Что такое напряжение отпайки
Выбор отпайки для СУ прямого и плавного пуска
Подбор отпайки для данных типов СУ задача достаточно простая, что бы корректно подобрать отпайку, достаточно посчитать падение напряжения на погружном кабеле и прибавить данное значение к номинальному напряжению двигателя. Найти на трансформаторе ближайшую большую отпайку и выставить переключатели ТМПН.
Если вы хотите еще точнее посчитать напряжение отпайки с учетом входного напряжения от КТП, то полученное значение напряжения + падение следует разделить фактическое напряжение питающей сети и умножить на эталонное 380В, значение напряжения следует брать при работающей погружной установке и при первом отключении выставлять получившуюся отпайку.
Пример расчета: Имеем ПЭД с номинальным напряжением 2000В и Номинальным током 45А, так же кабельную линию длинной 2500м сечением жилы 16мм2.
Перед первым запуском считаем на калькуляторе падение на кабеле, получаем 246В выставляем отпайку ближайшую к 2246В. После запуска измеряем рабочее напряжение (питающее) и перед остановкой (обычно через час работы) измеряем токи, вводим коррекцию в СУ и параллельно производим «чистовой» расчет отпайки. Допустм напряжение при работающей установке составило 400В и рабочий ток 32А, считаем падение напряжения при новом значении тока: 175В, получаем напряжение отпайки 2175В, так же имеем входное напряжение 400В, считаем: 2175/400*380=2066В.
Как видно из повторного расчета оптимальная отпайка получена на 180В меньше первоначальной.
Регулирование напряжения трансформатора
Проблема состоит в том, что напряжение в электрической сети меняется в зависимости от ее нагруженности, в то время как для адекватной работы большинства потребителей электроэнергии необходимым условием является нахождение питающего напряжения в определенном диапазоне, чтобы оно не было бы выше или ниже определенных приемлемых границ.
Поэтому и нужны какие-то способы подстройки, регулирования, корректировки сетевого напряжения. Один из лучших способов — это изменение по мере надобности коэффициента трансформации путем уменьшения или увеличения числа витков в первичной или во вторичной обмотке трансформатора, в соответствии с известной формулой: U1/U2 = N1/N2.
Подавляющее большинство современных силовых трансформаторов оснащено специальными устройствами, позволяющими выполнять регулировку коэффициента трансформации, то есть добавлять или убавлять витки в обмотках.
Переключение без возбуждения
Переключение без возбуждения выполняют от сезона — к сезону, это плановые сезонные переключения витков, когда трансформатор выводится из эксплуатации, что конечно не получилось бы делать часто. Коэффициент трансформации изменяют, делают больше или меньше в пределах 5%.
На мощных трансформаторах переключение выполняется с помощью четырех ответвлений, на маломощных — при помощи всего двух. Данный тип переключения сопряжен с прерыванием электроснабжения потребителей, поэтому и выполняется он достаточно редко.
Зачастую ответвления сделаны на стороне высшего напряжения, где витков больше и корректировка получается более точной, к тому же ток там меньше, переключатель выходит компактнее. Изменение магнитного потока в момент такого переключения витков на понижающем трансформаторе очень незначительно.
Если требуется повысить напряжение на стороне низшего напряжения понижающего трансформатора, то витков на первичной обмотке убавляют, если требуется понизить — прибавляют. Если же регулировка происходит на стороне нагрузки, то для повышения напряжения витков на вторичной обмотке прибавляют, а для понижения — убавляют. Переключатель, применяемый на обесточенном трансформаторе, называют в просторечии анцапфой.
Место контакта, хотя и выполнено подпружиненным, со временем оно подвергается медленному окислению, что приводит к росту сопротивления и к перегреву. Чтобы этого вредного накопительного эффекта не происходило, чтобы газовая защита не срабатывала из-за разложения масла под действием излишнего нагрева, переключатель регулярно обслуживают: дважды в год проверяют правильность установки коэффициента трансформации, переключая при этом анцапфу во все положения, дабы убрать с мест контактов оксидную пленку, прежде чем окончательно установить требуемый коэффициент трансформации.
Также измеряют сопротивление обмоток постоянному току, чтобы убедиться в качестве контакта. Эту процедуру выполняют и для трансформаторов, которые долго не эксплуатировались, прежде чем начинать их использовать.
Регулирование под нагрузкой
Здесь, конечно, есть некоторые сложности: просто рвать цепь на мощном трансформаторе нельзя, т. к. в этом случае возникнет дуга и трансформатор просто выйдет из строя; кратковременно витки замыкаются между собой накоротко; необходимы устройства ограничения тока.
Токоограничительные реакторы в системах РПН
Регулирование под нагрузкой с ограничением тока позволяет осуществить система с двумя контакторами и двухобмоточным реактором.
К двум обмоткам реактора подключено по контактору, которые в обычном рабочем режиме трансформатора сомкнуты, примыкая к одному и тому же контакту на выводе обмотки. Рабочий ток проходит через обмотку трансформатора, затем параллельно через два контактора и через две части реактора.
В процессе переключения один из контакторов переводится на другой вывод обмотки трансформатора (назовем его «вывод 2»), при этом часть обмотки трансформатора оказывается накоротко шунтирована, а рабочий ток ограничивается реактором. Затем второй контакт реактора переводится на «вывод 2».
Процесс регулирования завершен. Переключатель с реактором имеет небольшие потери в средней точке, так как ток нагрузки наложен на конвекционный ток двух переключателей, и реактор может все время находится в цепи.
Токоограничительные резисторы в системах РПН
Альтернатива реактору — триггерный пружинный контактор, в котором происходит последовательно 4 быстрых переключения с использованием промежуточных положений, когда ток ограничивается резисторами. В рабочем положении ток идет через шунтирующий контакт К4.
Следующим шагом замыкается контактор К2, и часть тока устремляется также через резистор R1. Контактор К3 размыкается, отсоединяя резистор R2, замыкается шунтирующий контакт К1. Переключение завершено.
Если у переключателя с реактором реактивный ток прервать трудно, и поэтому он используется чаще на стороне низкого напряжения с большими токами, то быстродействующий переключатель с резисторами успешно используется на стороне высокого напряжения с относительно малыми токами.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
РПН трансформатора: разновидности, принцип работы
Что такое анцапфа: определение и назначение
Анцапфа трансформатора – это переключатель ПБВ, располагающийся на стороне высшего напряжения. Предназначается для корректировки коэффициента трансформации. В простом понимании процесс предполагает изменение числа витков в обмотке, что по физическим законам корректирует величину напряжения.
Подобный элемент позволяет изменять уровень напряжения на +/- 10%. Уровень зависит от мощности силового оборудования, его технических особенностей. Регулировка анцапфы трансформатора 10/0,4 кв осуществляется только при выведенном в ремонт оборудовании (переключение без возбуждения).
Выполнять корректировку в любое удобное время не представляется возможным, так как осуществление операции требует обесточивания абонентов. Именно поэтому на мощных трансформаторах силовых подстанций от 110 кВ и выше используется другое устройство, именуемое РПН.
Регулировка напряжения под нагрузкой считается усовершенствованной анцапфой, которая позволяет изменять количество витков без отключения. Для комфорта соблюдения режимов диспетчерским персоналом, РПН дополняется телемеханикой.
пбв трансформатора расшифровка
Переключатель ПБВ служит для регулировки напряжения силового трансформатора с целью поддержания требуемой величины напряжения у потребителей, питающихся от данного силового трансформатора.
Существует 2 типа регуляторов напряжения:
Принцип действия обоих регуляторов заключается в изменении коэффициента трансформации силового трансформатора путем изменения числа витков первичной обмотки (рис.4.9).
Рис.4.9. Изменение коэффициента трансформации силового трансформатора
, где U1, U2– первичное и вторичное напряжения на холостом ходу.
Переключатели ПБВ и РПН устанавливают на первичной обмотке, т.к. первичный ток трансформатора в Кт раз меньше вторичного I2>I1.
Трансформаторы с ПБВ
Рис.4.10. Отпайки трансформатора с ПБВ
Разность напряжений между соседними отпайками обозначается E[%] и называется ступенью регулирования E=2,5%.
Пример: трансформатор с ПБВ имеет первичное номинальное напряжение U1Н = 10 кВ. В таблице приведены номинальные напряжения отпаек.
Добавка напряжения на трансформаторах с ПБВ
Понятие добавки рассмотрим на примере: трансформатор ТМ 1000 10/0,4,
U1HT=10кВ, номинальное напряжение сети ВН — U1HC=10кВ. Т.е. отклонение подведенного к отпайке «0» напряжения V1=0%. Номинальное вторичное напряжение трансформатора U2HT=400В, а номинальное напряжение сети НН — U2HC=380В, отклонение напряжения на вторичной стороне:
т.е. на нулевой отпайке добавка D=V2 –V1= 5 – 0 = 5%.
Ниже приведена таблица соответствиядобавок иномеров отпаек.
Отпайка | +2 | +1 | -1 | -2 |
D% | 2,5 | 5 | 7,5 | 10 |
Если трансформатор работает под нагрузкой, в нем возникает потеря напряжения ΔUт. В этом случае отклонение напряжения на вторичной стороне: V2=V1 – ΔUт +D.
Пример: к трансформатору, работающему на отпайке +1 (D = 2,5%), ΔUт = 3%, подведено напряжение с отклонением V1 = – 2%. Отклонение напряжения на вторичной стороне: V2 = – 2 – 3 + 2,5 = – 2, 5%.
Устройство анцапфы
Анцапфа трансформатора – это простое устройство в виде виткового соединения, которое сопряжено с переключателем и обмоткой по высокой стороне. Корректировка выполняется в два направления: на повышение (убавление) и на понижение (добавление). Все это характеризуется физическим законом Ом, которое предполагает пропорциональное соотношение сопротивления к уровню напряжения.
Чтобы понять, в каком положении анцапфа трансформатора, необходимо посмотреть на условные обозначения шильды. Каждый шаг предполагает изменение на 2,5% в сторону уменьшения или увеличения. Для поддержания стабильности сопротивления контактов используется пружинное приспособление.
Заметим, что с течением времени сопротивление изоляции может снижаться, поэтому перевод устройства необходимо выполнять не менее 2 раз в год. Раз в год следует осуществлять физические измерения обмоток с использованием мегомметра или других приспособлений службы изоляции.
Устройство РПН: принцип работы
Как отмечалось выше, регулировка анцапфы трансформатора может выполнять через РПН. Особый тип переключений предполагает постоянную корректировку напряжения в зависимости от времени суток и нагрузки. Регулирование осуществляется в пределах от +/- 10 до 16%. В некоторых случаях устанавливается полностью автоматических механизм, который поддерживает нужный режим работ самостоятельно. Прочие варианты зависят от оперативного управления из диспетчерского пункта или ОПУ.
Что касается принципа работы, то он выполнен следующим образом:
Классификация
Различают несколько типов РПН, отличающихся следующими характеристиками:
Расшифровка маркировки для РПН типа UBB…
В зависимости от способа коммутации тока, существуют следующие разновидности устройств:
Также читайте: Как и какими огнетушителями тушить проводку
Чтобы обеспечить безопасность и функциональность РПН, они снабжаются автоматическими контролирующими элементами и регуляторами напряжения.
Кроме указанных устройств, для изменения характеристик напряжения в мощных агрегатах могут применяться специальные вольтодобавочные трансформаторы. Данное оборудование подключается последовательно и используется вместе с основным агрегатом в качестве вспомогательного. Но указанный способ не получил широкого применения в связи с дороговизной и высокой сложностью схемы.
Виды РПН
Существует несколько видов регулировки под напряжением, среди которых выделяется:
РПН и телемеханика: автоматизация корректировки напряжения
Переключение анцапфы трансформатора крайне важная процедура, особенно для подстанций от 110 кВ и выше. Как отмечалось ранее, процесс предполагает задействование РПН, переключение которого можно вывести на пульт диспетчера. Для этого используется телемеханика, которая по оптоволоконному кабелю способная отправить сигнал на повышение или понижение уровня напряжения.
Общая схема предполагает следующие элементы в цепочке:
Автоматика и телемеханика обеспечивают существенный комфорт в ведении режимных указаний. Выстраивание системы во многом зависит от используемых технологий и технических средств. Следует отметить, что выстраивание автоматизированной системы работы – следующий шаг комфортного регулирования режима согласно графику.
РПН трансформатора: разновидности, принцип работы
Трансформатор позволяет преобразовывать переменное напряжение электрической цепи в целях обеспечения конечного источника необходимыми (фиксированными) параметрами энергопотребления.
В то же время, часто возникают и такие проблемы (в частности, для поддержания необходимого уровня напряжения в сетях потребителей), когда необходимо его оперативное регулирование.
Самый простой способ – изменение так называемого коэффициента трансформации, когда меняется число витков в первичной или вторичной обмотке. Современные силовые трансформаторы оборудованы специальными устройствами, позволяющими добавлять или отключать необходимое количество витков.
Точная настройка предусматривается с помощью специального тумблера.
Уровень сложности такого регулирования при использовании переключателя витков зависит частоты применения, а также от функциональных особенностей трансформатора и его габаритов.
Согласно известным законам электротехники, при изменении нагрузки цепи происходит изменение и напряжения. И для того, чтобы потребители были обеспечены необходимым его уровнем в допустимых пределах, и применяются различные методы его регулирования.
Такие переключения возможны как под нагрузкой — РПН (регулирование под нагрузкой) или на холостом ходу – ПБВ (переключение без возбуждения). В любом из этих вариантов в силовом трансформаторе должны быть предусмотрены соответствующие ответвления от витков, позволяющие менять их задействованное в процессе электромагнитной индукции количество. Тем самым, соответственно, меняя и коэффициент трансформации. Испытания высоковольтных трансформаторов проводятся при новых включениях, после капитального ремонта или плановых ремонтов.
•Переключение без возбуждения
Такой вид переключений является сезонным – так как изначально предполагает невозможность отключения трансформатора от сети без возникновения проблем для потребителей. Схема регулирования позволяет варьировать коэффициентом трансформации в пределах плюс/минус 5 %, и использовать более простые и дешевые переключающие устройства. Главная проблема здесь – прекращение подачи электроэнергии в процессе коммутации, поэтому такой метод используют, в основном, для коррекции напряжения на выходе силовых понижающих трансформаторов, которое зависит от входного в соответствии с сезонными нагрузками.
•Регулирование под нагрузкой (РПН)
Данный тип регулировки подразумевает уже динамическое отслеживание изменений нагрузки в сети. В зависимости от конкретной модели трансформатора, его конструкция позволяет менять коэффициент трансформации в режиме РПН в пределах от ±10 до ±16 %. Регулировка производится со стороны высоковольтной обмотки, так как там значительно меньше силы тока, что позволяет осуществлять процесс с меньшими затратами при высокой надежности. Управление может быть как ручным, так и автоматическим.
Основные проблемы, которые возникают в процессе изменения числа витков в этом режиме, заключается в следующем:
— невозможность простого размыкания цепи из-за возникновения электрической дуги;
— необходимость многоступенчатого переключения, что опять же приводит к проблеме, указанной выше.
Чтобы уменьшить токи в короткозамкнутых обмотках, используют специальные токоограничительные сопротивления:
В этом случае каждую ступень РПН необходимо обеспечить двумя силовыми контакторами и одной индуктивностью с двумя обмотками. В процессе регулирования происходит переключение одного из контакторов на следующий контакт с автоматическим коротким замыканием части обмотки трансформатора – дополнительная индуктивность позволяет ограничить ток до необходимых пределов. Затем происходит замыкание со вторым контактором, что и обеспечивает необходимое регулирование без образования резких ингредиентов токов.
Основной принцип этого метода, позволяющий существенно увеличить надежность переключателей витков силовых трансформаторов под нагрузкой, основан на изобретении триггерного контактора Янсона. Он предусматривает определенную нагруженность контактов жесткой пружиной, позволяющей контактам максимально сократить время переключения между витками с помощью специального токоограничивающего резистора.
Также для регулировки коэффициента трансформации в некоторых случаях могут быть использованы и последовательно подключаемые специальные регулировочные (вольтодобавочные) трансформаторы, позволяющие менять как уровень напряжения в сетях, так и фазу. Их применение ограничено, прежде всего, высокой стоимостью и сложностью осуществления регулировочных работ.
Устройства для регулирования напряжения в сетях промышленных предприятий
Для выбора средств регулирования напряжения и их размещения в системе электроснабжения необходимо выявить уровни напряжения в различных ее точках с учетом мощностей, передаваемых по ее отдельным участкам, технических параметров этих участков, сечения линий, мощностей трансформаторов, типов реакторов и т. д. При определении средств регулирования исходят не только из технических, но и из экономических критериев.
Основными техническими средствами регулирования напряжения в системах электроснабжения промышленных предприятий являются:
силовые трансформаторы с устройствами регулирования под нагрузкой (РПН),
вольтодобавочные трансформаторы с регулированием под нагрузкой,
конденсаторные батареи продольного и поперечного включения, синхронные двигатели с автоматическим регулированием тока вбзбуждения,
статические источники реактивной мощности,
генераторы местных электростанций, имеющихся на большинстве крупных промышленных предприятий.
Рис. 1. Схема централизованного регулирования напряжения в распределительной сети промышленного предприятия
Цеховые трансформаторы распределительных сетей, трансформаторы Т1 — ТЗ (см. рис. 1), как правило, не имеют устройств для регулирования напряжения под нагрузкой и оснащаются устройствами регулирования без возбуждения типа ПБВ, позволяющими переключать ответвления силового трансформатора при отключении его от сети. Указанные устройства используются обычно для сезонного регулирования напряжения.
