Что такое наблюдающее устройство в электроприводе
Что такое наблюдающее устройство в электроприводе
ЭП с наблюдателем.
В сложных схемах электропривода, имеющих разветвлены кинематические схемы с упругими элементами, число регулируемых переменных может иметь очень большое количество.в таких случаях используют так называемые наблюдающие устройства или наблюдатели.
Основу такого наблюдателя образует совокупность звеньев электропривода, выполненных на базе операционных усилителей или микропроцессорных устройств. Выходные сигналы этих моделей, параметры которых соответствуют реальным звеньям, дают оценку реальных значений переменных. Электроприводы с использованием наблюдателя, основываются на схемах с наблюдающим устройством, которые имеют в общем случае имеют вид:
Схема электропривода с наблюдающим устройством
НУ – наблюдающее устройство
Такой электропривод предназначен для регулирования положения ИО РМ. Это достигается соответствующим регулированием угла поворота вала двигателя, при котором требуется регулирования тока, момента и скорости двигателя. Для реализации данного принципа регулирования сигнал задания угла поворота подаётся на управляющее устройство и одновременно на вход наблюдающего устройства. Наблюдающее устройство вырабатывает с помощью звеньев электропривода сигналы, которые пропорциональны току, моменту и скорости, и отправляет их в устройство управления. Однако, звенья электропривода не могут учесть всех реальных возмущений действующих на электроприводе, поэтому наблюдающее устройство выдаёт неточные значения переменных, а только их оценку.для повышения точности получаемых оценок используется корректирующая обратная связь по регулируемой переменной. В этом случае, выходное значение регулируемой переменной сравнивают с помощью обратной связи с её оценкой и выявляют отклонения, а затем корректируют показания отдельных звеньев.
Что такое следящий привод
Функциональная схема следящего привода, приведенная на рис. 1, имеет замкнутую структуру с жесткой отрицательной обратной связью по углу поворота Θ 2 выходного вала.
Рис. 1. Функциональная схема следящего привода
Напряжение Uy формируется такого знака, чтобы двигатель Д, получив питание, стал поворачивать свой вал в направлении, при котором разность углов Θ 2- Θ1 уменьшалась. Иными словами, следящий привод всегда стремится к непрерывному автоматическому устранению рассогласования между входным и выходным валами.
Рис. 2. Схема следящего привода с сельсинами
В систему включается преобразователь, который выпрямляет переменное напряжение однофазной обмотки СП и усиливает его. Преобразователь (см. рис. 2) должен быть знакочувствительным, т. е. в зависимости от фазы сигнала обмотки СП выдавать на якорь двигателя постоянное напряжение положительного или отрицательного знака.
Исполнительный двигатель связан с ротором СП через понижающий редуктор Р. Входной задающий угол поворота Θ1 вводится в систему задающим устройством ЗУ, вал которого связан неподвижно с валом СД. Иногда эта связь осуществляется через редуктор.
Частота напряжения Uy определяется частотой питания однофазной обмотки СД (50, 400 Гц и т. д.). Преобразователь П выпрямляет и усиливает напряжение Uy.
Схемно он может быть представлен фазочувствительным выпрямителем и усилителем постоянного тока, выполненным на различной элементной базе. Например, в качестве выпрямителя может быть использован транзисторный усилитель, а в качестве усилителя — ЭМУ.
Часто в следящих системах кроме отрицательной связи по углу поворота (по положению) используется обратная связь по частоте вращения. В этом случае схема, приведенная на рис. 2, изменится.
Рис. 4. Схема замкнутого привода с отрицательной обратной связью по частоте вращения
На валу двигателя будет находиться тахогенератор, а напряжение с его обмотки будет подаваться на преобразователь П последовательно с напряжением U у, так как это показано на рис. 4. На практике используют и другие виды обратных связей.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Электрические приводы. Виды и устройство. Применение и работа
Электропривод – электромеханическая система, служащая для привода в движение функциональных органов машин и агрегатов для выполнения определенного технологического процесса. Электрические приводы состоят из электродвигателя, устройства преобразования, управления и передачи.
Устройство
С прогрессом промышленного производства электрические приводы заняли в быту и на производстве лидирующую позицию по числу электродвигателей и общей мощности. Рассмотрим структуру, типы, классификацию электроприводов, и предъявляемые к нему требования.
1 — Передний крепеж
2 — Винтовая передача
3 — Концевой датчик
4 — Электродвигатель
5 — Зубчатая передача
6 — Задний крепеж
Функциональные компоненты
Функциональные части
Исполнительный механизм является устройством, которое смещает рабочую деталь по поступающему сигналу от управляющего механизма. Рабочими деталями могут быть шиберы, клапаны, задвижки, заслонки. Они изменяют количество поступающего вещества на объект.
Рабочие органы могут двигаться поступательно, вращательно в определенных пределах. С их участием производится воздействие на объект. Чаще всего электропривод с исполнительным механизмом состоят из электропривода, редуктора, датчиков положения и узла обратной связи.
Сегодня электрические приводы модернизируются по их снижению веса, эффективности действия, экономичности, долговечности и надежности.
Свойства привода
Классификация
Электрические приводы обычно классифицируются по различным параметрам и свойствам, присущим им. Рассмотрим основные из них.
По виду движения:
По принципу регулирования:
По виду передаточного устройства:
По виду преобразовательного устройства:
По методу передачи энергии:
По уровню автоматизации:
По роду тока:
По важности операций:
Подбор электродвигателя
Чтобы приводы производили качественную работу, необходимо правильно выбрать электрический двигатель. Это создаст условия долгой и надежной работы, а также повысит эффективность производства.
При подборе электродвигателя для привода агрегатов целесообразно следовать некоторым советам по:
Правильный подбор электродвигателя обуславливает технико-экономические свойства всего привода, его надежность и длительный срок работы.
Преимущества
Инновационные электрические приводы все автоматизированы. Системы управления приводом дают возможность рационального построения технологических процессов, увеличить производительность и эффективность труда, оптимизировать качество продукции и уменьшить ее цену.
Технические требования
К любым техническим механизмам и агрегатам предъявляются определенные требования технического плана. Не стали исключением и электроприводы. Рассмотрим основные предъявляемые к ним требования.
Надежность
В соответствии с этим требованием привод должен исполнять определенные функции и заданных условиях в течение некоторого интервала времени, с расчетной вероятностью работы без возникновения неисправностей.
При невыполнении этих требований остальные свойства оказываются бесполезными. Надежность может значительно отличаться в зависимости от характера работы. В некоторых механизмах не требуется долгого времени работы, однако отказ механизма не должен иметь место. Такой пример можно найти в военной промышленности. И другой пример, где наоборот, время службы должно быть большим, а отказ устройства вполне возможен, и не приведет к серьезным последствиям.
Точность
Это требование связано с отличием показателей от заданных. Они не могут превышать допустимые величины. Электроприводы должны обеспечивать перемещение рабочего элемента на определенный угол или за некоторое время, а также поддерживать на определенном уровне скорость, ускорение или момент вращения.
Быстродействие
Это качество привода обеспечивает быструю реакцию на разные воздействия управления. Быстродействие связано с точностью.
Качество
Такая характеристика обеспечивает качество процессов перехода, исполнение определенных закономерностей их выполнения. Качественные требования создаются вследствие особенностей работы машин с электроприводами.
Энергетическая эффективность
Любые производственные процессы преобразования и передачи имеют потери энергии. Наиболее важным это качество стало в применении электроприводов механизмов, приводах значительной мощности, долгим режимом эксплуатации. Эффективность использования энергии определяется КПД.
Совместимость
Электрические приводы должны совмещаться с работой аппаратуры, в которой они применяются, с их системой снабжения электроэнергией, информационными данными, а также с рабочими элементами. Наиболее остро стоит требование совместимости электроприводов для медицинской и бытовой техники, в радиотехнике.