Что такое нагрузка в технической механике
Классификация нагрузок
Основы теоретической механики
Теоретическая механика— это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.
Механическим движением— называется перемещение тела по отношению к другому телу, происходящее в пространстве и во времени.
Курс теоретической механики делится на три раздела: статику, кинематику и динамику.
Статика
Статикойназывается раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.
Классификация нагрузок
Важнейшим понятием теоретической механики является понятие нагрузки.
Взаимодействие двух тел, способное изменить их кинематическое состояние, называется механическим взаимодействием.
Нагрузка— это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия.
В механике встречается два вида нагрузки
Силаопределяется тремя элементами: числовым значением (модулем), направлением и точкой приложения.
Сила изображается вектором. Прямая, по которой направлена данная сила, называется линией действия силы. За единицу силы в Международной системе единиц измерения СИ (в механике система МКС) принимается ньютон (Н).
Моментом силыотносительно некоторой точки на плоскости называется произведение модуля силы на ее плечо относительно этой точки, взятое со знаком плюс или минус:
Плечом силы 
Система двух равных по модулю, параллельных и противоположно направленных сил 

Расстояние d между линиями действия сил, составляющих пару сил, называется плечом пари.
По характеру нагружения
По характеру воздействия на тело
По характеру изменения нагрузки во времени
Виды нагрузок или в чем сила, сопромат?
В данном случае имеются в виду физические силы, а всякие там силы духа, мысли, третьего глаза и тому подобные не рассматриваются. Во всяком случае до тех пор, пока телепаты и экстрасенсы не начнут вместо подъемных механизмов работать на стойках народного хозяйства, силой мысли перемещая панели и плиты перекрытия, а не ложки и стаканы в различных телешоу.
Нагрузками, наиболее часто рассматриваемыми при расчете строительных конструкций, являются массы тел (причем далеко не всегда только физическая масса, а иногда еще и инерционная, но об этом чуть позже) и разница давлений. Но это далеко не все, что можно сказать о нагрузках.
В теоретической механике и сопромате принято различать нагрузки, действующие на рассчитываемые конструкции или элементы конструкций, по различным признакам. Одним из таких признаков является время действия нагрузки. По времени действия нагрузки делятся на постоянные и временные:
Постоянные нагрузки
Нагрузки, действующие на конструкцию в течение всего времени эксплуатации конструкции, будь то одна секунда или одно тысячелетие.
Временные нагрузки
Это все остальные нагрузки, действующие на конструкцию.
В свою очередь временные нагрузки принято разделять на длительные и кратковременные:
Длительные нагрузки
Кратковременные нагрузки
Для более точного определения нагрузки дополнительно разделяются на статические и динамические.
Статические нагрузки
Условно говоря, это силы, приложенные с минимальным ускорением или с ускорением, стремящимся к нулю.
Таким образом действие инерционной силы при столь малых ускорениях стремится к нулю и расчет ведется только на действие силы от физической массы. Или так: При воздействии статических нагрузок происходит относительно медленное нарастание деформаций, и потому инерционными массами отдельных элементов конструкции, перемещающихся в процессе деформации, можно пренебречь, так как ускорения таких перемещений являются незначительными. В результате этого равновесие между внешними и внутренними силами в любой момент действия статической нагрузки остается как бы неизменным.
К статическим относятся постоянные и длительные нагрузки, иногда кратковременные нагрузки.
Динамические нагрузки
Это нагрузки, изменяющиеся не только во времени, но и в пространстве.
Для динамических нагрузок характерна относительно большая скорость приложения, что требует при расчетах учитывать инерционную массу как объекта, создающего нагрузку, так и элемента, подвергающегося воздействию нагрузки. Другими словами, следует учитывать характер движения объекта создающего нагрузку, а также то, что инерционные массы элементов конструкции, подвергающиеся воздействию динамической нагрузки, перемещаются с ускорением и влияют на напряженно-деформированное состояние элементов. Чтобы учесть это влияние, в уравнения статического равновесия к внешним и внутренним силам добавляются силы инерции на основании принципа Даламбера. Добавление инерционных сил позволяет рассматривать любую движущуюся систему как находящуюся в состоянии статического равновесия в любой момент времени. Таким образом динамические нагрузки вызывают в материале исследуемого элемента конструкции динамические напряжения и поведение материала при этом оказывается отличным от поведения при статических напряжениях.
В свою очередь динамические нагрузки в зависимости от характера движения бывают также нескольких видов. Для строительных конструкций наиболее важными являются подвижные и ударные нагрузки:
Подвижные нагрузки
Это нагрузки возникающие в результате перемещения некоего объекта по поверхности исследуемой конструкции (вдоль рассматриваемой оси элемента).
Ударные нагрузки
Это нагрузки, возникающие в момент соприкосновения перемещающегося объекта с поверхностью исследуемой конструкции (вдоль или поперек рассматриваемой оси элемента).
Однако и это еще не все варианты классификации нагрузок. По площади приложения нагрузки делятся на сосредоточенные и распределенные.
Сосредоточенные нагрузки
Это силы, площадь приложения которых пренебрежимо мала по сравнению с площадью рассчитываемой конструкции.
Распределенные нагрузки
Это все остальные нагрузки, т.е. силы, распределяющиеся по длине и ширине элемента.
Разнообразие распределенных нагрузок поистине не поддается описанию. Распределенные нагрузки могут равномерно и неравномерно распределенными, равномерно и неравномерно изменяющимися по длине или ширине, при этом характер изменения нагрузки может описываться уравнением параболы, синусоиды, окружности, овала и любым другим уравнением.
А самое примечательное во всем этом то, что один и тот же человек в зависимости от ситуации может рассматриваться и как сосредоточенная нагрузка и как распределенная, и как статическая и как динамическая и только постоянной нагрузкой человек быть не может.
В целом все это выглядит не совсем понятно, однако ничего страшного в этом нет, как говорится, лучше один раз рассчитать конструкцию, чем 100 раз прочитать, как это делается. Примеров расчета на сайте хватает. А кроме того, понимание основ сопромата позволяет в большинстве случаев определять нагрузки так, чтобы максимально упростить расчет.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).
Нагрузка в теоретической механике
Вы будете перенаправлены на Автор24
При расчетах в теоретической механике встречается такое понятие как нагрузка. Она может распределяться вдоль заданной поверхности, согласно определенному закону.
Понятие нагрузки в теоретической механике
В качестве одного из важнейших понятий в теоретической механике выступает нагрузка. Она является мерой механического взаимодействия тел и становится определяющей для интенсивности и направления такого взаимодействия.
Механическим называется такое взаимодействие двух тел, которое способно изменять их кинематическое состояние.
Для классификации нагрузок в теоретической механике важное значение имеют такие понятия, как сила и момент (пара сил).
Силу определяют три элемента: числовое значение (модуль), точка приложения и направление. Изображением силы выступает вектор. Прямая, по которой такая сила направляется, выступает в качестве линии действия силы. Единицей силы в СИ считается ньютон (н).
Готовые работы на аналогичную тему
Классификация нагрузок в теоретической механике
Нагрузки в теоретической механике классифицируются в зависимости от их значения. Они бывают статистическими, повторно-переменными, динамическими, распределенными по поверхности или сосредоточенными.
Статистические нагрузки или остаются неизменными со временем или изменяются достаточно медленно. При действии таких нагрузок производится расчет прочности. Повторно-переменный вид нагрузок характеризуется многократным изменением только значения или еще дополнительно знака. Действие такого типа нагрузок провоцирует усталость металла.
Динамические нагрузки характеризуются изменением своего значения за короткий промежуток времени, способствуют большим ускорениям, вызывают силы инерции и провоцируют внезапное разрушение конструкции. В зависимости от способа приложения, нагрузки бывают: сосредоточенные или распределенные по поверхности.
Передача нагрузки между деталями на самом деле осуществляется не в одной точке, а на определенной площадке, нагрузка таким образом будет распределенной. В то же время, если размеры площадки контакта окажутся незначительными в сравнении с размерами самой детали, сила будет считаться сосредоточенной.
Замена распределенного типа нагрузки на сосредоточенную не требуется, если производятся расчеты реальных деформируемых тел. В сопротивлении материалов аксиомы теоретической механики применяются ограниченно. Не допускается:
Все вышеперечисленные действия способствуют изменению распределения внутренних сил в конструкции.
Распределенная и сосредоточенная нагрузка
В реальности зачастую встречаются силы, которые приложены не к самой точке, а к поверхности или объему тела. Речь может идти о силе тяжести, например, или давлении ветра. Нагрузка будет в таком случае восприниматься не бесконечно малой площадкой, а значительной площадью или объемом тела. Эти силы называются распределенными. Распределенная нагрузка с постоянной интенсивностью по всей длине участка считается равномерно распределенной
Примером такой нагрузки может быть снег, выпавший на крышу дома. Своей силой тяжести снежный покров оказывает давление на всю поверхность крыши, в равной степени нагружая при этом каждую единицу ее площади, а не отдельно взятую точку.
iSopromat.ru
Распределенной нагрузкой называют внешние или внутренние усилия, которые приложены не в одной точке твердого тела (т.е. не сосредоточены в одной точке), а равномерно, случайным образом или по заданному закону распределены по его определенной длине, площади или объему.
Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.
Например, на рисунке 1.23, а приведена равномерно распределенная по длине AB нагрузка интенсивностью q, измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой
приложенной в середине отрезка AB.
На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой
приложенной в точке C, причем AC = 2/3AB.
В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу
Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x).


Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, 2α – центральный угол, ось Ox – ось симметрии (рисунок 1.24).
Выделим элемент сектора с углом ∆φ и определим силу ∆Q, действующую на плоский элемент дуги:
В силу симметрии элемента трубы (с дугой AB) относительно оси Ox проекция результирующей силы на ось Oy:
где АВ – хорда, стягивающая концы дуги.
Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м, 2 ]. Если цилиндр рассечен по диаметру (рисунок 1.25), то равнодействующая этих сил равна F = q ∙ d ∙ h ( d – внутренний диаметр) или
Разрывающие баллон по диаметру усилия:
Если принять a – толщина стенки, то (пренебрегая усилиями в крышке и дне цилиндра) растягивающее напряжение в стенке равно
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Техническая механика
Здравствуйте, на этой странице я собрала краткий курс лекций по предмету «Техническая механика».
Лекции подготовлены для студентов любых специальностей и охватывают полностью предмет «техническая механика».
В лекциях вы найдёте основные законы, теоремы, правила и примеры.
| Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу! |
Введение в техническую механику
Техническая механика — это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.
Механическим движением — называется перемещение тела но отношению к другому телу, происходящее в пространстве и во времени.
Курс технической механики делится на три раздела: статику, кинематику и динамику.
Статика
Статикой называется раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому гелу.
Классификации нагрузок
Важнейшим понятием технической механики является понятие нагрузки.
Взаимодействие двух тел, способное изменить их кинематическое состояние, назы вается меха ни ческим взаимодействием.
Нагрузка — это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия.
В механике встречается два вида нагрузки
Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения.
Сила изображается вектором. Прямая, по которой направлена данная сила, называется линией действия силы. За единицу силы в Международной системе единиц измерения СИ (в механике система МКС) принимается ньютон 
Моментом силы относительно некоторой точки на плоскости называется произведение модуля силы на ее плечо относительно этой точки, взятое со знаком плюс или минус:
Плечом силы 



Момент силы относительно точки считается положительным, если сила 

Система двух равных по модулю, параллельных и противоположно направленных сил 

Расстояние 
По характеру погружения
По характеру воздействия на тело
По характеру изменения нагрузки во времени
По форме возникновения
Классификации опор (реакции связей)
Твердое тело называется свободным, если оно может перемещаться в пространстве в любом направлении.
Тело, ограничивающее свободу движения данного твердого тела, является по отношению к нему связью.
Твердое тело, свобода движения которого ограничена связями, называется несвободным.
Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело
Одним из основных положений механики является принцип освобождаем ост и твердых тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, па которое, кроме задаваемых сил, действуют реакции связей.
Классификация реакций связей (реакций опор)
Реакция гладкой плоскости 
Реакция гибкой связи 
Реакция жесткой связи 
Реакция шарнирно-подвижной опоры 
Направление реакции шарнирно-неподвижной опоры зависит от внешних сил, приложенных к системе. Данную реакцию задают двумя составляющими 
Данную реакцию задают двумя составляющими, направленными перпендикулярно друг к другу и парой сил.
Проекции сил на оси
Взяв две взаимно перпендикулярные оси 




Силы 




Проекция силы на ось определяется произведением модуля силы на косинус угла между направлениями оси и силы.
Если известны проекции силы на две взаимно перпендикулярные оси 


Сходящиеся силы. Условие равновесии системы сходящихся сил
Если к телу приложены несколько сил, линии действия которых пересекаются в одной точке то такие силы называются сходящимися.
Если к телу приложено несколько сил, то данные силы можно заменить одной силой, называемой равнодействующей, под действием которой тело будет находится в нагруженном состоянии эквивалентном заданной системе.
Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах.
Сходящиеся силы уравновешиваются в том случае, если их равнодействующая равна нулю, т. е. многоугольник сил замкнут.
Пример:
Известно 

Спроектируем на ось 

Спроектируем на ось 

Условии равновесии статически определимых систем (уравнение проекций сил на оси и уравнение моментов)
Тело находится в равновесии, если сумма проекций, действующих на него сил на координатную ось равны 0.
Тело находится в равновесии, если сумма моментов сил относительно какой либо точки этого тела равны 0.
Для любого тела можно составить три уравнения равновесия
Статически определимой системой называется система, в которой число неизвестных не превышает числа уравнений равновесия.
Пример:
Пример:
Кинематика
Кинематикой называется раздел механики, в котором изучается движение материальных тел в пространстве с геометрической точки зрения, вне связи с силами, определяющими это движение.
Определение скорости и ускорении точки
Скорость — это векторная величина, характеризующая быстроту и направление движения точки в данной системе отсчета.
Ускорение точки — векторная величина, характеризующая быстроту изменения модуля и направления скорости точки.
Задание скорости и ускорения точки естественным способом
При задании точки естественным способом известен закон движения, выраженный зависимостью перемещения точки от времени
В этом случае скорость точки будет определяться как первая производная от данной зависимости
Ускорение точки будет определяться как вторая производная от зависимости перемещения или как первая производная от зависимости скорости
Пример:
Точка движется по окружности радиусом 
Определить скорость и ускорение точки в конце 3 секунды
Задание скорости точки координатным способом
При задании точки координатным способом известны законы изменения координат данной точки в зависимости от времени 
В этом случае скорость точки будет определяться как геометрическая сумма первых производных от данных зависимостей
Ускорение точки будет определяться как геометрическая сумма первых производных от зависимостей скорости или вторых производных от зависимости изменения координат
Пример:
Уравнения движения точки имеют вид
Определить уравнения скорости и ускорения данной точки
Если направление ускорения совпадает с направлением скорости (имеет одинаковый знак) то тело движется с положительным ускорением (ускоряется), если направление ускорения не совпадает с направлением скорости (имеет разные знаки) то тело движется с отрицательным ускорением (замедляется)
Поступательное движение
Поступательным движением твердого тела называется такое движение, при котором любая прямая, соединяющая две точки тела, движется параллельно самой себе.
Все точки твердого тела, движущегося поступательно, описывают тождественные и параллельные между собой траектории и в каждый момент времени имеют геометрически равные скорости и ускорения.
Уравнениями поступательного движения твердого тела являются уравнения движения любой точки этого тела — обычно уравнения движения его центра тяжести 
Для описания скорости и ускорения точки используются зависимости рассмотренные в предыдущем вопросе.
Вращательное движение
Вращательным называется такое движение твердого тела, при котором остаются неподвижными все его точки, лежащие на некоторой прямой, называемой осью вращения.
При этом движении все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на этой
Аналогом перемещения во вращательном движении является угол поворота 
Величина, характеризующая быстроту изменения угла поворота с течением времени, называется угловой скоростью тела.
Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела.
Вращение тела, при котором угловое ускорение постоянно, называют равнопеременным вращением. При этом, если абсолютная величина угловой скорости увеличивается, вращение называют равноускоренным, а если уменьшается равнозамедленным.
Рассмотрим движение точки 

Обозначим точку отсчета 


За время 



Скорость точки 

Величина окружной скорости определяется из выражения.
Из предыдущей формулы следует, что модули окружных скоростей различных точек вращающегося тела пропорциональны расстояниям от этих точек до оси вращения.
Ускорение точки 

Тангенциальное ускорение направлено по касательной к окружности в точке 
Нормальное ускорение направлено по радиусу окружности к её центру. Величина нормального ускорения определяется по зависимости
Полное ускорение точки определится из выражения
Пример:
Вращение маховика в период пуска машины определяется уравнением
где 

По уравнению вращения маховика находим его угловые скорость и ускорение
Определяем уравнение окружной скорости точки
Выражаем отсюда время
Угловая скорость
Угловое ускорение
Тангенциальное ускорение
Нормальное ускорение
Полное ускорение
Возможно эта страница вам будет полезна:
Плоскопараллельное движение
Плоскопараллельным движением твердого тела называется такое движение, при котором каждая точка тела движется в плоскости, параллельной некоторой неподвижной плоскости.
Так как положение плоской фигуры на плоскости вполне определяется положением двух ее точек или положением отрезка, соединяющего две точки этой фигуры, то движение плоской фигуры в ее плоскости можно изучать как движение прямолинейного отрезка в этой плоскости.
Предположим, что плоская фигура переместилась на плоскости из положения I в положение II. Отметим два положения отрезка 
Первый вариант. Переместим фигуру поступательно, из положения 









Второй вариант. Переместим фигуру поступательно из положения 





Как видно, поступательное перемещение плоской фигуры различно в различных вариантах, а величина угла поворота и направление поворота одинаковы, т. е.
Из этого следует, что
Плоскопараллельное движение можно рассматривать как совокупность двух движении: поступательного движения плоской фигуры вместе с произвольной точкой, называемой полюсом, и поворота вокруг полюса.
При этом поступательное перемещение зависит от выбора полюса, а величина угла поворота и направление поворота от выбора полюса не зависят.
Приняв за полюс некоторую точку 






Вращательное движение фигуры относительно полюса можно описать уравнением
Определение скоростей точек плоском плоскопараллельное движение
Скорость любой точки плоской фигуры равна геометрической сумме скорости полюса и вращательной скорости этой точки вокруг полюса.
Для плоской фигуры совершающей плоскопараллельное движение в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нулю. Эту точку называют мгновенным центром скоростей.
Способы определения мгновенного центра скоростей
Определение скоростей точек плоской фигуры при помощи мгновенного центра скоростей
Определим скорости точек 


Если точка 

т. е. скорость любой точки плоской фигуры в данный момент времени представляет собой вращательную скорость этой точки вокруг мгновенного центра скоростей; поэтому
Пример:
Колесо радиусом 

Определить скорости точек 

1-й вариант.
Примем за полюс центр колеса 


Точка 


Расстояния от точек 

Откладывая в каждой точке скорость полюса 
2-й вариант
Примем мгновенный центр скоростей колеса за полюс. Тогда скорости всех точек колеса определятся как вращательные скорости вокруг мгновенного центра скоростей.
Модули скоростей всех точек найдутся но пропорциональности скоростей их расстояниям от мгновенного центра скоростей: Найдем 
Обозначим радиус колеса через 
Возможно эта страница вам будет полезна:
Определение ускорений точек плоской фигуры совершающей плоскопараллельное движение
Ускорение любой точки плоской фигуры равно геометрической сумме ускорения полюса и ускорения этой точки во вращательном движении вокруг полюса.
Пример:
Колесо радиусом 




Определяем 

Определяем угловое ускорение.
Для точки 
Для точки 
Для точки 
Для точки 
Разложение составного движении точки на относительное и переносное
Составное движение тонки (тела) — это такое движение, при котором точка (тело) одновременно участвует в двух или нескольких движениях.
Например, составное движение совершает лодка, переплывающая реку, пассажир, перемещающийся в вагоне движущегося поезда или по палубе плывущего парохода, а также человек, перемещающийся по лестнице движущегося эскалатора.
Через произвольную точку 


Неподвижной системой отсчета называют систему осей 
Движение точки 
Скорость и ускорение точки в абсолютном движении называют абсолютной скоростью и абсолютным ускорением точки и обозначают 

Движение точки 
Скорость и ускорение точки в относительном движении называют относительной скоростью и относительным ускорением точки и обозначают 

Движете подвижной системы отсчета 




Скорость и ускорение точки тела 



Движение точки 
Основная задача изучения составного движения состоит в установлении зависимостей между скоростями и ускорениями относительного, переносного и абсолютного движений точки.
Возможно эта страница вам будет полезна:
Определение скоростей и ускорений точки при составном движении
Теорема сложения скоростей
Абсолютная скорость точки равна геометрической сумме ее переносной и относительной скоростей.
Для нахождения абсолютной скорости необходимо:
Теорема сложения ускорении
В случае непоступательного переносного движения абсолютное ускорение точки равно геометрической сумме переносного, относительного и ускорения Кориолиса.
Поворотным ускорением (ускорением Кориолиса) называется составляющая абсолютного ускорения точки в составном движении, равная удвоенному векторному произведению угловой скорости переносного вращения на относительную скорость точки:
где 
Направление ускорения Кориолиса находится но правилу: Относительную скорость точки следует спроектировать на плоскость, перпендикулярную оси переносного вращения, и повернуть эту проекцию в той же плоскости на 90°, в сторону переносного вращения.
Ускорение Кориолиса равно нулю в трех случаях:
Пример:
Вертикальный подъем вертолета происходит согласно уравнению 


Свяжем подвижную систему отсчета с корпусом вертолета, неподвижную — с Землей. Относительное движение — вращение винта вокруг его оси является (это движение наблюдает пассажир вертолета, связанный с подвижной системой отсчета).
Переносное движение — является поступательное движение вертолета вертикально вверх.
Применяем теорему о сложении скоростей
Относительная скорость точки 
Если известен закон вращения винта 
Вертолёт совершает поступательное движение. Переносная скорость точки 
Применяем теорему о сложении ускорений
Винт совершает вращательное движение. Следовательно относительное ускорение точки 
Переносная скорость точки 
Ускорение Кориолиса равно нулю так как Вертолёт совершает поступательное движение 
Так как 
Пример:
Диск равномерно вращается с угловой скоростью 


Определение положения точки
Определим, на какое расстояние переместится точка за время 
Определим, на какой угол повернется желоб за время
Если тело вращается равномерно, то за 1 сек тело повернется на 1 радиан (57,32°), тогда за 0,523 с тело повернется на 0,523 рад или 57,32 0,523 = 30°
Покажем на рисунке положение точки в момент времени t = 0,523 с.
Применяем теорему о сложении скоростей
Относительную скорость точки 
Переносная скорость точки 
Так как 
Применяем теорему о сложении ускорений
Относительное ускорение точки 
Переносное ускорение точки 
Так как тело движется с постоянной угловой скоростью 
Возможно эта страница вам будет полезна:
Основы теории механизмов и машин (понятии и определении)
Классификации кинематических пар
Теория механизмов и машин — научная дисциплина (или раздел науки), которая изучает строение (структуру), кинематику и динамику механизмов.
Механизмом называется система твердых тел, предназначенная для передачи и преобразования заданного движения одного или нескольких тел в требуемые движения других твердых тел
Типовыми механизмами будем называть простые механизмы, имеющие при различном функциональном назначении широкое применение в машинах/
Звено — твердое тело или система жестко связанных гел. входящих в состав механизма.
Стойка — звено, которое при исследовании механизма принимается за неподвижное.
Входное звено — звено, которому сообщается заданное движение и соответствующие силовые факторы (силы или моменты);
Выходное звено — то, на котором получают требуемое движение и силы.
Кинематическая цепь — система звеньев, образующих между собой кинематические пары.
Кинематическая пара — подвижное соединение двух звеньев, допускающее их определенное относительное движение.
Элементами кинематической пары называют совокупность поверхностей, линий или точек, по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую пару.
В зависимости от вида контакта элементов кинематических пар они делятся на высшие и низшие.
Кинематические пары, образованные элементами в виде линии или точки называются высшими.
Кинематические пары, образованные элементами в виде поверхностей, называются низшими.
В зависимости от степени подвижности они делятся на
Рычажные механизмы. Основные виды рычажных механизмов
Рычажным называется механизм, звенья которого образуют только вращательные и поступательные пары.
Составляющие рычажных механизмов.
Основные виды механизмов
Кривошинно-шатунный механизм (Шарнирный чет ырехзвенник)
Состоит из кривошипа 1, шатуна 2, коромысла 3 и стойки, связанных между собой вращательными кинематическими парами
Состоит из кривошипа 1, шатуна 2, ползуна 3 и стойки, связанных между собой вращательными кинематическими парами 
Состоит из кривошипа 1, кулисного камня 2, кулисы 3 и стойки, связанных между собой вращательными кинематическими парами 
Структурный анализ механизмов
Структурный анализ механизма — это расчленение его на структурные группы. Структурные группы (группы Ассура) — это кинематические цепи, которые после присоединения к стойке имеют степень подвижности 
Степень подвижности механизма определяется по формуле Чебышева для рычажных механизмов.



Структурную формулу любого простого или сложного механизма, образованного с помощью структурных групп, можно представить следующим образом:
За начальный механизм принимается ведущее звено со стойкой.
Все механизмы и структурные группы, в них входящие, делятся на классы, а класс-механизма в целом определяется высшим классом структурной группы, которая в него входит.
Элементарные механизмы условно отнесены к механизмам 1 класса.
Класс структурной группы определяется числом максимальным числом кинематических пар, на одном звене.
Порядок группы определяется числом внешних кинематических нар.
Виды структурных групп
Диада — структурная группа II класса, 2 порядка (И, 2) Состоит из двух звеньев и трех кинематических пар.
Трехповодок (Триада) — структурная группа III класса, 3 порядка (III, 3) Состоит из четырех звеньев и шести кинематических пар.
Порядок выполнения структурного анализа:
Пример:
Пример:
Возможно эта страница вам будет полезна:
Кулачковые механизмы
Кулачковые механизмы, подобно другим механизмам, служат для преобразования одного вида движения (на входе), в другой вид движения (на выходе) с одновременным преобразованием передаваемых силовых параметров (сил, моментов).
Основным преимуществом является возможность получения любого закона движения ведомого звена.
Кинематическая цепь простейшего кулачкового механизма состоит из двух подвижных звеньев (кулачка и толкателя), образующих высшую кинематическую пару, и стойки, с которой каждое из этих звеньев входит в низшую кинематическую пару.
Ведущим звеном механизма обычно является кулачок, который в большинстве случаев совершает непрерывное вращательное движение.
Ведомое звено, называемое толкателем, совершает возвратно-прямолинейное и возвратно-вращательное движение относительно стойки.
Классификация кулачковых механизмов
По виду выходного звена
По виду толкателя
По расположению толкателя
Основные параметры кулачка
Профиль кулачка — это профиль, образованный центром ролика обеспечивающий заданный закон движения ведомого звена.
Минимальный радиус кулачка 
Максимальный радиус кулачка 
Максимальный подъем толкателя — расстояние между минимальным и максимальным радиусами кулачка 
За один оборот кулачка происходит последовательное удаление толкателя от центра вращения кулачка, затем остановка и приближение к центру кулачка, вновь остановка и повторение всего цикла движения. Эти четыре этапа в движении кулачкового механизма называются фазами движения, которые ограничены соответствующими углами, называемыми фазовыми углами.
Фаза удаления 
Фаза дальнего стояния 
Фаза возврата 
Фаза ближнего стояния 
В некоторых кулачковых механизмах фазы ближнего и дальнего стояния могут отсутствовать, сразу обе или одна.
Рабочий угол кулачка — угол кулачка равный сумме углов удаления, дальнего стояния и возврата.
Угол давления — угол 
Зубчатые механизмы
Принцип действия и классификации. Основные параметры, геометрии и кинематика прямозубых колёс.
Принцип действия зубчатой передачи основан на зацеплении пары зубчатых колес.
Классификация:
По расположению осей валов:
По форме профиля зуба:
Основные параметры:
Ведущее зубчатое колесо называют шестерней, а ведомое — колесом. Параметрам шестерни приписывают индекс 1, а параметрам колеса — 2.
Геометрические параметры: 






Модули стандартизованы (ГОСТ 9563-80) в диапазоне 0,05… 100 мм






При нарезании колес со смещением делительная плоскость рейки смещается к центру или от центра заготовки на 


У передач без смещения и при суммарном смещении 

где 


где 

Передаточное отношение 
Виды зубчатых механизмов
Зубчатый механизм, составленный из зубчатых колес с неподвижными осями, называется зубчатым рядом.
Зубчатый ряд, состоящий из двух колес стойки, есть рядовая передача.
Значение передаточного отношения рядовой передачи обратно пропорционально числу зубьев колес:
Знак перед дробью позволяет учесть направление вращения колес. Для внешнего зацепления принят знак (-), учитывающий противоположность вращения колес. Для внутреннего зацепления принят знак (+).
Передаточное отношение любого зубчатого ряда равно произведению передаточных отношений всех передач, входящих в него:
где 
Определить передаточное отношение 
Общее передаточное отношение механизма равно:
Колесо 
Зубчатый механизм, в состав которого входят зубчатые колеса с геометрически подвижной осью называются планетарным механизмом. В состав планетарного механизма входят звенья: Сателлиты — зубчатые колеса с геометрически подвижной осью;
Водило — подвижное звено, в котором помещена ось сателлита;
Солнечное колесо — подвижное центральное зубчатое колесо; Опорное колесо (эпицикл) — неподвижное центральное зубчатое колесо;
Геометрическая ось центральных колес и водила общая. Для обеспечения этого используют условие соосности
Определение передаточного отношении планетарной передачи
При исследовании кинематики планетарных передач широко используют метод остановки водила — метод Виллиса.
Всей планетарной передаче мысленно сообщается вращение с частотой вращения водила, но в обратном направлении. При этом водило, как бы затормаживается, а все другие звенья освобождаются. Получаем так называемый обращенный механизм, представляющий собой простую передачу, в которой движение передается от 


Для исследуемого механизма:
Для обращенного механизма:
В нашем случае 4 заторможено, 1 — ведущее и 

Основы материаловедения
Материалы, применяемые дли изготовления механизмов и машин.
Основным машиностроительным материалом является сплав железа и углерода, называемый чугуном или сталью в зависимости от процентного содержания углерода в сплаве.
Чугун содержит углерода свыше 2%. Различают:
Серый чугун (основной материал для литых деталей)
Маркировка: СЧ и цифры, соответствующие пределу прочности при растяжении (СЧ15- 150 МПа, СЧ20 — 200 МПа)
Свойства: жесткость, сравнительно малая прочность, хрупкость, хорошие литейные свойства,относительная дешевизна.
Высокопрочный чугун (чугун с повышенной прочностью).
Маркировка: ВЧ и цифры, соответствующие пределу прочности при растяжении (ВЧ40, ВЧ35)
Ковкий чугун (чугун с повышенным коэффициентом относительного удлинения)
Маркировка: КЧ 30-6, где 30 — предел прочности, 300 МПА; 6 — относительное удлинение, %.
Белый и отбеленный чугуны (не применяется).
Сталь — сплав железа с углеродом с содержанием углерода менее 1,6 %.
Сталь общего назначения (применяется для сварных соединений и в неответственных деталях)
Маркировка: ст 3, ст 5 (цифра обозначает условный номер марки в зависимости от химического состава)
Сталь качественная конструкционная (применяется для изготовления валов, стаканов, и.т.д.)
Маркировка: сталь 25, сталь 45 и т.п. Здесь цифры указывают содержание углерода в сотых долях процента.
Легированные стали (применяется для изготовления ответственных деталей зубчатых колес, червяков, цепей и.т.д) — это качественная конструкционная сталь с легирующими добавками, которые существенно улучшают свойства стали. В качестве легирующих добавок-чаще всего используют никель, хром, марганец и другие металлы.
Маркировка: сталь 40Х, сталь 40ХН, сталь 40 Х2Н. (здесь буквами X и Н обозначены хром и никель в количестве до 1%).
Сплавы на основе цветных металлов (применяются для изготовления венцов червячных колес, вкладышей подшипников скольжения и.т.д):
Сплав на основе меди:
Алюминиевые сплавы (используются для изготовления неответственных литых штампованных деталей ):
Маркировка: АЛ2, АЛ4 и т.п;
Основные механические характеристики материалов
Основные механические характеристики материала определяются при испытании образцов материала.
Рассмотрим цилиндр, находящийся под действием растягивающей силы 
Под действием силы 

где 
Постепенно будем увеличивать нагрузку 
Для большинства материалов зависимость между напряжениями и деформациями выглядит следующим образом
Данная зависимость имеет следующие характерные точки:
Предел пропорциональности 


Предел упругости 
Предел текучести 
Предел прочности 
К основным характеристикам материалов также относятся:
Основы сопротивлении материалов
Геометрические характеристики сечений
Детали механизмов и машин отличаются друг от друга по форме и размерам. При расчета на прочность деталей механизмов и машин используются поперечные сечения деталей, имеющие свои геометричекие характеристики.
Рассмотрим геометричекие характеристики плоских сечений.
Площадь —
Статический момент относительно оси 

где 


Статический момент сложного сечения относительно некоторой оси равен сумме статических моментов всех частей этого сечения относительно той же оси:
где 



Последнее выражение позволяет определить положение центра тяжести для любого составного сечения
Пример:
Определить положение центра тяжести сечения показанного на рисунке.
Проводим оси 

Находим расстояние от центров тяжестей фигур до осей
Записываем выражение для статических моментов инерции
Осевой момент инерции относительно оси сумма произведений площадей элементарных площадок 
Полярный момент инерции плоского сечения относительно некоторой точки (полюса) 

Пример:
Определить осевые и полярный моменты инерции прямоугольника высотой 



Представим 
Представим 
Осевой момент сопротивления относительно оси — отношение осевого момента инерции к расстоянию от наиболее удаленной точки сечения по этой оси
Полярный момент сопротивления относительно точки (полюса) — отношение полярного момента инерции к расстоянию от наиболее удаленной точки сечения до полюса
Пример:
Для предыдущего примера определить осевые и полярные моменты сопротивления
Для основных сечений формулы для расчета геометрических характеристик приводятся в технических справочниках.
Виды нагружения
Растяжение-сжатие
При воздействии на тело силы, линия действия которой проходит по оси данного тела, в поперечном сечении (перпендикулярном линии действия силы) возникают напряжения, называемые напряжениями растяжения или сжатия, в зависимости от направления действия силы.
В случае растяжения-сжатия прочность тела оценивается но формуле
где 





Для удобства представления информации на расчетной схеме напряжения представляются в виде эпюр.
Эпюра — группа условных линий, показывающих величину и направление напряжений, возникающих в рассматриваемом теле.
Если по длине тела изменяются размеры поперечного сечения или приложенная нагрузка, то изменятся и величина напряжений
Пример:
Построить эпюры напряжений для бруса, изображенного на рисунке.
Решение. Для определения внутренних усилий разбиваем прямолинейный брус на участки. Границами участков являются точки продольной оси, соответствующие изменению площади поперечного сечения и точкам приложения сосредоточенных сил.
Проводим сечение I-I. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке I:
Проводим сечение II—II. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке II:
Проводим сечение III—III. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке III:
Проводим сечение IV-IV. Отбросим верхнюю часть бруса, ее действие заменим нормальной силой 
Определим напряжения на участке IV:
Срез (сдвиг) и смятие
Срезом называют деформацию, представляющую собой смещение поперечных плоскостей тела под действием силы параллельной этой плоскости.
Касательные напряжения при срезе (напряжения среза) определяются по формуле
где 

Смятием называют деформацию, представляющую собой нарушение первоначальной формы поверхности под действием силы перпендикулярной к этой поверхности.
Нормальные напряжения при смятии (напряжения смятия) определяются по формуле
Определить напряжения среза и смятия для заклепки соединяющей три детали. Известны диаметр заклепки 
Запишем условие прочности на срез для заклепки
В соединении 3-х деталей напряжения среза возникают в двух сечениях круглой формы.
Площадь круга 
Запишем условие прочности на смятие для заклепки
В соединении 3-х деталей напряжения смятия возникают на боковых поверхностях заклепки площадь которых будет определяться:
Для верхней и нижней поверхностей:
Для средней поверхности:
Тогда напряжения смятия
Для верхней и нижней поверхностей:
Для средней поверхности:
Возможно эта страница вам будет полезна:
Изгиб
Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.
Изгиб называют чистым если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении бруса (балки).
Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы.
При изгибе в сечении деталей возникают нормальные напряжения 
Напряжения изгиба определяются по формуле
На практике изгиб тела вызывает не только внешние изгибающие моменты, но и поперечные силы, действующие на тело. Для нахождения наиболее нагруженного поперечного сечения строят эпюры изгибающих моментов.
При построении эпюр изгибающих моментов используются следующие правила:
Построение эпюр изгибающих моментов рассмотрим на примере.
Пример:
Проверить на прочность балку постоянного сечения, показанную на рисунке, если известно, что осевой момент сопротивления ее сечения 








































































































































































































