Что такое наружная мембрана
Мембрана наружная
Смотреть что такое «Мембрана наружная» в других словарях:
Наружная запирательная мышца — Наружная запирательная мышца … Википедия
Мембрана клеточная — (лат. мембрана кожица) биологическая «кожица», окружающая протоплазму живой клетки (см. Клетка). Участвует в регуляции обмена веществ между клеткой и окружающей её средой. У некоторых клеток клеточная мембрана единственная структура, служащая… … Концепции современного естествознания. Словарь основных терминов
пограничная мембрана глиальная наружная — (m. l. glialis externa, LNH) П. м., образованная нейроглией, отделяющая слой палочек и колбочек сетчатки от наружного зернистого слоя … Большой медицинский словарь
Митохондрия — Электронномикроскопическая фотография, показывающая митохондрии млекопитающего в поперечном сечении Митохондрия (от … Википедия
Клеточная стенка (оболочка) бактерий — структура бактерий и грибов, располагающаяся между цитоплазматической мембраной и капсулой (если таковая имеется) или ионизированным слоем внешней среды. Защищает бактерии от осмотического шока (10 25 атм и более) и др. факторов, определяет форму … Словарь микробиологии
плазмалемма — наружная цитоплазматическая мембрана, отделяющая цитоплазму от клеточной стенки. Участвует в обмене веществ между цитоплазмой и внешней средой и в построении клеточной стенки … Анатомия и морфология растений
Куртка штормовая — (штормовка) верхний слой одежды туристов и альпинистов. Она призвана защищать от ветра и влаги. При этом желательно чтобы испарения от тела человека выводились наружу. Штормовка должна быть максимально лёгкой и компактной. Содержание 1… … Энциклопедия туриста
Кровено́сные сосу́ды — (vasa sanguifera, vaea sanguinea) образуют замкнутую систему, по которой осуществляется транспорт крови от сердца на периферию ко всем органам и тканям и обратно к сердцу. Артерии несут кровь от сердца, а по венам кровь возвращается к сердцу.… … Медицинская энциклопедия
Поверхностный слой — Длинный лучевой разгибатель запястья (m. extensor carpi radialis longus) (рис. 90, 113, 114, 116, 118, 122, 123, 125) сгибает пред плечье в локтевом суставе, разгибает кисть и принимает участие в ее отведении. Мышца имеет веретенообразную форму и … Атлас анатомии человека
Клеточная мембрана и ядро
теория по биологии 🌿 цитология
Теория для подготовки к блоку «Цитология»
Клеточная мембрана
Мембрана клетки = цитоплазматическая мембрана = плазматическая мембрана = плазмалемма
Строение клеточной мембраны
Мембрана клеток частично проницаема. Это значит, что любое вещество не может в нее проникнуть, однако и закрытой ее назвать нельзя. Так как существуют константы гомеостаза ( гомеостаз – постоянство внутренней среды ), определяющие содержание веществ внутри клетки, то клетка выводит ненужные ей вещества и пропускает нужные. Для этого в клетках есть разные приспособления:
Белки, образующие «тоннели» в клеточной мембране для пассивного тока воды и некоторых неорганических ионов.
Мембрана клетки не представляет их себя непрерывную цепь липидов, она имеет включения в виде белков разных конфигураций. Они могут быть на поверхности мембраны, проходить сквозь нее, образовывать каналы, находиться в наружном или внутреннем слое липидов.
Мембрана ядра состоит из двух оболочек, пронизанных ядерными порами. Внешняя оболочка ядра шероховатая, она связана с эндоплазматической сетью клетки.
Строение двухроматидной хромосомы
Транспортная функция подразумевает под собой то, что через мембрану в клетку и из нее проходит некоторые вещества, молекулы, ионы.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для поступления веществ в клетку существуют следующие пути:
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB21495 Установите соответствие между функциями клеточных структур и структурами, изображёнными на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ФУНКЦИИ | СТРУКТУРЫ |
А) осуществляет активный транспорт веществ Б) изолирует клетку от окружающей среды В) обеспечивает избирательную проницаемость веществ Г) образует секреторные пузырьки Д) распределяет вещества клетки по органеллам Е) участвует в образовании лизосом |
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
На первой картинке изображена мембрана, которую легко узнать по билипидному слою, а на второй — комплекс Гольджи, состоящий из продолговатых цистерн.
Мембрана защищает и осуществляет транспорт.
Комплекс Гольджи отвечает как бы за пищеварение клетки, но не участвует в непосредственном расщеплении.
Перейдем к ответам:
Транспорт веществ — мембрана.
Изоляция клетки — мембрана.
Избирательная проницаемость – мембрана.
Секреторные пузырьки – комплекс Гольджи.
Распределение веществ- комплекс Гольджи.
Лизосомы – комплекс Гольджи.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB0501 Установите соответствие между структурами клеток и их функциями.
ФУНКЦИИ | СТРУКТУРА КЛЕТОК |
В) разделение клетки на отделы (компартменты) Г) активный транспорт молекул Д) пассивный транспорт молекул Е) формирование межклеточных контактов 1) клеточная мембрана Запишите в ответ цифры, расположив их в порядке, соответствующем буквам: Странная аббревиатура ЭПС — Эндоплазматическая сеть. Приставка «Эндо-» обозначает то, что она находится внутри. Исходя из вариантов представим себе клетку из мембраны и сети внутри. Прикинем варианты ответов: Пока пропустим все синтезы, о них подумаем и узнаем потом. Разделение клетки на отделы. Очевидно, что это деление внутри клетки. Видимо, это ЭПР. Активный или пассивный транспорт молекул. Кроме барьерной функции, мембрана еще и отвечает за транспорт веществ, как активный, так и пассивный. Казалось бы, мембрана такая устойчивая структура, но не стоит забывать о фаго- и пиноцитозе (захват мембраной твердых и жидких частиц) Одно из свойств клеточной мембраны — выборочная проницаемость. Формирование межклеточных контактов. Сделаем наше представление о клетке еще проще. Представим себе ткань, не важно какую. Много маленьких клеточек, которые соприкасаются своими мембранами и взаимодействуют между собой. Таким образом, в формировании межклеточных контактов участвует именно мембрана. Вернемся к синтезу. Просто порассуждаем снова. Мембрана — это лишь оболочка клетки, структура, безусловно, важная, но именно внутри клетки, внутри мембраны находятся органоиды, каждый из которых выполняет свою функцию. Вероятнее всего, за синтезы и прочие сложные вещи будет отвечать органоид, а не мембрана, поэтому, за синтез белка и липидов отвечает ЭПC. pазбирался: Ксения Алексеевна | обсудить разбор | оценить В схеме вопрос стоит о двумембранных органоидах. Мы знаем, что к двумембранным относятся митохондрии и пластиды. Рассуждаем: пропуск всего один, а варианта два. Это не просто так. Нужно внимательно перечитать вопрос. Есть два типа клеток, но нам не сказано, о каком идет речь значит, ответ должен быть универсален. Пластиды характерны только растительным клеткам, следовательно, остаются митохондрии.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить Органоиды клеткиКлеточная мембрана (оболочка)Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана. Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану. Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных. Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее. Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот. Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись. Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их. В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение. Клеточная стенкаЦитоплазмаПостоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность. Прокариоты и эукариотыНемембранные органоидыОчень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке. Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий. Одномембранные органоидыЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности. Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой). Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны. В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии. В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли. Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки. Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму. Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию. Двумембранные органоидыОболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам. Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками. Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки. В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки. Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы. Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков. Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов. Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза. © Беллевич Юрий Сергеевич 2018-2021 Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию. Клеточная мембранаКле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды. СодержаниеОсновные сведенияКлеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану. Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм. Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов. ФункцииСтруктура и состав биомембранМембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён. Мембранные органеллыЭто замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков. Избирательная проницаемостьКлеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии. Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия. Барьерные мембраныВыполнение имплантации, самого успешного и эффективного метода возвращения натуральной улыбки, постоянно совершенствуется, как и стоматологическое лечение в целом. Пациентам предлагаются инновационные методики, которые дают лучший эффект или сокращают длительность и стоимость лечения. Одним из серьезных достижений последних лет стала барьерная мембрана, которая устанавливается в условиях дефицита костной ткани. Атрофия альвеолярного отростка практически неизбежна у людей, которые нуждаются в имплантации. Некоторые длительно затягивают с терапией, из-за чего кость успевает рассасываться, а другие имеют врожденные особенности строения челюстного аппарата. В любом случае, выполнение дентальной имплантации при атрофических явлениях в костной ткани становится невозможным. Подобная ошибка грозит следующими неблагоприятными последствиями: Более того, рассасывание костей челюсти настолько серьезно вредит пациенту, что даже без имплантации костная пластика остается необходимым хирургическим вмешательством. Постепенно прогрессирующая атрофия приводит к тому, что лицо становится ассиметричным и некрасивым: усугубляются морщины, нарушается функционирование мимических мышц и так далее. Значительно страдает жевательная функция челюстей, из-за чего пациенты плохо едят и начинаются проблемы с желудочно-кишечным трактом. В запущенных ситуациях ощутимо нарушаются речь и глотание, реже страдают дыхательные движения. Поэтому костная пластика с дополнительной установкой барьерной мембраны обязательно должна выполняться сразу же после обнаружения проблемы. Костная пластика — решение проблемы атрофииУже достаточно давно костная пластика признана наиболее эффективным методом восстановления ширины и высоты альвеолярного отростка. Постоянно методика модифицируется и становится более безопасной и менее травматичной. Кроме того, стоматологи стараются достигнуть условий, при которых будет возможно выполнение одновременной имплантации. Существует несколько основных методик костной пластики: Пациенты склонны к страху перед костной пластикой, так как она является полноценным оперативным вмешательством на зубах. Однако все манипуляции проводятся в условиях местного или общего обезболивания, так что не приносят никакого дискомфорта. Риск осложнений при данной манипуляции минимален, а польза неоспорима. Даже если атрофии альвеолярного отростка не позволяет сразу провести имплантацию, а пациентам приходится ждать полгода, пока приживутся имплантаты, все равно лучше отдать предпочтение костной пластике, а не альтернативным методикам восстановления зубов. Тем более в современных условиях есть множество конструкций, повышающих пользу и результативность костной пластики, например, фиксация барьерной мембраны. Что такое барьерные мембраны?Барьерная мембрана — одно из самых современных и успешных изобретений в стоматологической практике. Такие конструкции активно используются практически во всех оперативных вмешательствах. Барьерные мембраны для костной пластики при имплантации позволяют предотвратить атрофические явления в альвеолярном отростке и способствуют одномоментной успешной фиксации искусственных корней. Мембрана влияет на регенераторные способности кости, увеличивая их, не пропускает внутрь опасные для костных клеток остеокласты и минимизирует риск проникновения патогенных агентов. Благодаря барьерной мембране приживление трансплантата ускоряется, как и общее лечение пациента. Мембрана для костной пластики представляет собой очень тонкую и достаточно эластичную пластинку, которая крепится к кости титановыми штифтами. Таким образом происходит отделение десны от костного материала в процессе формирования натуральной ткани челюсти. Виды мембранСуществует два типа барьерных мембран, которые широко используются в стоматологии: Стоматолог самостоятельно подбирает оптимальную мембрану для конкретного клинического случая. Он должен учитывать, что резорбируемые конструкции недостаточно хорошо фиксируют трансплантаты, поэтому их используют лишь при незначительных атрофиях. Зачем и когда устанавливать мембрану?Барьерная мембрана выполняет сразу несколько функций, способствующих выздоровлению пациента. Конструкция надежно фиксирует остеогенный материал в том месте и положении, куда его установил стоматолог. Также мембрана не пропускает разрушающие кость клетки — остеокласты, которые в норме отвечают за баланс обменных процессов в альвеолярном отростке. Дополнительной функцией мембраны является защита от инфекции. В случае проведения синус лифтинга мембрана устанавливается под дно гайморовой пазухи и снижает риск проникновения костнопластического материала в синус через перфоративные отверстия в слизистой оболочке. Показания для использования барьерной мембраны: Барьерные мембраны появились не так давно, а потому их стоимость остается высокой. Стоматологи принимают решение в зависимости от финансового состояния пациента и иногда могут отказываться от их применения. В целом, использование барьерной мембраны позволяет лучше контролировать результат костной пластики и уменьшить вероятность развития неблагоприятных исходов лечения. Как устанавливать барьерную мембрану?Инновационная методика использования барьерной мембраны требует определенного опыта от стоматолога, а также четких знаний о технике выполнения этапа. Фиксация конструкции проводится следующим образом: При использовании мембраны, которая не рассасывается, через определенное время практически все этапы повторяются для снятия конструкции. Обязательным условием для успешного выздоровления пациента является тщательный уход за ротовой полостью в послеоперационном периоде. Человек должен соблюдать личную гигиену во рту и следовать всем рекомендациям стоматолога. Важен также отказ от курения за несколько дней до операции и на весь период реабилитации. Можно ли обойтись без барьерной мембраны?Так как фиксация барьерной мембраны — недешевое удовольствие, то многих пациентов интересует вопрос об альтернативах данной конструкции. В целом, стоимость различных видов и марок такого материала для стоматологических манипуляций значительно варьируется. Но если хирургическое вмешательство требует применения серьезной и надежной конструкции, то не рекомендуется приобретать дешевый аналог, ведь ожидаемого результата он все равно не принесет. Выполнение костной пластики с фиксацией барьерных мембран доступно не всем стоматологическим клиникам. Отказ от применения таких конструкций повысит вероятность каких-нибудь осложнений, но в целом не повлияет на течение операции и восстановительный этап. Но если есть возможность применения барьерной мембраны для костной пластики при имплантации, то лучше согласиться на ее установку. Модернизированные материалы Bio-GideОдной из самых широко используемых мембран в стоматологии является двухслойная конструкция Bio-Gide, которая рассасывается. Она производится из коллагеновых волокон, прошедших множество различных обработок, благодаря чему идеально совместима с антигенной структурой человека. Такие мембраны изготавливают из специально отобранных тканей крупного рогатого скота. Особенности такой мембраны: После фиксации мембраны данного типа лечение продолжают только через 5-6 месяцев. Следует дождаться не только рассасывания структуры конструкции, но и полного приживления костнопластического материала. Установка барьерной мембраны Bio-Gide не дает каких-либо побочных эффектов, а осложнения не отличаются от таких же при костной пластике. Среди противопоказаний можно отметить активный воспалительный процесс и отсутствие применения при имплантации костнопластического материала, который является обязательным условием для крепления мембраны.
|