Что такое начала евклида

Начала Евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Не снимайте пометку о выставлении на переименование до окончания обсуждения.
Дата постановки — 29 августа 2012.

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Прокл сообщает (ссылаясь на Евдема), что подобные сочинения создавались и до Евклида: «Начала» были написаны Гиппократом Хиосским, а также платониками Леонтом и Февдием. Но эти сочинения, по-видимому, были утрачены ещё в античности.

«Начала» оказали огромное влияние на развитие математики вплоть до Новейшего времени. Книга переведена на множество языков мира. По количеству переизданий «Начала» не имеют себе равных среди светских книг.

Содержание

Краткий обзор содержания

В «Началах» излагаются планиметрия, стереометрия, арифметика, отношения по Евдоксу. В классической реконструкции Гейберга весь труд состоит из 13 книг. К ним традиционно присоединяют две книги о пяти правильных многогранниках, приписываемые Гипсиклу Александрийскому и школе Исидора Милетского.

Изложение в «Началах» ведётся строго дедуктивно. Каждая книга начинается с определений. В первой книге за определениями идут аксиомы и постулаты. Затем следуют предложения, которые делятся на задачи (в которых нужно что-то построить) и теоремы (в которых нужно что-то доказать). Определения, аксиомы, постулаты и предложения пронумерованы, например, I def. 2 — второе определение первой книги.

Первая книга

Первая книга начинается определениями, из которых первые семь (I def. 1-7) гласят:

Комментаторы эпохи Возрождения предпочитали говорить, что точка есть место без протяжения. Современные авторы, напротив, признают невозможность определения основных понятий, и Давид Гильберт начинает «Основания геометрии» [6] так:

Мы мыслим три различные системы вещей: вещи первой системы мы называем точками и обозначаем Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

За определениями Евклид приводит постулаты (I post. 1-5):

Наиболее интересен в аксиоматике Евклида последний, знаменитый пятый постулат. Среди других, интуитивно очевидных постулатов, он нарочито чужероден, его громоздкая формулировка закономерно вызывает некоторое чувство протеста и желание отыскать для него доказательство. Такие доказательства уже в древности пытались построить Птолемей и Прокл; а в Новое время из этих попыток развилась неевклидова геометрия. Следует отметить, что первые 28 теорем I книги относятся к абсолютной геометрии, то есть не опираются на V постулат.

За постулатами следуют аксиомы (I ax. 1-9), которые имеют характер общих утверждений, относящихся в равной мере как к числам, так и к непрерывным величинам:

В скобки взяты аксиомы, принадлежность которых Евклиду Гейберг, автор классической реконструкции текста «Начал», счёл сомнительной. I post. 4 и 5 в ряде списков выступают как I ax. 10 и 11 соответственно.

За аксиомами следуют три теоремы, представляющие собой задачи на построение, давно вызывающие споры. Так I prop. 2 предлагает «от данной точки отложить прямую, равную данной прямой». Нетривиальность этой задачи состоит в том, что Евклид не переносит отрезок на прямую соответствующим раствором циркуля, полагая такую операцию недозволенной, и использует I post. 3 в неожиданно узком смысле.

Затем рассматриваются различные случаи равенства и неравенства треугольников; теоремы о параллельных прямых и параллелограммах; так называемые «местные» теоремы о равенстве площадей треугольников и параллелограммов на одном основании и под одной высотой. Заканчивается I книга теоремой Пифагора.

Обзор содержания книг II—XIII

II книга — теоремы так называемой «геометрической алгебры».

IV книга — предложения о вписанных и описанных многоугольниках, о построении правильных многоугольников.

V книга — общая теория отношений, разработанная Евдоксом Книдским.

VI книга — учение о подобии геометрических фигур. Эта книга завершает евклидову планиметрию.

VII, VIII и IX книги посвящены теоретической арифметике. Евклид в качестве чисел рассматривает исключительно натуральные числа; для него «Число есть совокупность единиц». Здесь излагаются теория делимости и пропорций, доказывается бесконечность множества простых чисел, приводится алгоритм Евклида для нахождения наибольшего общего делителя двух чисел, строятся чётные совершенные числа. Евклид доказывает также формулу для суммы геометрической прогрессии.

X книга — классификация несоизмеримых величин. Это самая объёмная из книг «Начал».