Важным элементом, улучшающим режим напряжения в сети промышленного предприятия, являются устройства компенсации реактивной мощности — конденсаторные батареи поперечного и продольного включения. Установка последовательно включенных конденсаторов (УПК) дает возможность снизить индуктивное сопротивление и потерю напряжения в линии. Для УПК отношение емкостного сопротивления конденсаторов хк к индуктивному сопротивлению линии хл называется процентом компенсации : С= (хк/хл) х 100 [%].
Устройства УПК осуществляют параметрическое, зависимое от величины и фазы тока нагрузки, регулирование напряжения в сети. На практике прибегают лишь к частичной компенсации реактивного сопротивления (С
Полная компенсация при резком изменении нагрузки и в аварийных режимах может вызвать перенапряжения. В связи с этим при значительных величинах С устройства УПК должны быть оснащены коммутаторами, шунтирующими часть батарей.
Для систем электроснабжения разрабатываются УПК с шунтировкой части секций батареи тиристорными ключами, что расширит область применения УПК в системах электроснабжения промышленных предприятий.
Конденсаторы, подключаемые параллельно сети, генерируют х реактивную мощность и одновременно напряжение, так как уменьшают потери в сети. Реактивная мощность, генерируемая подобными батареями — устройствами поперечной компенсации, Qк = U 2 2 π fC. Таким образом, реактивная мощность, отдаваемая батареей поперечно включенных конденсаторов, в значительной мере зависит от величины напряжения на ее зажимах.
При выборе мощности конденсаторов исходят из необходимости обеспечения соответствующего нормам отклонения напряжения при расчетной величине активной нагрузки, что определяется разностью потерь линии до и после включения конденсаторов:
где P1, Q2, Р2, Q2 — передаваемые по линии активные и реактивные мощности до и после установки конденсаторов, r с, хс — сопротивления сети.
Учитывая неизменность передаваемой по линии активной мощности (Р 1 = Р2), имеем:
Регулирующий эффект от подключения параллельно сети конденсаторной батареи пропорционален хс, т. е. повышение напряжения у потребителя в конце линии больше, чем в ее начале.
На рис. 2, а представлена схема многоступенчатого переключателя типа РНТ-9, имеющего восемь позиций и глубину регулирования ±10 %. Переход между ступенями осуществляется посредством шунтирования смежных ступеней на реактор.
Рис. 2. Переключающие устройства силовых трансформаторов: а — переключатель типа РНТ, Р — реактор, РО — регулировочная часть обмотки, ПК — подвижные контакты переключателя, б — переключатель типа РНТА, ТС — токоограничивающее сопротивление, ПГР переключатель грубой регулировки, ПТР — переключатель тонкой регулировки
Отечественная промышленность выпускает также переключатели серии РНТА с активным токоограничивающим сопротивлением, имеющие более мелкие ступени регулирования — по 1,5 %. Показанный на рис. 2, б переключатель РНТА имеет семь ступеней тонкой регулировки (ПТР) и ступень грубой регулировки (ПГР).
На рис. 3 представлена одна из осваиваемых электротехнической промышленностью систем переключения отпаек силового трансформатора — переключатель «через резистор».
На рисунке показана регулировочная зона трансформатора, имеющая восемь отпаек, соединенных с выходным его зажимом посредством биполярных групп VS1—VS8. Кроме этих групп, имеется биполярная тиристорная переключающая группа, соединенная последовательно с токоограничивающим резистором R.
Рис. 3. Статический переключатель отпаек с токоограничивающим резистором
Принцип работы переключателя состоит в следующем: при переходе с отпайки на отпайку во избежание короткого замыкания секции или разрыва цепи полностью гасится выходящая из работы биполярная группа путем перевода тока на отпайку с резистором, а затем ток переводится на необходимую отпайку. Например, при переходе с отпайки VS3 на VS4 происходит следующий цикл: включается VS.
Ток КЗ секции ограничивается токоограничивающим резистором R, гасятся тиристоры VS3, включается VS4, отключаются тиристоры VS. Аналогично выполняются другие коммутации. Биполярные тиристорные группы VS10 и VS11 производят реверсирование регулировочной зоны. Переключатель имеет усиленный блок тиристоров VS9, осуществляющий нулевую позицию регулятора.
Особенностью работы переключателя является наличие блока автоматического управления (БАУ), выдающего команды управления на VS9 в интервале включения трансформатора на холостой ход. БАУ работает в течение некоторого времени, необходимого для того, чтобы источники, питающие тиристорные группы VS1—VS11 и VS, вышли на режим, поскольку источником питания системы управления переключателя служит сам трансформатор.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: