взаимодействии молекулы с переносчиком — он изменяет свою структуру (конформационные изменения белка) и переносит молекулу в клетку, а затем возвращается обратно.
Такой механизм характерен для переносчиков глюкозы — ГЛЮТов в жировой и мышечной ткани. Однако ГЛЮТы не всегда находятся на поверхности клетки, а только после еды — повышенный уровень глюкозы в крови вызывает секрецию инсулина из Б-клеток островков Лангерганса. Инсулин действует на жировую и мышечную ткань и взывает к ГЛЮТам, которые встраиваются в мембрану. Ой, как-то на автомате получилось. Еще таким способом транспортируются аминокислоты.
Смотрите, еще один прикол. Эти переносчики могут работать в обе стороны, все зависит от градиента концентрации глюкозы. Если ее будет слишком много в клетке, то они могут выкидывать ее в кровь. Прикольненько?
Если интересно, что быстрее: диффузия или облегченная диффузия, то вот график. Видим, что вначале быстрее облегченная диффузия, а потом обычная. Почему? Просто белки могут связать только одну молекулу, когда молекул глюкозы становится очень много, то все переносчики связаны с ней. Наступает насыщение переносчиков, и они не могут быстрее работать. Диффузия же не зависит от переносчиков, но она немного медленнее.
Пассивный транспорт все, поэтому давайте суммируем все и добавим в нашу начальную схему.
Активный транспорт
Здесь для переноса вещества через мембрану необходимо приложить энергию. Но зачем, а главное почему? Потому что такой транспорт идет против градиента концентрации, а без прикладывания энергии молекулу или ион просто не вытолкнуть. Разделяется на два варианта: первично-активный транспорт и вторично-активный транспорт, отличие между ними поймете чуть ниже.
Первично-активный транспорт
Здесь для того, чтобы перенести молекулы/ионы вещества на другую сторону мембраны используется энергия молекул АТФ. Классический вариант — натрий-калиевый насос. Этот насос представляет из себя белок, а именно фермент — АТФазу (помните, что «не все белки — ферменты, но все ферменты — белки» — десятая заповедь от кафедры биохимии). Занимается тем, что переносит ионы натрия из клетки, а ионы калия внутрь клетки. То есть работает против градиента концентрации, ведь натрия очень много вне клетки, а калия наоборот мало.
У насоса есть участки связывания — два для калия и три для натрия. Состоит из двух субъединиц — альфа и бета, альфа это и есть переносчик, а бета похоже якорит его в мембране. На один цикл: переноса трех ионов натрия из клетки и двух ионов калия внутрь клетки, требуется одна молекула АТФ. Как видим, этот насос создает разницу потенциалов, так как в обмен на три заряженных иона внутрь клетки поступает только два — этому пареньку мы обязаны за отрицательный заряд внутри клетки. Действует такой насос во всех клетках, он не дает клетке лопнуть из-за избытка натрия (вспоминаем про воду).
Кроме такого насоса есть еще несколько — Ca ++ и H + — АТФазы. Избыток кальция вредит клетке, так как он может запустить апоптоз. Водородный насос действует в париетальных клетках желудка и дистальном отделе канальца нефрона — в первом случае он создает кислую среду в желудке для функционирования пепсина. Да и вообще, из внешней среды поступает много всякой заразы, которой неприятно встречаться с кислотой. Во втором случае насос перемещает ионы водорода в просвет канальца. Полезная штука, а то прикинь — позанимался спортом и умер от ацидоза, не круто.
Вторично-активный транспорт
Тут одна молекула идет по градиенту концентрации и энергия, которая создается ей, используется для переноса другой молекулы. Представляете, сколько всего ионов натрия во внеклеточной жидкости? Вот и я не представляю, но очень много, а в клетке же наоборот его очень мало. Такая разница создает просто огромную энергию, которая идет на работу белка переносчика. Этот белок переносчик, как вы уже поняли — интегральный белок и имеет два участка связывания. Эти участки могут находиться на одной стороне белка или на разных. Поэтому такой транспорт можно разделить на два варианта:
1) Молекула, которая идет против градиента концентрации, переносится в одну сторону с молекулой, которая идет по градиенту концентрации. Это называется котранспорт (или симпорт). Так переносятся молекулы глюкозы и аминокислот из кишечника и канальцев нефрона. Натрий идет по градиенту концентрации внутрь клетки и захватывает с собой глюкозу или аминокислоты. Тут ты можешь сказать : «Чет странно, ведь в кишке много глюкозы после еды, почему она идет против градиента?». И да, это верно, в кишечнике много глюкозы. Но клеток очень много, а глюкоза растянута по всей поверхности кишки. Вот и получается, что в кишке ее много, но возле каждой клетки маловато. Такая же тема с аминокислотами.
2) Молекула идет против градиента концентрации, но не в одну сторону с переносимым по градиенту концентрации веществом — контртранспорт (или антипорт). Так происходит транспорт ионов водорода в проксимальных канальцах нефрона: водород попадает в просвет канальца, а натрий внутрь клетки.
Ну что сведем все это опять в нашу табличку?
Если не очень хорошо видно, то в конце есть файл со всеми схемами. Извиняйте.
Все что мы разбирали до этого относится к небольшим по размерам молекулам, а что делать с большими? Для этого есть две легенды, о которых ниже.
Экзоцитоз и эндоцитоз
Начнем с экзоцитоза и сделаем это на каком-нибудь примере. Пусть это будут пищеварительные ферменты в поджелудочной железе. Синтезировала значит клетка липазу, но она ведь внутри клетки — это значит проку от нее мало. Нужно ее как-то переместить в проток поджелудочной железы, хорошо было бы использовать белок переносчик. А тут проблемка. Липаза слишком большая — ее не засунуть в белок переносчик. Но ничего — у клетки есть выход.
Все ферменты, белки плазмы, пептидные гормоны и так далее, синтезируются в упаковке — пузырьке (по строению он амфифильный). Оно и правильно, представьте — липаза попадает в цитоплазму клетки и просто переваривает ее. Эти пузырьки направляются к мембране, сливаются с ней и попадают в кровь, межклеточное вещество или проток поджелудочной железы. В общем куда им надо, туда они и попадают.
Теперь эндоцитоз. Все тоже самое только наоборот — это мое лучшее объяснение… Ладно, шутки кончились. На клеточной мембране есть определенный участок с рецепторами — окаймленная ямка. На рецепторах накапливаются макромолекулы, а потом ямка погружается в клетку и охватывает их, образуя пузырек. Этот пузырек направляется к лизосоме, где из него образуются мономеры. Эти мономеры клетка использует по своему усмотрению. Посмотрите картинку и все поймете, базарю.
Таким способом идет фагоцитоз лейкоцитами, а еще так в клетку попадают липопротеиды низкой плотности — это переносчики холестерина и жирных кислот.
Транспорт через несколько слоев клеток
Буквально пару слов. Разберем на примере кишки — там несколько слоев (три, ну ладно — четыре, если с подслизистой). Через все должна пройти глюкоза, но как? Это похоже на эстафету: сначала из кишечника вторично-активным транспортом глюкоза попадает в клетку, потом в следующую клетку уже по облегченной диффузии. Так она доходит до крови, а дальше уже идет по своим делам. Всё!
Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.
Градиент концентрации – определение и примеры
Определение градиента концентрации
Градиент концентрации возникает, когда растворенное вещество более сконцентрирован в одной области, чем в другой.
«Концентрация» относится к тому, сколько растворенного вещества по сравнению с растворитель, Например, в углу резервуара для воды, в который только что была добавлена соль, концентрация соли будет намного выше, чем в противоположном конце резервуара, где соль не достигалась.
Со временем растворенные вещества всегда снижают градиент концентрации, чтобы «попытаться» создать одинаковую концентрацию на всем протяжении решение.
Разумеется, растворенное вещество ничего не «хочет». Но законы термодинамики гласят, что из-за постоянных движений атомов и молекул вещества будут перемещаться из областей с более высокой концентрацией в более низкую концентрацию, чтобы получить случайное решение. Эта анимация иллюстрирует, как и почему происходит этот процесс:
Это можно легко продемонстрировать дома, добавив каплю пищевого красителя на стакан воды. Сначала пищевой краситель будет занимать только небольшое пятно в жидком стакане, где он был добавлен. Но со временем цветные частицы будут распространяться, создавая равномерное распределение цветных частиц по всему дну стекла.
Некоторые жизненные формы используют эту тенденцию растворенных веществ перемещаться из области высокой концентрации в низкую концентрацию, чтобы привести в действие жизненные процессы.
Нейроны, например, способны посылать сигналы так быстро, потому что они используют градиент концентрации заряженных частиц, чтобы создать электрохимический импульс, когда им нужно выстрелить. 20-25% всех калорий, потребляемых человеческим организмом, используются для поддержания этого жизненного градиента концентрации!
Функция градиентов концентрации
Градиенты концентрации являются естественным следствием законов физики. Однако живые существа нашли много способов использовать свои свойства для выполнения важных жизненных функций.
Например, организмы, которым необходимо перемещать вещество в свои клетки или из них, могут использовать движение одного вещества по градиенту его концентрации для транспортировки другого вещества в тандеме.
Организмы могут также использовать градиенты концентрации для осуществления внезапных изменений или движений, высвобождая высокие концентрации растворенного вещества для перемещения в области с низкой концентрацией. Нейроны являются примером клеток, которые используют высокие концентрации растворенных веществ для достижения быстрых изменений.
Примеры градиентов концентрации
Нейроны и натриево-калиевая помпа
Нейроны тратят огромное количество энергии – около 20-25% всех калорий организма, у людей – перекачивая калий в свои клетки и выводя натрий. Результатом является чрезвычайно высокая концентрация калия внутри нервных клеток и очень высокая концентрация натрия снаружи.
Когда клетки связываются, они открывают ионные ворота, которые пропускают натрий и калий. Различия в концентрации натрия / калия настолько сильны, что ионы «хотят» мгновенно выбежать из клетка, Поскольку ионы электрически заряжены, это фактически меняет электрический заряд ячейки.
Этот «электрохимический» сигнал распространяется гораздо быстрее, чем просто химический сигнал, что позволяет нам быстро воспринимать, думать и реагировать.
Проблемы, которые мешают нейронному натриево-калиевому насосу, могут очень быстро привести к смерти, потому что сердце мускул сам опирается на эти электрохимические импульсы для накачки кровь чтобы сохранить нас в живых.
Это делает градиент концентрации натрия / калия в нейронах, возможно, самым важным градиентом концентрации для жизни человека!
Насос Symport глюкозы / натрия
Симпортный насос глюкоза-натрий также использует градиент натрия / калия.
Одной из проблем, с которыми сталкиваются клетки, является перемещение глюкозы – которая является большой и трудной для перемещения по сравнению с крошечными ионами натрия – и которую часто необходимо перемещать в зависимости от градиента концентрации.
Чтобы решить эту проблему, некоторые клетки «связали» движение глюкозы с движением калия, используя белки, которые позволят натрию снижать градиент концентрации – если он принимает глюкозу молекула с этим.
Это еще один пример того, как клетки используют основные законы физики инновационными способами для выполнения функций жизни.
Легкие и Жабры
Наиболее распространенные примеры градиентов концентрации включают твердые частицы, растворенные в воде. Но газы также могут иметь градиенты концентрации.
Жабры человеческих легких и рыб используют градиенты концентрации, чтобы поддерживать нас в живых. Поскольку кислород следует правилам градиентов концентрации, как и любое другое вещество, он имеет тенденцию диффундировать из областей с высокой концентрацией в области с низкой концентрацией. Это означает, что он диффундирует из воздуха в нашу обедненную кислородом кровь.
Легкие и жабры делают этот процесс более эффективным, быстро пропуская нашу самую обедненную кислородом кровь через поверхности наших легких и жабр. Таким образом, кислород постоянно диффундирует в клетки крови, которые в этом больше всего нуждаются.
викторина
1. Какой из следующих законов описывает, как работают градиенты концентрации?A. Движущийся объект имеет тенденцию оставаться в движении, если на него не воздействует внешняя сила.B. Системы всегда прогрессируют до состояния большей случайности.C. Вещества распространяются из областей с высокой концентрацией в области с низкой концентрацией.D. И B, и C.
Ответ на вопрос № 1
D верно. И B, и C верны, и утверждение C является действительным следствием утверждения B. Вещества диффундируют из областей с высокой концентрацией в области с низкой концентрацией как часть движения всей системы к более случайному состоянию с течением времени.
2. Что из нижеперечисленного НЕ относится к градиенту концентрации натрия / калия?A. Вы можете перемещать вещество против градиента концентрации, не затрачивая энергию, если у вас есть право транспортный белок,B. Транспортные белки, которые перемещают вещества против их градиентов концентрации, должны быть снабжены энергией, чтобы функционировать.C. Поскольку клетки должны разрушать молекулы и расходовать энергию, чтобы двигать вещества против градиента их концентрации, это движение не нарушает законы термодинамики.D. Ни один из вышеперечисленных.
Ответ на вопрос № 2
верно. Вещества могут перемещаться против градиентов концентрации только путем расходования энергии. В этом случае клетки расщепляют глюкозу и расходуют огромное количество АТФ, чтобы сделать возможным градиент концентрации натрия / калия. В процессе они перемещают большую систему к случайности, в соответствии с законами термодинамики.
3. Что из нижеперечисленного мы бы не смогли сделать, если бы вещества не имели склонности снижать свои градиенты концентрации?A. СчитатьB. ШагC. вздохнутьD. Все вышеперечисленное
Ответ на вопрос № 3
D верно. Все вышеперечисленные процессы стали возможными благодаря использованию градиентов концентрации!
Градиент концентрации: понятие, формула расчета. Транспорт веществ в биологических мембранах
Что такое концентрация? Если говорить в широком смысле, то это соотношение объема вещества и количества растворенных в нем частиц. Данное определение встречается в самых разнообразных отраслях науки, начиная от физики и математики, заканчивая философией. В данном случае, идет речь об употреблении понятия «концентрация» в биологии и химии.
Градиент
В переводе с латыни, это слово означает «растущий» или «шагающий», то есть это некий «указующий перст», который показывает направление, в котором возрастает любая величина. В качестве примера можно использовать, допустим, высоту над уровнем моря в разных точках Земли. Ее (высоты) градиент в каждой отдельной точке на карте будет показывать вектор увеличения значения до достижения самого крутого подъема.
В математике этот термин появился только в конце девятнадцатого века. Его ввел Максвелл и предложил свои обозначения этой величины. Физики используют данное понятие для того, чтобы описывать напряженность электрического или гравитационного поля, изменение потенциальной энергии.
Не только физика, но и другие науки используют термин «градиент». Это понятие может отражать как качественную, так и количественную характеристику вещества, например, концентрацию или температуру.
Градиент концентрации
Что такое градиент теперь известно, а что такое концентрация? Это относительная величина, которая показывает долю вещества, содержащегося в растворе. Она может высчитываться в виде процента от массы, количества молей или атомов в газе (растворе), доли от целого. Такой широкий выбор дает возможность выразить практически любое соотношение. И не только в физике или биологии, но и в метафизических науках.
А в общем, градиент концентрации является векторной величиной, которая одновременно дает характеристику количеству и направлению изменения вещества в среде.
Определение
Можно ли подсчитать градиент концентрации? Формула его представляет собой частность между элементарным изменением концентрации вещества и длинной пути, который придется преодолеть веществу для достижения равновесия между двумя растворами. Математически это выражается формулой С = dC/dl.
Активный транспорт
Существуют разные формы АТФ, которые располагаются на мембранах клеток. Энергия, заключенная в них, высвобождается при переносе молекул веществ через так называемые насосы. Это поры в клеточной стенке, которые выборочно поглощают и откачивают ионы электролитов. Кроме того, существует такая модель транспорта как симпорт. В этом случае одновременно транспортируется два вещества: одно выходит из клетки, а другое в нее попадает. Это позволяет сэкономить энергию.
Везикулярный транспорт
Активный и пассивный транспорт включает в себя транспортировку веществ в виде пузырьков или везикул, поэтому процесс называется, соответственно, везикулярным транспортом. Выделяют два его вида:
Пассивный транспорт: диффузия
Движение по градиенту концентрации (от высокой к низкой) происходит без использования энергии. Выделяют два варианта пассивного транспорта – это осмос и диффузия. Последняя бывает простой и облегченной.
Основное отличие осмоса в том, что процесс перемещения молекул происходит через полупроницаемую мембрану. А диффузия по градиенту концентрации происходит в клетках, имеющих мембрану с двумя слоями липидных молекул. Направление транспорта зависит только от количества вещества с обеих сторон мембраны. Этим способом в клетки проникают гидрофобные вещества, полярные молекулы, мочевина, и не могут проникнуть белки, сахара, ионы и ДНК.
В процессе диффузии, молекулы стремятся заполнить весь доступный объем, а так же выровнять концентрацию по обе стороны мембраны. Бывает так, что мембрана непроницаема или плохо проницаема для вещества. В этом случае на нее воздействуют осмотические силы, которые могут как сделать преграду плотнее, так и растянуть ее, увеличив размеры насосных каналов.
Облегченная диффузия
Когда градиент концентрации не является достаточным основанием для транспорта вещества, на помощь приходят специфические белки. Они располагаются на мембране клеток точно так же, как и молекулы АТФ. Благодаря ним, может осуществляться как активный, так и пассивный транспорт.
Таким способом через мембрану проходят крупные молекулы (белки, ДНК), полярные вещества, к которым относятся аминокислоты и сахара, ионы. Благодаря участию белков скорость транспорта увеличивается в несколько раз, по сравнению с обычной диффузией. Но это ускорение зависит от некоторых причин:
Несмотря на это, транспорт осуществляется благодаря работе белков-переносчиков, а энергия АТФ в данном случае не используется.
Основными чертами, которые характеризуют облегченную диффузию, являются:
Осмос
Как уже упоминалось выше, осмос – это движение веществ по градиенту концентрации через полупроницаемую мембрану. Наиболее полно процесс осмоса описывает принцип Лешателье-Брауна. В нем говорится, что если на систему, находящуюся в равновесии, повлиять извне, то она будет стремиться вернуться в прежнее состояние. Первый раз с явлением осмоса столкнулись в середине XVIII столетия, но тогда ему не придали особого значения. Исследования феномена начались только сто лет спустя.
Самым важным элементом в феномене осмоса является полупроницаемая мембрана, которая пропускает через себя только молекулы определенного диаметра или свойств. Например, в двух растворах с разной концентрацией, через преграду будет проходить только растворитель. Это будет продолжаться до тех пор, пока концентрация с обеих сторон мембраны не станет одинаковой.
Осмос играет значительную роль в жизни клеток. Это явление позволяет проникать в них только тем веществам, которые необходимы для поддержания жизни. Красная клетка крови имеет мембрану, пропускающую только воду, кислород и питательные вещества, но белки, которые, образуются внутри эритроцита, не могут попасть наружу.
Явление осмоса нашло и практическое применение в быту. Даже не подозревая об этом, люди в процессе засаливания пищи использовали именно принцип движения молекул по градиенту концентрации. Насыщенный солевой раствор «вытягивал» на себя всю воду из продуктов, тем самым позволяя им дольше храниться.