XI книга — начала стереометрии: теоремы о взаимном расположении прямых и плоскостей; теоремы о телесных углах, объём параллелепипеда и призмы, теоремы о равенстве и подобии параллелепипедов.

XII книга — теоремы о пирамидах и конусах, доказываемые с помощью метода исчерпывания. Здесь доказывается, например, теорема о том, что объём конуса составляет одну треть от объёма цилиндра с теми же основанием и высотой.

XIII книга — построение правильных многогранников; доказательство того, что существует ровно пять правильных многогранников.

Евклид нигде в книге не ссылается на других греческих математиков, хотя несомненно опирается на их результаты. Историки науки [9] [10] показали, что прототипом для труда Евклида послужили более ранние сочинения античных математиков:

В целом содержание «Начал» покрывает значительную часть античной теоретической математики. Однако некоторая часть известного древнегреческим математикам материала осталась вне этого труда — например, конические сечения (Евклид посвятил им отдельный труд, который не сохранился), длина окружности, теория приближённых вычислений.

Манускрипты и издания «Начал»

Греческий текст «Начал»

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

При раскопках античных городов найдено несколько папирусов, содержащих небольшие фрагменты «Начал» Евклида. Самый известный был найден в «городе папирусов» Оксиринхе в 1896—1897 и содержит формулировку II prop. 5 с рисунком. [11]

Греческий текст «Начал» Евклида известен по византийским манускриптам, из них самые известные:

На их основе, а также с учётом арабских переводов «Начал» (IX век и далее) оригинальный текст был реконструирован датским историком науки Гейбергом в конце XIX века, его методы подробно описаны Хизом (T. L. Heath). [12]

Гейберг использовал в своей реконструкции 8 греческих манускриптов, датируемых сейчас IX—XI веками. Из этих манускриптов семь в своем заглавии имеют пометку «из издания Теона» или «из лекций Теона» и поэтому называются Теоновскими. Ватиканский манускрипт такой пометки не имеет и считается неподверженным редакции Теона. Теоновские манускрипты разнятся между собой, и общих признаков, отличающих их от ватиканского манускрипта, немного (наиболее существенный — концовка IV книги). На полях манускриптов имеются многочисленные комментарии, взятые частично из комментариев Прокла, которые вписывают «Начала» в контекст греческой культуры, напр., сообщается о том, что Пифагор, открыв свою теорему, принес в жертву быков.

История обретения византийских манускриптов темна. Вероятно, они попали в Европу ещё в XVI веке, но не были опубликованы. В первом издание греческого текста, осуществленном Йоханом Хервагеном (Johann Herwagen) между 1533 и 1558 под редакцией Симона Гринера (Simon Gryner, он же Grynaeus, профессор греческого в базельском университете), использованы манускрипты, которые, по мнению Гейберга, представляют собой весьма плохие копии XVI века. Лишь в 1808 Пейрар (F. Peyrard) во время наполеоновских экспроприаций нашел три манускрипта в Ватикане и среди них важнейший ватиканский.

Латинский текст «Начал»

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Русские переводы

Первое издание «Начал» на русском языке произошло в 1739 году; книга вышла в Петербурге под названием «Евклидовы элементы из двенадцати нефтоновых книг выбранныя и в осьмь книг через профессора мафематики Андрея Фархварсона сокращенныя, с латинского на российский язык хирургусом Иваном Сатаровым преложенныя». [18] Перевод выполнил И. П. Сатаров под руководством шотландского математика Генри Фарварсона (Henry Fargwarson). [19] Имя Ньютона («Нефтона») в названии упомянуто, возможно, в рекламных целях, к содержанию книги он никакого отношения не имеет. Перевод был сделан с сокращённого французского издания «Начал» А. Такэ (A. Tacquet). [18] Немного позднее вышли ещё 2 перевода, также сокращённые до 8 книг:

Последнее по времени полное академическое издание было опубликовано в 1949-1951 годах, перевод с греческого и комментарии Д. Д. Мордухай-Болтовско́го.

Всемирное распространение

На китайском языке первые 6 книг «Начал» издал Маттео Риччи во время своей миссии в Китае (1583—1610). Полный перевод, выполненный А.Вайли, вышел с хвалебным предисловием Цзэн Гофаня, написанным в 1865 году.

Тексты «Начал»

В сети доступны следующие манускрипты и печатные издания «Начал»:

Источник

Начала Евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Ватиканский манускрипт (Vat. 190), т.2, 207v — 208r. Euclid XI prop. 31, 32 и 33.

«Начала» оказали огромное влияние на развитие математики вплоть до Новейшего времени. Книга переведена на множество языков мира. По количеству переизданий «Начала» не имеют себе равных среди светских книг.

Содержание

Краткий обзор содержания

Изложение в «Началах» ведётся строго дедуктивно. Каждая книга начинается с определений. В первой книге за определениями идут аксиомы и постулаты. Затем следуют предложения, которые делятся на задачи (в которых нужно что-то построить) и теоремы (в которых нужно что-то доказать). Определения, аксиомы, постулаты и предложения пронумерованы, например, I def. 2 — второе определение первой книги.

Первая книга

Первая книга начинается определениями, из которых первые семь (I def. 1-7) гласят:

Комментаторы эпохи Возрождения предпочитали говорить, что точка есть место без протяжения. Современные авторы, напротив, признают невозможность определения основных понятий, и Давид Гильберт начинает «Основания геометрии» [6] так:

Мы мыслим три различные системы вещей: вещи первой системы мы называем точками и обозначаем Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

За определениями Евклид приводит постулаты (I post. 1-5):

За постулатами следуют аксиомы (I ax. 1-9), которые имеют характер общих утверждений, относящихся в равной мере как к числам, так и к непрерывным величинам:

В скобки взяты аксиомы, принадлежность которых Евклиду Гейберг, автор классической реконструкции текста «Начал», счёл сомнительной. I post. 4 и 5 в ряде списков выступают как I ax. 10 и 11 соответственно.

За аксиомами следуют три теоремы, представляющие собой задачи на построение, давно вызывающие споры. Так I prop. 2 предлагает «от данной точки отложить прямую, равную данной прямой». Нетривиальность этой задачи состоит в том, что Евклид не переносит отрезок на прямую соответствующим раствором циркуля, полагая такую операцию недозволенной, и использует I post. 3 в неожиданно узком смысле.

Обзор содержания книг II—XIII

II книга — теоремы так называемой «геометрической алгебры».

V книга — общая теория отношений, разработанная Евдоксом Книдским.

VI книга — учение о подобии геометрических фигур. Эта книга завершает евклидову планиметрию.

X книга — классификация несоизмеримых величин. Это самая объёмная из книг «Начал».

XI книга — начала стереометрии: теоремы о взаимном расположении прямых и плоскостей; теоремы о телесных углах, объём параллелепипеда и призмы, теоремы о равенстве и подобии параллелепипедов.

XIII книга — построение правильных многогранников; доказательство того, что существует ровно пять правильных многогранников.

Евклид нигде в книге не ссылается на других греческих математиков, хотя несомненно опирается на их результаты. Историки науки [9] [10] показали, что прототипом для труда Евклида послужили более ранние сочинения античных математиков:

Манускрипты и издания «Начал»

Греческий текст «Начал»

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Папирус из Оксиринха

При раскопках античных городов найдено несколько папирусов, содержащих небольшие фрагменты «Начал» Евклида. Самый известный был найден в «городе папирусов» Оксиринхе в 1896—1897 и содержит формулировку II prop. 5 с рисунком. [11]

Греческий текст «Начал» Евклида известен по византийским манускриптам, из них самые известные:

На их основе, а также с учётом арабских переводов «Начал» (IX век и далее) оригинальный текст был реконструирован датским историком науки Гейбергом в конце XIX века, его методы подробно описаны Хизом ( T. L. Heath ). [12]

Гейберг использовал в своей реконструкции 8 греческих манускриптов, датируемых сейчас IX—XI веками. Из этих манускриптов семь в своем заглавии имеют пометку «из издания Теона » или «из лекций Теона» и поэтому называются Теоновскими. Ватиканский манускрипт такой пометки не имеет и считается неподверженным редакции Теона. Теоновские манускрипты разнятся между собой, и общих признаков, отличающих их от ватиканского манускрипта, немного (наиболее существенный — концовка IV книги). На полях манускриптов имеются многочисленные комментарии, взятые частично из комментариев Прокла, которые вписывают «Начала» в контекст греческой культуры, напр., сообщается о том, что Пифагор, открыв свою теорему, принес в жертву быков.

История обретения византийских манускриптов темна. Вероятно, они попали в Европу ещё в XVI веке, но не были опубликованы. В первом издание греческого текста, осуществленном Йоханом Хервагеном (Johann Herwagen) между 1533 и 1558 под редакцией Симона Гринера (Simon Gryner, он же Grynaeus, профессор греческого в базельском университете), использованы манускрипты, которые, по мнению Гейберга, представляют собой весьма плохие копии XVI века. Лишь в 1808 Пейрар (F. Peyrard) во время наполеоновских экспроприаций нашел три манускрипта в Ватикане и среди них важнейший ватиканский.

Латинский текст «Начал»

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Манускрипт из Люнебурга, ок. 1200 года, передающий геометрию Боэция.

Русские переводы

Первое издание «Начал» на русском языке произошло в 1739 году; книга вышла в Петербурге под названием «Евклидовы элементы из двенадцати нефтоновых книг выбранныя и в осьмь книг через профессора мафематики Андрея Фархварсона сокращенныя, с латинского на российский язык хирургусом Иваном Сатаровым преложенныя». [18] Перевод выполнил И. П. Сатаров под руководством шотландского математика Генри Фарварсона (Henry Fargwarson). [19] Имя Ньютона («Нефтона») в названии упомянуто, возможно, в рекламных целях, к содержанию книги он никакого отношения не имеет. Перевод был сделан с сокращённого французского издания «Начал» А. Такэ (A. Tacquet). [18] Немного позднее вышли ещё 2 перевода, также сокращённые до 8 книг:

Всемирное распространение

Тексты «Начал»

В сети доступны следующие манускрипты и печатные издания «Начал»:

Источник

«Начала» Евклида

«Начала» Евклида

Содержание

Биография

Биографические данные о Евклиде крайне скудны.

К наиболее достоверным сведениям о жизни Евклида принято относить то немногое, что приводится в Комментариях Прокла к первой книге Начал Евклида. Отметив, что «писавшие по истории математики» не довели изложение развития этой науки до времени Евклида, Прокл указывает, что Евклид был старше Платоновского кружка, но моложе Архимеда и Эратосфена и «жил во времена Птолемея I Сотера», «потому что и Архимед, живший при Птолемее Первом, упоминает об Евклиде и, в частности, рассказывает, что Птолемей однажды спросил его, есть ли более короткий путь изучения геометрии, нежели Начала; а тот ответил, что нет царского пути к геометрии» [1]

Дополнительные штрихи к портрету Евклида можно почерпнуть у Паппа и Стобея. Папп сообщает, что Евклид был мягок и любезен со всеми, кто мог хотя в малейшей степени способствовать развитию математических наук, а Стобей передаёт ещё один анекдот о Евклиде. Приступив к изучению геометрии и разобрав первую теорему, один юноша спросил у Евклида: «А какая мне будет выгода от этой науки?» Евклид подозвал раба и сказал: «Дай ему три обола, раз он хочет извлекать прибыль из учёбы». [2]

Некоторые современные авторы трактуют утверждение Прокла – Евклид жил во времена Птолемея I Сотера – в том смысле, что Евклид жил при дворе Птолемея и был основателем Александрийского Мусейона. [3] Следует, однако, отметить, что это представление утвердилось в Европе в XVII веке, средневековые же авторы отождествляли Евклида с учеником Сократа философом Евклидом из Мегар, а арабские авторы называли Тир родиной Евклида и считали, что он жил в Дамаске и издал там Начала Аполлония. [4]

Начала Евклида

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII–IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н.э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Другие произведения Евклида

Из других сочинений Евклида сохранились:

По кратким описаниям известны:

Евклиду приписываются также:

Евклид и античная философия

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида

Уже со времён пифагорейцев и Платона арифметика, музыка, геометрия и астрономия (т.наз. «математические» науки) рассматривались в качестве образца систематического мышления и предварительной ступени для изучения философии. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».

Геометрические чертежи, на которых при проведении вспомогательных линий неявная истина становится очевидной, служат иллюстрацией для учения о припоминании, развитого Платоном в Меноне и других диалогах. Предложения геометрии потому и называются теоремами, что для постижения их истины требуется воспринимать чертёж не простым чувственным зрением, но «очами разума». Всякий же чертёж к теореме представляет собой идею: мы видим перед собой эту фигуру, а ведём рассуждения и делаем заключения сразу для всех фигур одного с ней вида.

Некоторый «платонизм» Евклида связан также с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр — огонь, октаэдр — воздух, икосаэдр — вода, куб — земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». В связи с этим Начала могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников — так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Для аристотелевского учения о доказательстве, развитого во Второй аналитике, Начала также предоставляют богатый материал. Геометрия в Началах строится как выводная система знаний, в которой все предложения последовательно выводятся одно за другим по цепочке, опирающейся на небольшой набор начальных утверждений, принятых без доказательства. Согласно Аристотелю, такие начальные утверждения должны иметься, так как цепочка вывода должна где-то начинаться, чтобы не быть бесконечной. Далее, Евклид старается доказывать утверждения общего характера, что тоже соответствует любимому примеру Аристотеля: «если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник» (An. Post. 85b12).

Источник

«НАЧАЛА» ЕВКЛИДА

Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида— научное произведение, написанное в 3 в. до н. э., содержащее основы античной математики: элементарной геометрии, теории чисел, алгебры, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов. «Н.» Е.- образец дедуктивной системы, содержащей исходные предложения геометрии и других разделов математики, на основе к-рых все теории развиваются строго логически.

По материалам одноименной статьи И. Г. Башмаковой и А. И. Маркушевича из БСЭ-2.

Полезное

Смотреть что такое «»НАЧАЛА» ЕВКЛИДА» в других словарях:

НАЧАЛА ЕВКЛИДА — (греч. Stoicheia букв. азбука; переносное значение основные начала), научное произведение (15 книг), написанное Евклидом в 3 в. до н. э., в котором подведен итог 300 летнему развитию греческой математики и создан фундамент для дальнейших… … Большой Энциклопедический словарь

НАЧАЛА ЕВКЛИДА — «НАЧАЛА» ЕВКЛИДА (греч. Stoicheia, букв. азбука; переносное значение основные начала), научное произведение (15 книг), написанное Евклидом в 3 в. до н. э., в котором подведен итог 300 летнему развитию греческой математики и создан фундамент для… … Энциклопедический словарь

Начала Евклида — Эту страницу предлагается переименовать в Начала. Пояснение причин и обсуждение на странице Википедия:К переименованию/29 августа 2012. Возможно, её текущее название не соответствует нормам современного русского языка и/или правилам… … Википедия

«Начала» Евклида — Евклид Ευκλείδης Дата рождения: III век до н. э. Научная сфера: древнегреческий математик Евклид или Эвклид, (др. греч … Википедия

Начала Евклида — («Начала» Евклида) научное произведение, написанное Евклидом в 3 в. до н. э., содержащее основы античной математики: элементарной геометрии, теории чисел, алгебры, общей теории отношений и метода определения площадей и объёмов,… … Большая советская энциклопедия

Начала Евклида — сочинение (в 13 книгах) по элементарной математике древнегреческого ученого Евклида (III век до н. э.), самое распространенное издание в мире, охватывающее элементарную (теперь евклидовую) геометрию, теорию чисел, алгебру, теорию измерения… … Начала современного естествознания

«Начала» Евклида — (греч. Stoichéia, буквально азбука; переносное значение основные начала), научное произведение (15 книг), написанное Евклидом в III в. до н. э., в котором подведён итог 300 летнему развитию греческой математики и создан фундамент для дальнейших … Энциклопедический словарь

«НАЧАЛА» ЕВКЛИДА — (греч. Stoicheia, букв. азбука; переносное значение основные начала), науч. произв. (15 книг), написанное Евклидом в 3 в. до н.э., в к ром подведён итог 300 летнему развитию греч. математики и создан фундамент для дальнейших матем. исследований … Естествознание. Энциклопедический словарь

Начала — Эту страницу предлагается переименовать в Начала (значения). Пояснение причин и обсуждение на странице Википедия:К переименованию/29 августа 2012. Возможно, её текущее название не соответствует нормам современного русского языка и/или… … Википедия

ЕВКЛИДА ТЕОРЕМА — о простых числах: множество простых чисел является бесконечным ( Начала Евклида, книга IX, теорема 20). Более точную количественную информацию о множестве простых чисел в натуральном ряде содержит Чебышева теорема о простых числах и асимптотич.… … Математическая энциклопедия

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Евклид
Ευκλείδης
Что такое начала евклида. Смотреть фото Что такое начала евклида. Смотреть картинку Что такое начала евклида. Картинка про Что такое начала евклида. Фото Что такое начала евклида
Дата рождения: