Что такое графен простыми словами
Графен: вещество, которое изменит наш мир
Научное сообщество и промышленность всего мира восхищаются новым веществом, которое благодаря своим удивительным свойствам и многочисленным возможностям практического применения, вне всякого сомнения, изменит многочисленные аспекты нашей жизни; имя этому веществу — графен.
В чем же необычность графена?
Речь идет о прозрачном, очень тонком (максимально тонком), очень легком (0,77 мг / кв. м), водонепроницаемом, эластичном, гибком и одновременно удивительно прочном веществе. Графен является лучшим проводником электричества из когда-либо известных и, к тому же, в изобилии находится в природе, что делает его весьма экономичным.
Кроме того, недавние исследования Манчестерского университета подтвердили его способность «самовосстанавливаться». При повреждении кристаллической решетки графеновой пленки атомы графена притягивают к себе свободные атомы углерода, заполняя по мере необходимости образовавшиеся «дыры».
Химическая структура
Графен представляет собой углеродную пленку толщиной в один атом, кристаллическая решетка которой имеет форму сетки из шестиугольников. Получают графен из природного графита, который добывается в угольных шахтах и из которого делают, например, простые карандаши или тормоза автомобиля; хотя возможно также синтезирование этого вещества.
С точки зрения химической структуры, графен является аллотропной модификацией углерода, имеющей плоскую кристаллическую решетку, образованную шестигранниками (как пчелиные соты) из атомов углерода, соединенных посредством ковалентных связей путем наложения гибридов sp(2) связанных углеродов.
Графен был открыт в 2004 году британскими учеными российского происхождения Андреем Геймом и Константином Новоселовым, однако лишь в 2010 году, когда авторы открытия получили Нобелевскую премию по физике, началась «графеновая лихорадка».
Применение
Поразительное разнообразие свойств графена обеспечивает многочисленные возможности промышленного использования. На самом деле, возможности практически безграничны. Их список постоянно расширяется. Вот лишь некоторые примеры:
Транзистор, основанный на вертикальной графеновой гетероструктуре (Манчестерский университет).
Более того, графен представляет собой идеальную основу для создания новых материалов «под заказ» в зависимости от конкретных нужд. Эльза Прада, научный сотрудник Мадридского института материаловедения Высшего совета по научным исследованиям Испании CSIC, работавшая вместе с Новоселовым, указала, в частности, на флюорографен (двумерный аналог тефлона, имеющий исключительные смазывающие и изолирующие свойства), гексагональный нитрит бора (прозрачный кристаллический изоляционный материал, обладает высокой твердостью, в комбинации с графеном улучшает электромеханические свойства), дисульфид молибдена (еще один двумерный кристалл, обладающий многообещающими свойствами и возможностью применения в производстве транзисторов нового поколения) и силицен (соединение кремния, подобное графену; имеет некоторые подобные графену свойства, может быть легко использован в современной электронике, основанной на кремнии).
Графен в Испании и проект Евросоюза Graphene Flagship
Испанские передовые ученые занимаются исследованиями в области изучения графена. На сегодняшний день самым активным проектом в Испании является проект Европейского Союза Graphene Flagship. Компания из Сан-Себастьяна Graphenea, крупнейший производитель графена в ЕС, является одним из партнеров этого проекта вместе с такими компаниями, как Philips, Varta, Nokia, ST Microelectronics, Repsol, Alcatel-Lucent и Airbus. Наряду с этим в ближайшем будущем планируется начать строительство одной из крупнейших в мире графеновых фабрик в городе Йекла (Мурсия, Испания).
Трудности, которые предстоит преодолеть
На сегодняшний день производство графена из графита, а также получение материала заданной чистоты в зависимости от дальнейшего применения представляют собой весьма сложный процесс. Несмотря на это, решение этих трудностей — лишь вопрос времени: такие издания, как Science и Nature регулярно отзываются на сообщения о новейших технологических разработках.
Зачем нас колят? Графен и мозги
Зачем?
Давайте разбираться.
ТЕОРИЯ. ГРАФЕН И МОЗГИ.
2015-2016 годы
Графен может перевернуть наши представления не только о технике, но и о медицине, считают ученые.
В приложении к «Заметкам обозревателя» есть фрагменты интервью с Хосе Антонио Гарридо.
На протяжении нескольких лет он изучает перспективы использования графена в биосенсорике.
В настоящее время возглавляемая им группа исследователей из Германии, Франции и Швейцарии, созданная при Мюнхенском техническом университете, разрабатывает имплантаты для головного мозга на основе графена.
— Вот уже несколько лет все только восторженно и говорят о том, что графен, этот слой углерода толщиной в один атом, заменит кремний в компьютерных микросхемах. Однако обещанная революция пока не состоялась.
Хосе Гарридо:
Верно.
Была определенная эйфория, особенно среди электронщиков.
Однако нас интересует совсем другая возможность использования графена, а именно: применение его в нейропротезах и имплантатах головного мозга.
Мы занимаемся в том числе имплантатами сетчатки глаза, которые будут стимулировать клетки сетчатки в зависимости от попадающего в них света таким образом, чтобы к слепым пациентам хотя бы частично вернулось зрение.
Другой вариант применения наших протезов — это управление искусственными руками или ногами с помощью сигналов, передаваемых головным мозгом, причем снимать эти сигналы нужно будет непосредственно с коры мозга
— В нейропротезах, которые уже успели себя успешно зарекомендовать, как правило, используется кремний. Почему вы делаете ставку на графен?
Хосе Гарридо:
Материалы подобных протезов должны быть стабильны в химическом отношении. Или, выражаясь яснее: если мы внедрим эти материалы в ту или иную ткань организма, нельзя, чтобы они со временем растворились в ней.
А надо, чтобы они хорошо контактировали с этой тканью и при этом отвечали всем требованиям, которые мы обычно предъявляем к биосенсорам.
Графен идеально соответствует этим условиям; он значительно превосходит по своим характеристикам любые другие материалы, которые мы могли бы использовать вместо него.
— Толщина графеновой пленки составляет всего один атом. Насколько это важно?
Хосе Гарридо:
Как показывает опыт, у пациентов быстро возникают проблемы с жесткими имплантатами из кремния или металла потому, что они вызывают повреждения соседних тканей, или потому, что организм человека начинает их атаковать.
Кроме того, невозможно добиться, чтобы клетки организма идеально контактировали с этими имплантатами.
Наоборот, протезы из тончайших слоев графена лучше приспосабливаются к человеческому организму.
— Итак, графеновый транзистор мог бы считывать сигналы, возникающие в моторных центрах коры головного мозга. Но с имплантатом сетчатки или слуховым протезом ведь все наоборот, они должны реагировать на внешние раздражители.
Хосе Гарридо:
Мы надеемся сконструировать на основе графена интерфейс, который будет занимать минимум места и выполнять обе задачи: стимулировать клетки организма и контролировать результат.
Ведь если обратной связи не будет, значит, нам придется посылать импульсы в клетки организма буквально «вслепую».
Понятно, что эффективность протеза в таком случае окажется невысока.
Хосе Гарридо:
Графен для нас — это последнее звено в цепи.
Графеновый элемент должен находиться там, где ткань тела соприкасается с протезом, там, где нужно добиться наилучшего контакта между электроникой и организмом.
Компания DAPRA организовала мероприятие Demo Day в Пентагоне, на котором показала полностью рабочий прототип искусственной руки.
Протез имплантируется в оставшуюся конечность и управляется с помощью мозговых импульсов, сообщается на официальном сайте компании DAPRA.
Искусственная рука может выполнять все те же функции, что и настоящая, только немного медленнее.
Управление протезом происходит с помощью мозговых импульсов, передающихся в нервы и мускулы оставшейся части руки.
Как сообщают представители компании, им удалось собрать самый передовой прототип роботизированной руки в мире.
Образец работает от встроенного аккумулятора.
Его можно заменить в любой момент.
За считывание сигналов мозга отвечает «умный» браслет MYO.
Изначально он создавался для игр и управления мобильными устройствами.
Но исследователи DAPRA нашли ему применение в протезе.
ТАК ЗАЧЕМ НАС КОЛЯТ?
Возможно, что одной из главных целей тотального иглоукалывания является введение в нас именно графена.
С тем, чтобы он распространился по телу с кровотоком, стал нашей частью, встроился в нас, и попал в наши мозги.
Но зачем?
Целей много, приведем только один пример.
Представьте себе: у вас голове, вдруг, зазвучал голос, обратился к вам, начал беседовать с вами.
В религии это называют «бесовское нашествие», речь идет о реальном контакте с духами (ангелами), они известны давным-давно.
Что делать?
Да все давно известно!
Бог терпел и нам велел!
Нам, христианам, только бы ночь простоять и день продержаться!
И придет на помощь Господь наш Иисус Христос с силою и славою многою.
И сгорят вся дела злые на планете этой.
И восплачутся все племена земные!
Ибо устыдятся дел своих.
Терпеть нужно, конечно же, не сидя, сложив «смиренно» руки.
Нам нужно быть бодрее глобалистов!
Нужно уклоняться от их «благодеяний» и устранять последствия их «благотворных» воздействий с помощью регулярной детоксикации (см. мои статьи).
Ирландский ученый Джонатан Коулман, предложил весной этого года очень неожиданный и до смешного простой способ получения графена в больших количествах с помощью обычного бытового прибора — миксера.
Для производства «ирландского графена» нужны порошковый графит, вода и немного растворителя (или даже средства для мытья посуды).
Пропорции таковы (раскрываем нашу «Поваренную книгу графениста»): на пол-литра воды берем от 20 до 50 граммов порошкового графита и добавляем от 10 до 25 миллилитров моющего средства.
Включим миксер на 10-30 минут.
За это время зерна графита распадаются на отдельные слои графена (в мыльной, вспененной жидкости этот процесс протекает быстрее).
В результате мы получаем суспензию (взвесь) из тончайших графеновых хлопьев. Теперь их можно наносить на подложку, словно лак, или добавлять в пластмассу в качестве присадки, упрочняющей материал.
Эксперименты подтвердили, что «графен из миксера» идеально подходит, например, для производства сенсоров.
Получать его можно тоннами, подчеркивает Коулман.
Графен с неба, в воде и в вакцинах. Зачем?
2015-2017 годы. ПАУКИ И ГРАФЕН
Группа итальянских исследователей обнаружила, что при нанесении на некоторых пауков водной взвеси графена и углеродных нанотрубок (УНТ) некоторые животные способны включать их в состав своей паутины, что делает ее более прочной.
Можно также и поить их взвесью графена в воде.
Как оказалось, графен не нарушает жизнедеятельность некоторых из насекомых.
То есть не убивает, по крайней мере сразу.
Так, по ударной вязкости, доходящей до 520 Мдж/м2, их паутина десятикратно превосходит кевлар (защита от ножа и пули), что позволяет паукам Дарвина плести нити до 25 метров длиной и даже перекидывать «мосты» из такой паутины через небольшие реки.
Графен может стать частью живого организма, встроиться в него и изменить его свойства.
2016 год. ГРАФЕН И ШЕЛКОПРЯД
Учёные с химического факультета и центра нано- и микромеханики Университета Цинхуа (Пекин) предложили новый способ обогащения шёлкового волокна с помощью углеродных нанотрубок и графена.
Китайские учёные предположили, что для пищеварительной системы шелкопрядов и внедрения в структуру фиброина гораздо более приемлемыми окажутся одностенчатые углеродные нанотрубки диаметром около 1-2 нм.
Кроме одностенчатых нанотрубок, учёные решили скормить шелкопрядам ещё и графен, тоже потенциальный упрочнитель.
Чтобы скормить материалы животным, учёные применили простой метод: они распылили взвесь с одностенчатыми нанотрубками и графеном на листья шелковицы, которыми питаются шелкопряды — а потом собрали продукт из кокона.
Опыт завершился успехом.
Диета шелкопрядов с добавками одностенчатых нанотрубок и графена привела к получению шёлковой нити с улучшенными свойствами.
Нить получена естественным натуральным путём из кокона, как и обычная шёлковая нить.
Учёные изучили спектры комбинационного рассеяния шёлкового волокна и экскрементов шелкопрядов — и подтвердили в обоих случаях внедрение углеродных нанотрубок в шёлковое волокно.
Они также проверили, насколько изменились свойства волокна после внедрения углеродных нанотрубок.
Неудивительно, что после добавления графена и углеродных нанотрубок шёлковая нить стала проводником электричества.
У лучшего образца шёлка с частицами графена электрическая проводимость составила довольно высокие 120 сименс на сантиметр.
Такой шёлк можно использовать в электронике.
Удобно запитывать носимые гаджеты, вшитые прямо в шёлковую одежду.
Собственно, и светящуюся ткань сделать достаточно просто.
Научная статья опубликована 13 сентября 2016 года в журнале Nano Letters (doi: 10.1021/acs.nanolett.6b03597).
Графен может стать частью живого организма, встроиться в него и изменить его свойства.
2020 год. ЛЮДИ И ГРАФЕН
Смотрим сайт «GRAFENE FLAGSHIP».
Он рассказывает о проекте Евросоюза с бюджетом в 1 млрд. евро.
Речь идет о производстве и использовании графена.
Биолог по имени Рикардо Дельгадо и врач Хосе Луис Севильяно, ведущие онлайн-программы под названием «La Quinta Columna», выдвинули версию, по которой руки некоторых людей становятся магнитными именно в том месте, где им сделали прививку.
В этих местах прилипают не только магниты, но и ножницы, металлические детали, инструменты, даже мобильные телефоны!
Это явление не является исключительным для руки.
В течение нескольких дней оно перемещается в сторону груди, шеи или верхней части позвоночника.
Причина?
La Quinta Columna, команда испанских исследователей, обнаружила, что некоторые вакцины содержат оксид графена.
Рикардо Дельгадо:
«Они вводят оксид графена в качестве адъюванта в вакцины против COVID-19.
Он имеет полосу поглощения для частот 5G, что также может служить причиной магнитного явления.
Нановещества внедряются в ампулы с вакциной.
Не только от COVID-19, но и от вакцины против гриппа.
Существует множество свидетельств «магнитного» явления во всем мире.
Они связаны не только с явлением прилипания магнитов и металлических предметов к месту уколов.
Есть еще явления электромагнитной индукции, генерирующей переменные электромагнитные поля внутри тела если использовать измерительные приборы, такие как гауссметр или мультиметр, которые тоже генерируют переменные электрические поля в милливольтном масштабе, но очень необычные, порядка 180 мВ до 200-350 мВ у некоторых людей, особенно в области лба.
Графен может стать частью организма людей и изменить его свойства, например, сделать более электропроводным и способным принимать сотовое излучение, поскольку при попадании внутрь нас он встраивается в нас на некоторое время (например, полгода) и превращается в антенну.
ЗАЧЕМ?
ПОЧЕМУ ИМЕННО ОКСИД ГРАФЕНА?
Вот версия.
Исследователи из компании Graphene Flagship, партнеры SISSA в Италии, ICN2 в Испании и Манчестерского университета в Великобритании, в сотрудничестве с Медицинской школой Рибейран-Прету Университета Сан-Паулу, в модельном исследовании обнаружили, что оксид графена подавляет поведение, связанное с тревогой.
Они обнаружили, что введение оксида графена в определенную область мозга заставляет замолчать нейроны, ответственные за тревожное поведение.
Ученые использовали обычную модель поведения животных, которую описывают следующим образом.
В известном классическом мультфильме «Том и Джерри», Джерри живет в дыре в стене небольшой комнаты, где чувствует себя защищенным и в безопасности.
Обычно мышь исследует комнату свободно и без забот.
Но когда мышь нюхает кошку, она убегает обратно в нору, поскольку знает, что только там безопасно.
Это очень сильное защитное поведение и основа для реакции «бей или беги», которая свойственна большинству животных.
Мышь надолго запоминает такое свое поведение и при малейшем шорохе убегает обратно в нору даже по прошествии недель встречи с кошкой, даже после того, как малейших запах кошки исчез.
Однако, применив точечное введение оксида графена исследователи получили удивительные результаты. «Через два дня после инъекции оксида графена в определенную область мозга мыши она вела себя как другие мыши, которые никогда не ощущали запах кошки в своей домашней среде.
Другими словами, оксид графена подавлял тревожное поведение мышей», – объясняет Лаура Баллерини, ведущий автор статьи и профессор физиологии из компании Graphene Flagship
«Оксид графена взаимодействует с частью мозга, ответственной за формирование воспоминаний, связанных со страхом, которые вызывают беспокойство. Он не действует как лекарство, подавляя функцию каких-то выборочных рецепторов рецепторов, как действуют все другие лекарства.
Вместо этого графен временно останавливает весь механизм формирования воспоминаний на достаточно долгое время, чтобы разрушить связанную со страхом патологию мозга, не повреждая клеток», – продолжает Баллерини.
Таким образом, экспериментально показано, что графен имеет тропизм к нервной ткани и хорошо там накапливается.
А после того как его концентрация в нейросети становится достаточной – он начинает блокировать механизм формирования памяти, переписывая её настолько, что мышь потом никак не реагирует на кота.
БЛАГИЕ НАМЕРЕНИЯ ВЛАСТЕЙ
Путей введения в нас графена немало.
Это и распыление с самолетов, и добавление в воду.
И вакцины (главный способ введения), и многое, многое другое.
Чему нужно учиться теперь?
Нужно учиться лечиться, чтобы выжить самому и помочь близким.
Все это работает, причем здорово!
Особенно с молитвой Тому, Кто создал лечебные растения и минералы!
(читайте мои статьи, там все есть).
Графен, его производство, свойства и применение
Графен, его производство, свойства и применение в электронике и др.
Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.
Описание графена. Открытие графена:
На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).
Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах. Предполагается, что графен может стать отличной заменой кремнию, особенно в полупроводниковой промышленности, и другим химическим элементам.
Графен был получен двумя британскими учеными российского происхождения Константином Новоселовым и Андреем Геймом, работающими в Университете Манчестера. За «передовые опыты с двумерным материалом – графеном» Константин Новоселов и Андрей Гейм в 2010 г. были удостоены Нобелевской премии. Для получения графена ученые использовали подручные материалы – кусок графита и обычный скотч. Ученые нанесли на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали ленту, каждый раз разделяя (отшелушивая) вещество пополам. Эти действия ученые проводили до тех пор, пока от образца графита не остался один, последний – прозрачный слой – графен, который перенесли на подложку. Данный способ получения графена именуется методом “отшелушивания”.
Свойства и преимущества графена:
– благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,
– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,
– обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди. Его теплопроводность составляет около 5000 Вт/м∙К,
– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света и оптически прозрачен в широком диапазоне от UV до far-IR,
– графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,
– самый легкий материал. В 6 раз легче пера,
– инертность к окружающей среде,
– впитывает радиоактивные отходы,
– благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,
– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур,
– при протекании соленой воды по листу графена последний способен генерировать электрическую энергию за счет преобразования кинетической энергии движения потока соленой воды в электрическую (т.н. электрокинетический эффект),
– графен является гидрофобным и абсолютно непроницаем (за исключением воды) материалом для жидкостей и газов, в том числе агрессивных соединений,
– химически нейтрален, стабилен и экологичен.
Его обнаруживают на масках и других предметах быта в виде черных «червяков» (см. ролики).
Его часто можно встретить на коже человека, пришедшего с улицы.
Особенно, если до этого в небе висели химтрейлы.
Сразу замечу, что я лично это проверил, купив в интернет-магазине небольшой цифровой микроскоп, который подключается к компьютеру, всего-то за 1000 руб. (кратность увеличения 1600).
Смотрим сайт «GRAFENE FLAGSHIP».
Он рассказывает о проекте Евросоюза с бюджетом в 1 млрд. евро.
Речь идет о производстве и использовании графена.
Технологии сравнительно недорогого массового производства графена стремительно развиваются.
Увы, графен, и в особенности его оксид, токсичен.
Целый ряд работ показал, что кератиноциты (90 процентов клеток эпидермиса кожи человека), клетки крови человека и свободно живущие микроорганизмы уязвимы к оксиду графена.
Так ученые из Казанского федерального университета, встревоженные ситуацией, предложили способ снизить опасность оксида графена, который можно получить вместе с водой из водоемов повсеместно.
Соответствующая статья опубликована в Environmental Science & Technology Letters.
Вот проблема: частицы оксида нанографена слишком маленькие для большинства фильтров.
Авторы новой работы взяли каолин (главный компонент белой глины, довольно недорогой материал) и оксид графена и добавили их равными долями в воду, куда предварительно поместили одноклеточных инфузорий-туфелек.
Вторую группу инфузорий поместили в воду, куда добавили только оксид графена. Оказалось, что при равных дозах этого материала выживаемость инфузорий в разных растворах резко различалась.
При достижении концентрации в один миллиграмм оксида графена на миллилитр воды около половины инфузорий гибло.
Если такое же количество оксида графена приходилось на тот же объем воды, куда добавили каолин (по массе равный оксиду графена), то выживало примерно 95 процентов одноклеточных.
ПОЧЕМУ ИМЕННО ОКСИД ГРАФЕНА?
Вот версия.
Исследователи из компании Graphene Flagship, партнеры SISSA в Италии, ICN2 в Испании и Манчестерского университета в Великобритании, в сотрудничестве с Медицинской школой Рибейран-Прету Университета Сан-Паулу, в модельном исследовании обнаружили, что оксид графена подавляет поведение, связанное с тревогой.
Они обнаружили, что введение оксида графена в определенную область мозга заставляет замолчать нейроны, ответственные за тревожное поведение.
Ученые использовали обычную модель поведения животных, которую описывают следующим образом.
В известном классическом мультфильме «Том и Джерри», Джерри живет в дыре в стене небольшой комнаты, где чувствует себя защищенным и в безопасности.
Обычно мышь исследует комнату свободно и без забот.
Но когда мышь нюхает кошку, она убегает обратно в нору, поскольку знает, что только там безопасно.
Это очень сильное защитное поведение и основа для реакции «бей или беги», которая свойственна большинству животных.
Мышь надолго запоминает такое свое поведение и при малейшем шорохе убегает обратно в нору даже по прошествии недель встречи с кошкой, даже после того, как малейших запах кошки исчез.
Однако, применив точечное введение оксида графена исследователи получили удивительные результаты. «Через два дня после инъекции оксида графена в определенную область мозга мыши она вела себя как другие мыши, которые никогда не ощущали запах кошки в своей домашней среде.
Другими словами, оксид графена подавлял тревожное поведение мышей», – объясняет Лаура Баллерини, ведущий автор статьи и профессор физиологии из компании Graphene Flagship
«Оксид графена взаимодействует с частью мозга, ответственной за формирование воспоминаний, связанных со страхом, которые вызывают беспокойство. Он не действует как лекарство, подавляя функцию каких-то выборочных рецепторов рецепторов, как действуют все другие лекарства.
Вместо этого графен временно останавливает весь механизм формирования воспоминаний на достаточно долгое время, чтобы разрушить связанную со страхом патологию мозга, не повреждая клеток», – продолжает Баллерини.
Таким образом, экспериментально показано, что графен имеет тропизм к нервной ткани и хорошо там накапливается.
А после того как его концентрация в нейросети становится достаточной – он начинает блокировать механизм формирования памяти, переписывая её настолько, что мышь потом никак не реагирует на кота.
БЛАГИЕ НАМЕРЕНИЯ ВЛАСТЕЙ
Кстати, не продавливается ли властями и тотальная вакцинация для введения в нас этого «полезного» нановещества?
Биолог по имени Рикардо Дельгадо и врач Хосе Луис Севильяно, ведущие онлайн-программы под названием «La Quinta Columna», нашли причину, по которой руки некоторых людей становятся магнитными именно в том месте, где им сделали прививку.
В этих местах прилипают не только магниты, но и ножницы, металлические детали, инструменты, даже мобильные телефоны!
Это явление не является исключительным для руки.
В течение нескольких дней оно перемещается в сторону груди, шеи или верхней части позвоночника.
Причина?
La Quinta Columna, команда испанских исследователей, обнаружила, что вакцины содержат оксид графена.
Рикардо Дельгадо:
«Они вводят оксид графена в качестве адъюванта в вакцины против COVID-;19.
Он имеет полосу поглощения для частот 5G, что также может служить причиной магнитного явления.
Нанотехнологии внедряются в ампулы с вакциной.
Не только от COVID-;19, но и от вакцины против гриппа.
И на самом деле, они сделали это именно с помощью противогриппозной вакцины, которая, по нашему мнению, вызвала саму болезнь COVID-;19.
Существует множество свидетельств «магнитного» явления во всем мире.
Они связаны не только с явлением прилипания магнитов и металлических предметов к месту уколов.
Есть еще явления электромагнитной индукции, генерирующей переменные электромагнитные поля внутри тела если использовать измерительные приборы, такие как гауссметр или мультиметр, которые тоже генерируют переменные электрические поля в милливольтном масштабе, но очень необычные, порядка 180 мВ до 200-350 мВ у некоторых людей, особенно в области лба.
Наночастицы восстановленного оксида графена (rGO) внутри тела, которые приобретают магнитные свойства именно внутри тела в условиях температуры тела, при контакте с водородом и под определенными углами, которые называются «магический угол» оксида графена.».
Ну, нет другого способа теперь выжить, как с Божьей помощью осваивать регулярную детоксикацию организма с помощью прекрасных, безопасных, эффективных лечебных трав и минералов, таких, например, как девясил, неочищенный овес, эрва шерстистая (пол-пала).
Я об этом писал много раз.
Есть и другие дары Божьи.
Вот, например, настойка из измельченного чеснока и старого, доброго, красного вина.
Оа спасала людей даже от чумы, проверьте, это исторический факт!
Сделайте ее и пейте, разбавленную в 2-3 раза, перед каждой едой.
А русская баня? Что может быть лучше?!
Читайте мои статьи о сверхмощном, недорогом и безопасном очищении и лечении органов дыхания (туман соли с фитонцидами).