Что такое мощность резистора
Мощность резистора
Как рассчитать мощность резистора?
У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.
Сама по себе мощность постоянного тока рассчитывается по простой формуле:
Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.
Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:
Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.
Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?
Тут нам потребуется формула. Выглядит она так:
R(Ом) – сопротивление цепи (в данном случае резистора);
I(А) – ток, протекающий через резистор.
Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).
Рассчитаем мощность для нашего резистора:
Мы получили мощность 1 Ватт. Теперь небольшое отступление.
В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.
Поэтому нам подойдёт резистор мощностью 2 Вт (см. стандартный ряд мощностей резисторов).
Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.
Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?
Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.
Для его замены можно применить два соединённых последовательно резистора сопротивлением 20 Ом и 80 Ом. На какую мощность должны быть рассчитаны эти резисторы?
Как видим, если сопротивления резисторов будут разные, то и мощность на них будет выделяться разная.
Мощность, рассеивающаяся на резисторе, зависит в первую очередь от тока, который течёт через данный резистор. А ток зависит от сопротивления резистора. Поэтому, если вы соединяете последовательно резисторы разных номиналов, то и рассеивающаяся мощность распределиться между ними.
Это обстоятельство необходимо учитывать при самостоятельном конструировании электронных самоделок иначе при неправильном подборе резисторов может получиться так, что на одном резисторе выделиться больше мощности, чем на другом, и он будет работать в тяжёлом температурном режиме.
Чтобы не ломать голову и не рассчитывать мощность каждого в отдельности резистора, можно поступать так:
Мощность каждого резистора, входящего в составляемую нами цепь (параллельную или последовательную) должна быть равна мощности заменяемого резистора. Иными словами, если нам надо заменить резистор, мощностью 1 Вт, то каждый из резисторов для его замены должен иметь мощность не менее 1 Ватта. На практике это самое быстрое и эффективное решение.
Для параллельного соединения резисторов нужно учитывать, что через резистор с меньшим сопротивлением протекает больший ток. Следовательно, и мощности на нём будет рассеиваться больше.
Мощность резистора: обозначение на схеме, как увеличить, что делать, если нет подходящего
В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.
Характеристики резисторов
1. Основной параметр резистора – это номинальное сопротивление.
2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.
3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.
4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.
5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.
6. Шумовые характеристики.
7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.
8. Влаго- и термоустойчивость.
Есть еще две характеристики, о которых начинающие чаще всего не знают, это:
1. Паразитная индуктивность.
2. Паразитная ёмкость.
Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.
На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.
Мощность резистора
Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I
Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:
Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:
Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.
У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.
В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).
На картинке пример кристаллической решетки, для наглядности.
Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?
То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.
Но как это относится к резисторам?
Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Мы описывали это в статье о биполярных транзисторах. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:
Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает.
Выделение тепла на резисторе объясняется законом Джоуля-Ленца, который связывает количество выделенной теплоты с током и сопротивлением. Чем больше первое или второе, тем больше выделится тепла.
Чтобы было удобно из этой формулы, путем подстановки закона Ома для участка цепи, выведено еще две формулы.
Для определения мощности через приложенное напряжение к резистору:
Для определения мощности через ток, протекающий через резистор:
Немного практики
Для примера, давайте определим, какая мощность выделяется на резистор номиналом в 1 Ом, подключенного к источнику напряжения в 12В.
Для начала посчитаем ток в цепи:
Теперь мощность по классической формуле:
Одного действия при расчетах можно избежать, если пользоваться вышеупомянутыми формулами, давайте это проверим:
Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.
Какие бывают резисторы и как они обозначаются на схеме
Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5
Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.
Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.
Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.
Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).
Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).
Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.
В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.
Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.
В продолжение этой темы:
Что делать, если нет резистора нужной мощности?
Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.
На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.
1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3
2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.
На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.
Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I
Мощность, выделяемая на каждом из них, снизится соответствующим образом.
Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.
Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.
Заключение
Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.
При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.
Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.
Как определить мощность резистора.
17 Авг 2015г | Раздел: Радио для дома
Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.
Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством. В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим комментариям, этот параметр был раскрыт не полностью. В этой статье я постараюсь устранить этот пробел.
Итак. Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.
Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.
Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».
Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.
На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.
Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.
Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.
Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.
Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.
Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.
А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.
Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.
И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.
И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.
Резистор тока.
Резистор тока выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи, создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.
Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность – это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.
Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),
Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт – 0,5 Ватт в данном случае – минимум.
Рассмотрим на примере: номинальное сопротивление нашего резистора тока – 100 Ом. Через него течет ток 0,1 Ампер. Чтобы узнать мощность, на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),
Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)
Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 – 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.
Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:
Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.
Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него – 0,1 Ампер. Соответственно, его мощность – 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом – 0,2 Вт, мощность резистора на 80 Ом – 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:
R1 – 20 Ом (0.5 Вт)
R2 – 80 Ом (1 Вт)
Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно – второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.
Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.
При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.