Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π’Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΠΏΠ΅Ρ€Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π½Π° Автор24

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ прямой, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠ½ опрСдСляСт ΠΈΠ»ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠΉ с Π½Π΅ΠΉ.

$\overline = \overline + \overline\left(1\right).$

Рисунок 1. ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой L

$\overline = \overline + t\overline\left(3\right)$

Π”Π°Π½Π½ΠΎΠ΅ равСнство носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ уравнСния прямой.

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ задания уравнСния прямой Π½Π° плоскости:

Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· этих Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ свой способ нахоТдСния Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΠ· каноничСского уравнСния прямой ΠΈ Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π“ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΡƒΡŽ Ρ‚Π΅ΠΌΡƒ

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой выглядит Ρ‚Π°ΠΊ:

Из каноничСского уравнСния Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΎΡ‰Π΅ всСго: достаточно Π²Ρ‹ΠΏΠΈΡΠ°Ρ‚ΡŒ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΠΈ ΠΈΠ· уравнСния ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· 2 Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄, ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΡ…ΠΎΠΆΠΈΠΉ Π½Π° каноничСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΠ· парамСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния

ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

$Ax + By + C = 0\left(6\right)$

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½ΡƒΠΆΠ½ΠΎ ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния прямой ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ каноничСскому.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ это Π² ΠΎΠ±Ρ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· уравнСния с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· Π½Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сначала привСсти Π΅Π³ΠΎ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ, для этого пСрСносим всё Π² Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ:

Π—Π°Ρ‚Π΅ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ для ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ΅ ΠΊ каноничСскому, выглядит Ρ‚Π°ΠΊ:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈ дСньги Π·Π° свои студСнчСскиС Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠšΡƒΡ€ΡΠΎΠ²Ρ‹Π΅, Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚Ρ‹ ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Автор этой ΡΡ‚Π°Ρ‚ΡŒΠΈ Π”Π°Ρ‚Π° послСднСго обновлСния ΡΡ‚Π°Ρ‚ΡŒΠΈ: 25 02 2021

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π’Π°ΠΆΠ½Ρ‹ΠΌ гСомСтричСским ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ Π² плоском пространствС, являСтся прямая. Π’ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ ΠΆΠ΅ пространствС, ΠΏΠΎΠΌΠΈΠΌΠΎ прямой, появляСтся Π΅Ρ‰Π΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. Оба ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π·Π°Π΄Π°Π²Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π§Ρ‚ΠΎ это Ρ‚Π°ΠΊΠΎΠ΅, ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ эти Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для опрСдСлСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ прямой ΠΈ плоскости? Π­Ρ‚ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ вопросы ΠΎΡΠ²Π΅Ρ‰Π°ΡŽΡ‚ΡΡ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅.

ΠŸΡ€ΡΠΌΠ°Ρ ΠΈ способы Π΅Π΅ задавания

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ школьник Ρ…ΠΎΡ€ΠΎΡˆΠΎ прСдставляСт, ΠΎ ΠΊΠ°ΠΊΠΎΠΌ гСомСтричСском ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π΅ ΠΈΠ΄Π΅Ρ‚ Ρ€Π΅Ρ‡ΡŒ. Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, прямая прСдставляСт собой Π½Π°Π±ΠΎΡ€ Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² случаС ΠΈΡ… ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ соСдинСния ΠΌΠ΅ΠΆΠ΄Ρƒ собой приводят ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ совокупности ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π­Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ прямой ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ для написания уравнСния для Π½Π΅Π΅ ΠΊΠ°ΠΊ Π² Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΈ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π’Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ интСрСсно: Π¨Π°Π±ΠΎΠ»Π΄Π° β€” это слово с нСпростой ΡΡƒΠ΄ΡŒΠ±ΠΎΠΉ

Для описания рассматриваСмого ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ пСрСчислСны Π² спискС Π½ΠΈΠΆΠ΅:

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· Π½Π°Π·Π²Π°Π½Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прСимущСства ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠΌ. НапримСр, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°Ρ… ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ повСдСния прямой ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ направлСния, пСрпСндикулярного Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ вычислСнии ΡƒΠ³Π»Π° Π΅Π΅ пСрСсСчСния с осью x (для плоского случая).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π’Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ интСрСсно: ВСлСскопы Ρ€Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅: описаниС, устройство, история создания

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚Π΅ΠΌΠ° Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ связана с Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой, Ρ‚ΠΎ Π΄Π°Π»Π΅Π΅ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π³Π΄Π΅ этот Π²Π΅ΠΊΡ‚ΠΎΡ€ являСтся ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ содСрТится явно, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅.

Π—Π°Π΄Π°Π½ΠΈΠ΅ прямой Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρƒ нас имССтся Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ vΒ― с извСстными ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (a; b; c). ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚Ρ€ΠΈ, Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π·Π°Π΄Π°Π½ Π² пространствС. Как ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚? ДСлаСтся это ΠΎΡ‡Π΅Π½ΡŒ просто: Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Ρ‚Ρ€Π΅Ρ… осСй откладываСтся ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния Ρ‚Ρ€Π΅Ρ… пСрпСндикуляров, восстановлСнных ΠΊ плоскостям xy, yz ΠΈ xz, Π±ΡƒΠ΄Π΅Ρ‚ ΠΊΠΎΠ½Ρ†ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Началом ΠΆΠ΅ Π΅Π³ΠΎ являСтся Ρ‚ΠΎΡ‡ΠΊΠ° (0; 0; 0).

Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ являСтся СдинствСнным. Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ vΒ―, располагая Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»ΠΎ Π² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ пространства. Π­Ρ‚ΠΈ рассуТдСния говорят ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° нСльзя. Он Π·Π°Π΄Π°Π΅Ρ‚ сСмСйство ΠΈΠ· бСсконСчного числа ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π’Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ интСрСсно: Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ прямой. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ использования Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Π’Π΅ΠΏΠ΅Ρ€ΡŒ зафиксируСм Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ P(x0; y0; z0) пространства. И Π·Π°Π΄Π°Π΄ΠΈΠΌ условиС: Ρ‡Π΅Ρ€Π΅Π· P Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ прямая. Π’ этом случаС Π²Π΅ΠΊΡ‚ΠΎΡ€ vΒ― Ρ‚ΠΎΠΆΠ΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ эту Ρ‚ΠΎΡ‡ΠΊΡƒ. ПослСдний Ρ„Π°ΠΊΡ‚ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΎΠ΄Π½Ρƒ Π΅Π΄ΠΈΠ½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ P ΠΈ vΒ―. Она Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ уравнСния:

Π’ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Ρ‚Π°ΠΊ:

(x; y; z) = (x0; y0; z0) + Ξ» Γ— (a; b; c)

И Π² явном (парамСтричСском) Π²ΠΈΠ΄Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ:

Если Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… выраТСниях ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ, Ρ‚ΠΎ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ уравнСния прямой Π½Π° плоскости.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, это Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ пСрпСндикулярности прямых. Π’Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΉ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ прямой Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ вычислСнии дистанции ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΈ прямой, для описания повСдСния прямой ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плоскости.

Π”Π²Π΅ прямыС Π±ΡƒΠ΄ΡƒΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли Ρ‚Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΡ… Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. БоотвСтствСнно, ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ прямых доказываСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ пСрпСндикулярности ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π’ этих Ρ‚ΠΈΠΏΠ°Ρ… Π·Π°Π΄Π°Ρ‡ достаточно Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ рассматриваСмых Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚.

Π’ случаС Π·Π°Π΄Π°Ρ‡ Π½Π° вычислСниС расстояний ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ явно Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ Π΅Π΅:

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми ΠΈΠΌΠ΅Π΅Ρ‚ смысл Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ. Если ΠΆΠ΅ ΠΎΠ½ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ, Ρ‚ΠΎ d Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для d справСдлива ΠΈ для расчСта дистанции ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΅ΠΉ прямой, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² этом случаС P1 Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ плоскости.

РСшим нСсколько Π·Π°Π΄Π°Ρ‡, Ρ‡Ρ‚ΠΎΠ±Ρ‹ нагляднСС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ рассматриваСмым Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ.

Π—Π°Π΄Π°Ρ‡Π° Π½Π° составлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ уравнСния

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ прямая описываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ равСнством:

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π² Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

Π­Ρ‚ΠΎ Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, извСстноС ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΡˆΠΊΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ, записано Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅. ПокаТСм, ΠΊΠ°ΠΊ Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅:

Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ссли Π΅Π³ΠΎ Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ, Ρ‚ΠΎ получится исходноС равСнство. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌ Π΅Π³ΠΎ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ Π½Π° Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ… содСрТал иксы, ΠΈΠΌΠ΅Π΅ΠΌ:

ΠžΡΡ‚Π°Π΅Ρ‚ΡΡ вынСсти x Π·Π° скобки, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ Π΅Π³ΠΎ грСчСским символом ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€Π°Π²ΠΎΠΉ части мСстами:

ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ записи исходного выраТСния. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой Ρ€Π°Π²Π½Ρ‹ (1; 3).

Π—Π°Π΄Π°Ρ‡Π° Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ располоТСния прямых

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π’ пространствС Π·Π°Π΄Π°Π½Ρ‹ Π΄Π²Π΅ прямыС:

(x; y; z) = (3; 2; 2) + Ξ³ Γ— (1; 2; 0)

Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΠΈΡΡ?

НСнулСвыС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (-1; 3; 1) ΠΈ (1; 2; 0) Π±ΡƒΠ΄ΡƒΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ для этих прямых. Π’Ρ‹Ρ€Π°Π·ΠΈΠΌ Π² парамСтричСской Ρ„ΠΎΡ€ΠΌΠ΅ эти уравнСния ΠΈ подставим ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ Ξ» Π² Π΄Π²Π° уравнСния Π²Ρ‹ΡˆΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ Ξ³ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… значСния. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ прямыС Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΠ½ΠΈ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π΅Π½ΡƒΠ»Π΅Π²Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ (для ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ умноТСния Π½Π° ΠΎΠ΄ΠΈΠ½ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ).

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ описаниС плоскости

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Для задания плоскости Π² пространствС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π°:

A Γ— x + B Γ— y + C Γ— z + D = 0

Π—Π΄Π΅ΡΡŒ латинскиС большиС Π±ΡƒΠΊΠ²Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ числа. ΠŸΠ΅Ρ€Π²Ρ‹Π΅ Ρ‚Ρ€ΠΈ ΠΈΠ· Π½ΠΈΡ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° плоскости. Если Π΅Π³ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ nΒ―, Ρ‚ΠΎΠ³Π΄Π°:

Π­Ρ‚ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ являСтся пСрпСндикулярным плоскости, поэтому Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ. Π•Π³ΠΎ Π·Π½Π°Π½ΠΈΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ извСстныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ плоскости, ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ Π·Π°Π΄Π°ΡŽΡ‚ послСднюю.

Если Ρ‚ΠΎΡ‡ΠΊΠ° P(x1; y1; z1) плоскости ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚, Ρ‚ΠΎΠ³Π΄Π° свободный Ρ‡Π»Π΅Π½ D рассчитываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

РСшим ΠΏΠ°Ρ€Ρƒ Π·Π°Π΄Π°Ρ‡ с использованиСм ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния для плоскости.

Π—Π°Π΄Π°Ρ‡Π° Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° плоскости

ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Π½Π° Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅:

Как Π½Π°ΠΉΡ‚ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ для Π½Π΅Π΅?

Из ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ слСдуСт, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° nΒ― ΡΠ²Π»ΡΡŽΡ‚ΡΡ коэффициСнтами, стоящими ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ. Π’ связи с этим для нахоТдСния nΒ― слСдуСт Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅. ИмССм:

Π’ΠΎΠ³Π΄Π° Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскости Ρ€Π°Π²Π΅Π½:

Π—Π°Π΄Π°Ρ‡Π° Π½Π° составлСниС уравнСния плоскости

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π”Π°Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Ρ€Π΅Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ:

Как Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, содСрТащСй всС эти Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π§Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ΄Π½ΠΎΠΉ прямой Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚, ΠΌΠΎΠΆΠ½ΠΎ провСсти Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, сначала вычислим Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ плоскости nΒ―. Для этого поступим ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ плоскости, ΠΈ вычислим ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Оно даст Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ этой плоскости Π±ΡƒΠ΄Π΅Ρ‚ пСрпСндикулярСн, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ nΒ―. ИмССм:

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ M1 для составлСния выраТСния плоскости. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Ρ‚ΠΈΠΏΠ° для плоскости Π² пространствС, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ² сначала Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ для Π½Π΅Π΅.

Бвойство Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния слСдуСт Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ с плоскостями, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΎ позволяСт простым способом ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой ΠΈ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π½Π°ΠΉΡ‚ΠΈ

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ мноТСство Π·Π°Π΄Π°Ρ‡ Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ прямой Π² пространствС ΠΈ Π΅Π΅ свойств. Π’ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΡΠΌΡƒΡŽ, Π½ΠΎ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. Π”Π°Π½Π½Ρ‹Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹ достаточно просто Π·Π°Π΄Π°Ρ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹.

ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой являСтся любой Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, находящийся Π½Π° рассматриваСмой прямой ΠΈΠ»ΠΈ Π½Π° прямой, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΅ΠΉ.

Богласно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ сущСствовании бСсконСчного мноТСства Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² прямой, которая Π·Π°Π΄Π°Π½Π°. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой располоТСн Π»ΠΈΠ±ΠΎ Π½Π° рассматриваСмой прямой, Π»ΠΈΠ±ΠΎ Π½Π° прямой, которая Π΅ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, всС Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹.

ΠžΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎ! Если ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ отчислСния). Если Π½Π΅Ρ‚ возмоТности Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ самому, Π·Π°ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‚ΡƒΡ‚.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой, слСдуСт, Ρ‡Ρ‚ΠΎ мноТСства Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. По-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ, Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ: Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° прямыС Π° ΠΈ Π°1 ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\vec\) являСтся Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой Π°, ΠΏΡ€ΠΈ этом Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\vec\) Ρ‚Π°ΠΊΠΆΠ΅ являСтся Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой Π°1.

ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΈΠ· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой слСдуСт, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой Π° являСтся пСрпСндикуляром ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ прямой Π°.

На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС имССтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠžΡ…Ρƒz. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ \( \vec, \ \vec, \ \vec\) ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… прямых ΠžΡ…, ΠžΡƒ, Оz соотвСтствСнно.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π’Ρ€ΠΈ пСрпСндикуляра, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ восстановлСны ΠΊ плоскостям xy, yz ΠΈ xz, Π±ΡƒΠ΄ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ‚ΡŒΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅, ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ ΠΊΠΎΠ½Ρ†ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Начало Π²Π΅ΠΊΡ‚ΠΎΡ€Π° совпадаСт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ (0; 0; 0). Однако рассматриваСмоС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ СдинствСнноС. Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\vec\) с Π½Π°Ρ‡Π°Π»ΠΎΠΌ Π² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ пространства.

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт Π²Ρ‹Π²ΠΎΠ΄ ΠΎ нСвозмоТности задания ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ прямой с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π‘ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ комплСкс ΠΈΠ· бСсконСчного числа ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых.

Π³Π΄Π΅ Q являСтся любой Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, которая ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ рассматриваСмой прямой.

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π²ΠΈΠ΄ уравнСния:

МоТно ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Π’ этом случаС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ уравнСния прямой Π½Π° плоскости.

Когда Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€

Π”Π°Π½Π½Ρ‹Π΅ знания пригодятся ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ пСрпСндикулярности прямых. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ для расчСта расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΈ прямой, описания повСдСния прямой ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ плоскости.

Одна прямая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ прямой Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Аналогично, ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ прямых Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ опрСдСлСния скалярного произвСдСния рассматриваСмых Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² для получСния ΠΎΡ‚Π²Π΅Ρ‚Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Когда трСбуСтся Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ с Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ:

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ расстояниС цСлСсообразно Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ прямыми. Π’ Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° прямыС ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ, d ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ. Записанная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для d справСдлива ΠΈ для расчСта дистанции ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΅ΠΉ прямой. Но ΠΏΡ€ΠΈ этом P1 располоТСна Π² рассматриваСмой плоскости.

Π—Π°Π΄Π°Ρ‡Π° Π½Π° составлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ уравнСния

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ, Ρ‡Ρ‚ΠΎ имССтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой:

НСобходимо Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ прямой.

Допустимо ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅:

ΠŸΡ€ΠΈ раскрытии Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· условия.

Π”Π°Π»Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ уравнСния Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ лишь ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ… Π²ΠΊΠ»ΡŽΡ‡Π°Π» нСизвСстныС:

Π—Π°Ρ‚Π΅ΠΌ слСдуСт вынСсти Ρ… Π·Π° скобки, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ Π΅Π³ΠΎ \(\lambda\) ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€Π°Π²ΠΎΠΉ части мСстами:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° вСкторная Ρ„ΠΎΡ€ΠΌΠ° уравнСния прямой ΠΈΠ· условия. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΅Π΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Ρ‹ (1; 3).

Π—Π°Π΄Π°Ρ‡Π° Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ располоТСния прямых

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π² пространствС Π·Π°Π΄Π°Π½Π° ΠΏΠ°Ρ€Π° прямых:

\((x; y; z) = (3; 2; 2) + \lambda * (1; 2; 0)\)

НСобходимо ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΈΠ΅ эти прямыС: ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅, ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ. ΠŸΡ€ΠΈ этом Π½Π΅Π½ΡƒΠ»Π΅Π²Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (-1; 3; 1) ΠΈ (1; 2; 0) ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ для Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых. МоТно Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π² парамСтричСской Ρ„ΠΎΡ€ΠΌΠ΅ рассматриваСмыС уравнСния ΠΈ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

ΠŸΡ€ΠΈ подстановкС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° \(\lambda \) Π² Π΄Π²Π° уравнСния Π²Ρ‹ΡˆΠ΅, получится:

Для ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° \(\gamma\) Π½Π΅ прСдусмотрСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ сразу Π΄Π²ΡƒΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, прямыС Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Ρ… прямых ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π΅Π½ΡƒΠ»Π΅Π²Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ для ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ умноТСния Π½Π° ΠΎΠ΄ΠΈΠ½ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ описаниС плоскости

Π—Π°Π΄Π°Ρ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π² пространствС ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ привСдСния уравнСния ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π°:

\(A * x + B * y + C * z + D = 0\)

Π•Π³ΠΎ Π·Π½Π°Π½ΠΈΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ извСстныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ любой Ρ‚ΠΎΡ‡ΠΊΠΈ, находящСйся Π½Π° плоскости, ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ Π·Π°Π΄Π°ΡŽΡ‚ послСднюю. Если Ρ‚ΠΎΡ‡ΠΊΠ° P (x1; y1; z1) плоскости ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚, Ρ‚ΠΎ свободный Ρ‡Π»Π΅Π½ D рассчитываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ

Богласно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, коэффициСнты Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ условиям:

1 * A + (-1) * B = 0, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ А = Π’

Ax + Ay + C = 0, ΠΈΠ»ΠΈ x + y + C / A = 0

Если Ρ… = 1, Ρƒ = 2 ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π’ Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° прямая Π·Π°Π΄Π°Π½Π° ΠΎΠ±Ρ‰ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ:

Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС Π²Π΅ΠΊΡ‚ΠΎΡ€:

Π•Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ коэффициСнтам A, B. Π”Π°Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прСдставляСт собой Π²Π΅ΠΊΡ‚ΠΎΡ€ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ прямой.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ прСдставляСт собой каноничСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π³Π΄Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\mathbf\left( \right)\) Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ вдоль прямой, Π° Ρ‚ΠΎΡ‡ΠΊΠ° \(P\left( <,> \right)\) располоТСна Π½Π° этой прямой.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния

ΠŸΡ€ΠΈ рассмотрСнии Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΡ‹ стоит ΠΏΡ€ΠΈΠ²ΡΠ·Π°Ρ‚ΡŒ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Π΅ΠΌΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ Π΅Π΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Алгоритм дСйствий:

ΠŸΡ€ΡΠΌΠ°Ρ линия Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Oxy опрСдСляСтся Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ прямой Π½Π° плоскости. ΠŸΡ€ΠΈ этом Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Oxy ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой ΠΏΡ€ΠΈ извСстном ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ рассматриваСмой прямой ΠΌΠΎΠΆΠ½ΠΎ Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° прямая линия Π·Π°Π΄Π°Π½Π° каноничСским ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ парамСтричСскими уравнСниями.

ΠšΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π½Π° плоскости ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅:

Один ΠΈΠ· Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² этой прямой ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π°ΠΊ:

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ числа Π² знамСнатСлях каноничСского уравнСния прямой ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° рассматриваСмой прямой.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Oxy:

НСобходимо Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ любого Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π°Π½Π½ΠΎΠΉ прямой.

ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΡΠΌΡƒΡŽ с Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ \(\vec(a_; a_)\) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ парамСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ прямой Π½Π° плоскости:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, коэффициСнты ΠΏΡ€ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π΅ Π² парамСтричСских уравнСниях прямой ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой.

ΠŸΡ€ΡΠΌΠ°Ρ Π½Π° плоскости Π·Π°Π΄Π°Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ парамСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ слСдуСт ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой:

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ \(\lambda\) ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой:

Π”Π°Π»Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ поиска ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠ±Ρ‰ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ прямой Π²ΠΈΠ΄Π°: \(Ax + By + C = 0.\)

Π•Π»ΠΈ А=0 Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ах + Π’Ρƒ + Π‘ = 0, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ записано Π² Π²ΠΈΠ΄Π΅:

Π”Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ опрСдСляСт ΠΏΡ€ΡΠΌΡƒΡŽ, которая ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° оси абсцисс. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой \(Π’Ρƒ + Π‘ = 0\) являСтся ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\vec(1; 0).\)

Если Π’=0, Ρ‚ΠΎ запись ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния прямой Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ:

Данная прямая ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’ связи с этим, Π΅Π΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π±ΡƒΠ΄Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\vec(1; 0).\)

Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ прямая Ρ…-2=0, которая располоТСна Π½Π° плоскости. НСобходимо ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ любого Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π°Π½Π½ΠΎΠΉ прямой.

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ уравнСния Ρ…-2=0 Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Oxy ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΡ€ΡΠΌΡƒΡŽ, которая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° оси Oy. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ€ΠΎΠ»ΡŒ Π΅Π΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ \(\vec(0; 1).\)

Π’ Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ \(Ах + Π’Ρƒ + Π‘ = 0\) с коэффициСнтами А ΠΈ Π’, Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ Π½ΡƒΠ»ΡŽ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° находят ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ²:

НаиболСС простым способом являСтся ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния прямой ΠΊ каноничСскому Π²ΠΈΠ΄Ρƒ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π΄Π°Π½Π½ΠΎΠΉ прямой.

ВрСбуСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой, исходя ΠΈΠ· Π΅Π΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния Π½Π° плоскости, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ привСсти ΠΎΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой ΠΊ каноничСскому Π²ΠΈΠ΄Ρƒ. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС Π² Π»Π΅Π²ΠΎΠΉ части выраТСния остаСтся лишь слагаСмоС 3Ρ…, Π° ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ слСдуСт пСрСнСсти Π² ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ, мСняя Π·Π½Π°ΠΊ Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ:

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ равСнство ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Ρ‹ (2;-3).

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· уравнСния с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Π² Ρ‚Π°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅:

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой, описанной Π΄Π°Π½Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ, ΠΌΠΎΠΆΠ½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ привСдСния рассматриваСмого уравнСния ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ. Π’ процСссС трСбуСтся пСрСнСсти ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ Π² Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ:

Π”Π°Π»Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ±Π΅Π³Π½ΡƒΡ‚ΡŒ ΠΊ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠΌΡƒ для ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом, ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π² каноничСскоС, запишСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для Π΄Π°Π½Π½ΠΎΠ³ΠΎ случая Ρ€Π°Π²Π½Ρ‹:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом:

Π³Π΄Π΅ \(k = \tan\alpha\) прСдставляСт собой ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт прямой, число b опрСдСляСтся, ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой с осью Oy.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π£Π³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт прямой Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ уравнСния:

Π³Π΄Π΅ \(A\left( <,> \right), B\left( <,> \right)\) – ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ, располоТСнных Π½Π° прямой.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΌΡƒ коэффициСнту ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π³Π΄Π΅ k – являСтся ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом, Π° Ρ‚ΠΎΡ‡ΠΊΠ° \(P\left( <,> \right) \) располоТСна Π½Π° рассматриваСмой прямой.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой

Для изучСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ прямой Π»ΠΈΠ½ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒΡΡ Π² Π°Π»Π³Π΅Π±Ρ€Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π’Π°ΠΆΠ½ΠΎ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π±ΡƒΠ΄ΡƒΡ‚ рассмотрСны Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой с ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΈ рисунками, Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ссли извСстны уравнСния прямых. Π‘ΡƒΠ΄Π΅Ρ‚ рассмотрСно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅.

ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой – ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π»Π΅Π³Ρ‡Π΅ усваивался, Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒΡΡ Π² понятиях линия, ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΈ опрСдСлСниями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ связаны с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. Для Π½Π°Ρ‡Π°Π»Π° ознакомимся с понятиСм Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой.

ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ прямой Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ любой Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π»Π΅ΠΆΠΈΡ‚ Π½Π° любой прямой, пСрпСндикулярной Π΄Π°Π½Π½ΠΎΠΉ.

ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ имССтся бСсконСчноС мноТСство Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², располоТСнных Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой. Рассмотрим Π½Π° рисункС, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌ Π½ΠΈΠΆΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ прямой

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΉΡ‚ΠΈ ΠΊ Π²Ρ‹Π²ΠΎΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрпСндикулярСн Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌΡƒ. Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой – Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой ΠΏΠΎ извСстным уравнСниям прямой

ΠŸΡ€ΠΈ рассмотрСнии ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ О Ρ… Ρƒ выявим, Ρ‡Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π½Π° плоскости соотвСтствуСт Π΅ΠΉ, Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² производится ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ. Если извСстно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎΠ³Π΄Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ· уравнСния A x + B y + C = 0 Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ коэффициСнты, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой.

Π‘Ρ‹Π²Π°ΡŽΡ‚ случаи, ΠΊΠΎΠ³Π΄Π° A ΠΈΠ»ΠΈ Π’ ΠΈΠ· уравнСния равняСтся Π½ΡƒΠ»ΡŽ. Рассмотрим Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΎΠ³ΠΎ задания Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅.

Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ получСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ привСдСния каноничСского ΠΈΠ»ΠΈ парамСтричСского ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ прямой ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ. Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ любой ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ способ.

Π’Ρ‚ΠΎΡ€ΠΎΠΉ способ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ сводится ΠΊ Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΈΠΉΡ‚ΠΈ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ уравнСния ΠΈΠ· каноничСского. Для этого ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ

Для Π½Π°Ρ‡Π°Π»Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ для ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π² ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ прямой. Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *