Что такое наследование инкапсуляция полиморфизм наследование
Инкапсуляция, полиморфизм, наследование
Все языки OOP, включая С++, основаны на трёх основополагающих концепциях, называемых инкапсуляцией, полиморфизмом и наследованием. Рассмотрим эти концепции.
1. Инкапсуляция
Внутри объекта коды и данные могут быть закрытыми (private). Закрытые коды или данные доступны только для других частей этого объекта. Таким образом, закрытые коды и данные недоступны для тех частей программы, которые существуют вне объекта. Если коды и данные являются открытыми, то, несмотря на то, что они заданы внутри объекта, они доступны и для других частей программы. Характерной является ситуация, когда открытая часть объекта используется для того, чтобы обеспечить контролируемый интерфейс закрытых элементов объекта.
На самом деле объект является переменной определённого пользователем типа. Может показаться странным, что объект, который объединяет коды и данные, можно рассматривать как переменную. Однако применительно к объектно-ориентированному программированию это именно так. Каждый элемент данных такого типа является составной переменной.
2. Полиморфизм
В более общем смысле, концепцией полиморфизма является идея «один интерфейс, множество методов». Это означает, что можно создать общий интерфейс для группы близких по смыслу действий. Преимуществом полиморфизма является то, что он помогает мнижать сложность программ, разрешая использование того же интерфейса для задания единого класса действий. Выбор же конкретного действия, в зависимости от ситуации, возлагается на компилятор. Вам, как программисту, не нужно делать этот выбор самому. Нужно только помнить и использовать общий интерфейс. Пример из предыдущего абзаца показывает, как, имея три имени для функции определения абсолютной величины числа вместо одного, обычная задача становится более сложной, чем это действительно необходимо.
Полиморфизм может применяться также и к операторам. Фактически во всех языках программирования ограниченно применяется полиморфизм, например, в арифметических операторах. Так, в Си, символ + используется для складывания целых, длинных целых, символьных переменных и чисел с плавающей точкой. В этом случае компилятор автоматически определяет, какой тип арифметики требуется. В С++ вы можете применить эту концепцию и к другим, заданным вами, типам данных. Такой тип полиморфизма называется перегрузкой операторов (operator overloading).
Ключевым в понимании полиморфизма является то, что он позволяет вам манипулировать объектами различной степени сложности путём создания общего для них стандартного интерфейса для реализации похожих действий.
3. Наследовние
Наследование, полиморфизм, инкапсуляция
Объектно-ориентированное программирование ( ООП ) – подход к созданию программ, основанный на использовании классов и объектов, взаимодействующих между собой.
Класс (java class) описывает устройство и поведение объектов. Устройство описывается через набор характеристик (свойств), а поведение – через набор доступных для объектов операций (методов). Классы можно создавать на основе уже имеющихся, добавляя или переопределяя свойства и методы.
Классы представляют шаблоны, по которым строятся объекты. Объекты – это элементы программы, обладающие схожим набором характеристик и поведением (т.е это элементы, построенные на основе одного класса). Каждый объект имеет некоторое состояние, оно определяется значением всех его свойств. В одной программе могут существовать несколько классов, а объекты разных классов могут взаимодействовать между собой (через методы).
Наследование, extends
Наследование является неотъемлемой частью Java. При использовании наследования принимается во внимание, что новый класс, наследующий свойства базового (родительского) класса имеет все те свойства, которым обладает родитель. В коде используется операнд extends, после которого указывается имя базового класса. Тем самым открывается доступ ко всем полям и методам базового класса.
Используя наследование, можно создать общий «java class», который определяет характеристики, общие для набора связанных элементов. Затем можно наследоваться от него и создать дополнительные классы, для которых определить дополнительные уникальные для них характеристики.
Рассмотрим пример описания java class’a студента Student, который имеет имя, фамилию, возраст, и номер группы. Класс студента будем создавать на основе super класса пользователя User, у которого уже определены имя, фамилия и возраст:
Теперь создаем отдельный класс Student, наследующего свойства super класса. При наследовании класса необходимо также переопределить и конструкторы родительского класса :
Ключевое слово extends показывает, что мы наследуемся от класса User.
Ключевое слово super
В конструкторе класса Student мы вызываем конструктор родительского класса через оператор super, передавая ему весь необходимой набор параметров. В Java ключевое слово super обозначает суперкласс, т.е. класс, производным от которого является текущий класс. Ключевое слово super можно использовать для вызова конструктора суперкласса и для обращения к члену суперкласса, скрытому членом подкласса.
Рассмотрим как происходит наследование с точки зрения создания объекта :
Сначала открывается конструктор класса Student, после этого вызывается конструктор суперкласса User, а затем выполняются оставшиеся операции в конструкторе Student. Такая последовательность действий вполне логична и позволяет создавать более сложные объекты на основе более простых.
У суперкласса могут быть несколько перегруженных версий конструкторов, поэтому можно вызывать метод super() с разными параметрами. Программа выполнит тот конструктор, который соответствует указанным аргументам.
Вторая форма ключевого слова super действует подобно ключевому слову this, только при этом мы всегда ссылаемся на суперкласс подкласса, в котором она использована. Общая форма имеет следующий вид:
Здесь член может быть методом либо переменной экземпляра. Подобная форма подходит в тех случаях, когда имена членов подкласса скрывают члены суперкласса с такими же именами.
В результате в консоли мы должны увидеть :
Переопределение методов, Override
Если в иерархии классов имя и сигнатура типа метода подкласса совпадает с атрибутами метода суперкласса, то метод подкласса переопределяет метод суперкласса. Когда переопределённый метод вызывается из своего подкласса, он всегда будет ссылаться на версию этого метода, определённую подклассом. А версия метода из суперкласса будет скрыта.
Если нужно получить доступ к версии переопределённого метода, определённого в суперклассе, то необходимо использовать ключевое слово super.
Не путайте переопределение с перегрузкой. Переопределение метода выполняется только в том случае, если имена и сигнатуры типов двух методов идентичны. В противном случае два метода являются просто перегруженными.
В Java SE5 появилась анотация @Override;. Если необходимо переопределить метод, то используйте @Override, и компилятор выдаст сообщение об ошибке, если вместо переопределения будет случайно выполнена перегрузка.
В Java можно наследоваться только от одного класса.
Инкапсуляция
В информатике инкапсуляцией (лат. en capsula) называется упаковка данных и/или функций в единый объект.
Модификаторы доступа
При описании класса используются модификаторы доступа. Модификаторы доступа можно рассматривать как с позиции инкапсуляции так и наследования. Если рассматривать с позиции инкапсуляции, то модификаторы доступа позволяют ограничить нежелательный доступ к членам класса извне.
| Модификатор доступа | Область действия |
|---|---|
| public | Без ограничений |
| private | Только из данного класса |
| protected | Из данного класса и его потомков |
| Без модификатора | Для всех классов данного пакета |
Открытые члены класса составляют внешнюю функциональность, которая доступна другим классам. Закрытыми (private) обычно объявляются независимые от внешнего функционала члены, а также вспомогательные методы, которые являются лишь деталями реализации и неуниверсальны по своей сути. Благодаря сокрытию реализации класса можно менять внутреннюю логику отдельного класса, не меняя код остальных компонентов системы.
Желательно использовать доступ к свойствам класса только через его методы (принцип bean классов, «POJO»), который позволяет валидировать значения полей, так как прямое обращение к свойствам отслеживать крайне сложно, а значит им могут присваиваться некорректные значения на этапе выполнения программы. Такой принцип относится к управлению инкапсулированными данными и позволяет быстро изменить способ хранения данных. Если данные станут храниться не в памяти, а в файлах или базе данных, то потребуется изменить лишь ряд методов одного класса, а не вводить эту функциональность во все части системы.
Программный код, написанный с использованием принципа инкапсуляции легче отлаживать. Для того чтобы узнать, в какой момент времени и кто изменил свойство интересующего нас объекта, достаточно добавить вывод отладочной информации в тот метод объекта, посредством которого осуществляется доступ к свойству этого объекта. При использовании прямого доступа к свойствам объектов программисту бы пришлось добавлять вывод отладочной информации во все участки кода, где используется интересующий нас объект.
Пример простого описания робота
В представленном примере робота используются наборы методов, начинающие с set и get. Эту пару методов часто называют сеттер/геттер. Данные методы используются для доступа к полям объекта. Наименования метода заканчиваются наименованием поля, начинающееся с ПРОПИСНОЙ буквы.
В методах set мы передаем значение через формальный параметр во внутрь процедуры. В коде процедуры мы присваиваем значение переменной объекта/класса с использованием ключевого слова this.
Использование ключевого слова this необходимо, т.к. наименование формального параметра совпадает с наименованием переменной объекта. Если бы наименования отличались бы, то можно было бы this не использавать.
Полиморфизм, polymorphism
Очевидно, придется написать некоторый код, который для изображения рисунка будет последовательно перебирать все примитивы, которые необходимо вывести на экран, и вызывать метод draw у каждого из них.
Человек, незнакомый с полиморфизмом, вероятнее всего создаст несколько массивов: отдельный массив для каждого типа примитивов и напишет код, который последовательно переберет элементы из каждого массива и вызовет у каждого элемента метод draw. В результате получится примерно следующий код:
Недостатком написанного выше кода является дублирование практически идентичного кода для отображения каждого типа примитивов. Также неудобно то, что при дальнейшей модернизации нашего графического редактора и добавлении возможности рисовать новые типы графических примитивов, например Text, Star и т.д., при таком подходе придется менять уже существующий код и добавлять в него определения новых массивов, а также обработку элементов, содержащихся в них.
Используя полиморфизм, можно значительно упростить реализацию подобной функциональности. Прежде всего, создадим общий родительский класс Shape для всех наших классов.
После этого мы создаем различные классы-наследники: Square (Квадрат), Line (Линия), Сircle (круг) и Triangle (Треугольник):
В наследниках у нас переопределен метод draw. В результате получили иерархию классов, которая изображена на рисунке.
Теперь проверим удивительную возможность полиморфизма:
В консоль будут выведены следующие строки:
Таким образом каждый класс-наследник вызвал именно свой метод draw, вместо того, чтобы вызвать метод draw из родительского класса Shape.
Перегрузка метода, overload
ООП с примерами (часть 2)
Волею судьбы мне приходится читать спецкурс по паттернам проектирования в вузе. Спецкурс обязательный, поэтому, студенты попадают ко мне самые разные. Конечно, есть среди них и практикующие программисты. Но, к сожалению, большинство испытывают затруднения даже с пониманием основных терминов ООП.
Для этого я постарался на более-менее живых примерах объяснить базовые понятия ООП (класс, объект, интерфейс, абстракция, инкапсуляция, наследование и полиморфизм).
Первая часть посвящена классам, объектам и интерфейсам.
Вторая часть, представленная ниже, иллюстрирует инкапсуляцию, полиморфизм и наследование
Инкапсуляция
Представим на минутку, что мы оказались в конце позапрошлого века, когда Генри Форд ещё не придумал конвейер, а первые попытки создать автомобиль сталкивались с критикой властей по поводу того, что эти коптящие монстры загрязняют воздух и пугают лошадей. Представим, что для управления первым паровым автомобилем необходимо было знать, как устроен паровой котёл, постоянно подбрасывать уголь, следить за температурой, уровнем воды. При этом для поворота колёс использовать два рычага, каждый из которых поворачивает одно колесо в отдельности. Думаю, можно согласиться с тем, что вождение автомобиля того времени было весьма неудобным и трудным занятием.
Теперь вернёмся в сегодняшний день к современным чудесам автопрома с коробкой-автоматом. На самом деле, по сути, ничего не изменилось. Бензонасос всё так же поставляет бензин в двигатель, дифференциалы обеспечивают поворот колёс на различающиеся углы, коленвал превращает поступательное движение поршня во вращательное движение колёс. Прогресс в другом. Сейчас все эти действия скрыты от пользователя и позволяют ему крутить руль и нажимать на педаль газа, не задумываясь, что в это время происходит с инжектором, дроссельной заслонкой и распредвалом. Именно сокрытие внутренних процессов, происходящих в автомобиле, позволяет эффективно его использовать даже тем, кто не является профессионалом-автомехаником с двадцатилетним стажем. Это сокрытие в ООП носит название инкапсуляции.
Инкапсуляция – это свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе и скрыть детали
реализации от пользователя.
Инкапсуляция неразрывно связана с понятием интерфейса класса. По сути, всё то, что не входит в интерфейс, инкапсулируется в классе.
Абстракция
Представьте, что водитель едет в автомобиле по оживлённому участку движения. Понятно, что в этот момент он не будет задумываться о химическом составе краски автомобиля, особенностях взаимодействия шестерён в коробке передач или влияния формы кузова на скорость (разве что, автомобиль стоит в глухой пробке и водителю абсолютно нечем заняться). Однако, руль, педали, указатель поворота (ну и, возможно, пепельницу) он будет использовать регулярно.
Абстрагирование – это способ выделить набор значимых характеристик объекта, исключая из рассмотрения незначимые. Соответственно, абстракция – это набор всех таких характеристик.
Если бы для моделирования поведения автомобиля приходилось учитывать химический состав краски кузова и удельную теплоёмкость лампочки подсветки номеров, мы никогда бы не узнали, что такое NFS.
Полиморфизм
Любое обучение вождению не имело бы смысла, если бы человек, научившийся водить, скажем, ВАЗ 2106 не мог потом водить ВАЗ 2110 или BMW X3. С другой стороны, трудно представить человека, который смог бы нормально управлять автомобилем, в котором педаль газа находится левее педали тормоза, а вместо руля – джойстик.
Всё дело в том, что основные элементы управления автомобиля имеют одну и ту же конструкцию и принцип действия. Водитель точно знает, что для того, чтобы повернуть налево, он должен повернуть руль, независимо от того, есть там гидроусилитель или нет.
Если человеку надо доехать с работы до дома, то он сядет за руль автомобиля и будет выполнять одни и те же действия, независимо от того, какой именно тип автомобиля он использует. По сути, можно сказать, что все автомобили имеют один и тот же интерфейс, а водитель, абстрагируясь от сущности автомобиля, работает именно с этим интерфейсом. Если водителю предстоит ехать по немецкому автобану, он, вероятно выберет быстрый автомобиль с низкой посадкой, а если предстоит возвращаться из отдалённого маральника в Горном Алтае после дождя, скорее всего, будет выбран УАЗ с армейскими мостами. Но, независимо от того, каким образом будет реализовываться движение и внутреннее функционирование машины, интерфейс останется прежним.
Полиморфизм – это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.
Например, если вы читаете данные из файла, то, очевидно, в классе, реализующем файловый поток, будет присутствовать метод похожий на следующий: byte[] readBytes( int n );
Предположим теперь, что вам необходимо считывать те же данные из сокета. В классе, реализующем сокет, также будет присутствовать метод readBytes. Достаточно заменить в вашей системе объект одного класса на объект другого класса, и результат будет достигнут.
При этом логика системы может быть реализована независимо от того, будут ли данные прочитаны из файла или получены по сети. Таким образом, мы абстрагируемся от конкретной специализации получения данных и работаем на уровне интерфейса. Единственное требование при этом – чтобы каждый используемый объект имел метод readBytes.
Наследование
Представим себя, на минуту, инженерами автомобильного завода. Нашей задачей является разработка современного автомобиля. У нас уже есть предыдущая модель, которая отлично зарекомендовала себя в течение многолетнего использования. Всё бы хорошо, но времена и технологии меняются, а наш современный завод должен стремиться повышать удобство и комфорт выпускаемой продукции и соответствовать современным стандартам.
Нам необходимо выпустить целый модельный ряд автомобилей: седан, универсал и малолитражный хэтч-бэк. Очевидно, что мы не собираемся проектировать новый автомобиль с нуля, а, взяв за основу предыдущее поколение, внесём ряд конструктивных изменений. Например, добавим гидроусилитель руля и уменьшим зазоры между крыльями и крышкой капота, поставим противотуманные фонари. Кроме того, в каждой модели будет изменена форма кузова.
Очевидно, что все три модификации будут иметь большинство свойств прежней модели (старый добрый двигатель 1970 года, непробиваемая ходовая часть, зарекомендовавшая себя отличным образом на отечественных дорогах, коробку передач и т.д.). При этом каждая из моделей будет реализовать некоторую новую функциональность или конструктивную особенность. В данном случае, мы имеем дело с наследованием.
Наследование – это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым или родительским. Новый класс – потомком, наследником или производным классом.
Необходимо отметить, что производный класс полностью удовлетворяет спецификации родительского, однако может иметь дополнительную функциональность. С точки зрения интерфейсов, каждый производный класс полностью реализует интерфейс родительского класса. Обратное не верно.
Действительно, в нашем примере мы могли бы произвести с новыми автомобилями все те же действия, что и со старым: увеличить или уменьшить скорость, повернуть, включить сигнал поворота. Однако, дополнительно у нас бы появилась возможность, например, включить противотуманные фонари.
Отсутствие обратной совместимости означает, что мы не должны ожидать от старой модели корректной реакции на такие действия, как включения противотуманок (которых просто нет в данной модели).
Что такое ООП и с чем его едят?
Из своего опыта могу сказать, что всегда считал что понимал ООП, что же тут такого то — полиморфизм, инкапсуляция и наследование, но вот когда дошло до дела, то туговато пришлось. Хочу разложить всё по полочкам чтобы никто не наступил на мои грабли в будущем 🙂
Шаг 1.
Немного теории:
Объектно-ориентированное программирование (в дальнейшем ООП) — парадигма программирования, в которой основными концепциями являются понятия объектов и классов.
В центре ООП находится понятие объекта.
Объект — это сущность, экземпляр класса, которой можно посылать сообщения и которая может на них реагировать, используя свои данные. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией.
Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности — для этого требуется наличие наследования.
Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм, то есть возможность объектов с одинаковой спецификацией иметь различную реализацию.
Хочу выделить что очень часто натыкаюсь на мнение, что в ООП стоит выделять еще одну немаловажную характеристику — абстракцию. Официально её не вносили в обязательные черты ООП, но списывать ее со счетов не стоит.
Абстрагирование — это способ выделить набор значимых характеристик объекта, исключая из рассмотрения не значимые Соответственно, абстракция — это набор всех таких характеристик.
Инкапсуляция — это свойство системы, позволяющее объединить данные и методы, работающие с ними в классе, и скрыть детали реализации от пользователя.
Наследование — это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс — потомком, наследником или производным классом
Полиморфизм — это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.
Шаг 2.
Инкапсуляция.
Инкапсуляция позволит скрыть детали реализации, и открыть только то что необходимо в последующем использовании. Другими словами инкапсуляция – это механизм контроля доступа.
Зачем же это нужно?
Думаю, вам бы не хотелось, чтобы кто-то, что-то изменял в написанной вами библиотеки.
И если это опытный программист, то это простить еще можно, но все равно не приятно, а вот если это начинающий или не осторожный который с легкой руки задумает изменить код, да ещё не в ту степь, нам ведь такого не хочется! Чтобы обезопасить себя от таких поступков, существует инкапсуляция.
Цель инкапсуляции – уйти от зависимости внешнего интерфейса класса (то, что могут использовать другие классы) от реализации. Чтобы малейшее изменение в классе не влекло за собой изменение внешнего поведения класса. Давайте рассмотрим, как ею пользоваться.
Существует 4 вида модификаторов доступа: public, protected, private и default.
Public – уровень предполагает доступ к компоненту с этим модификатором из экземпляра любого класса и любого пакета.
Protected – уровень предполагает доступ к компоненту с этим модификатором из экземпляров родного класса и классов-потомков, независимо от того, в каком пакете они находятся.
Default – уровень предполагает доступ к компоненту с этим модификатором из экземпляров любых классов, находящихся в одном пакете с этим классом.
Private – уровень предполагает доступ к компоненту с этим модификатором только из этого класса.
public String name; — имя, которое доступное из любого места в приложении.
protected String surname; — фамилия доступна из родного класса и потомков.
private int age; — возраст доступен только в рамках класса Human.
int birthdayYear; — хоть не указывается явный модификатор доступа, система понимает его как default, год рождения будет доступен всему пакету, в котором находится класс Human.
Для разных структурных элементов класса предусмотрена возможность применять только определенные уровни модификаторов доступа.
Для класса — только public и default.
Для атрибутов класса — все 4 вида.
Для конструкторов — все 4 вида.
Для методов — все 4 вида.
Шаг 3.
Наслед ование.
Наследование — это процесс, посредством которого один объект может приобретать свойства другого. Точнее, объект может наследовать основные свойства другого объекта и добавлять к ним черты, характерные только для него.
Наследование является важным, поскольку оно позволяет поддерживать концепцию иерархии классов (hierarchical classification). Применение иерархии классов делает управляемыми большие потоки информации.
Разберем этот механизм на классическом примере: Геометрические фигуры.
У нас есть интерфейс Figure:
Интерфейс (более детально будут рассмотрены в скором будущем) — нам говорит, как должен выглядеть класс, какие методы в себе содержать, какими переменными и типами данных манипулировать. Сам интерфейс не реализует методы, а создает как бы скелет для класса, который будет расширять этот интерфейс. Есть класс Figure, который расширяет интерфейс Figure:
В этом классе мы реализуем все методы интерфейса Figure.
public class Figure implements devcolibri.com.oop.inheritance.interfaces.Figure — с помощью ключевого слова implements мы перенимаем методы интерфейса Figure для реализации.
Важно: в классе должны быть все методы интерфейса, даже если некоторые еще не реализованы, в противном случае компилятор будет выдавать ошибку и просить подключить все методы. Тело методов можно изменить только в интерфейсе, здесь только реализация.
@ Override — аннотация которая говорит что метод переопределен.
И соответственно у нас есть 3 класса самих фигур, которые наследуются от класса Figure. Класс Figure является родительским классом или классом-родителем, а классы Circle, Rectungle и Triangle — являются дочерними.
public class Triangle extends devcolibri.com.oop.inheritance.Figure — это значит, что класс Triangle наследует класс Figure.
super.setColor(colour); — super модификатор, позволяющий вызывать методы из класса родителя.
Теперь каждый класс перенял свойства класса Figure. Что собственно это нам дало?
Значительно уменьшило время разработки классов самих фигур, дало доступ к полям и методам родительского класса.
Наверное возник вопрос: чем же extends отличается от implements?
Extends дает нам намного гибче подход. Мы используем только те методы, что нам нужны, в любой момент мы можем изменить каркас и тело метода, или добавить совсем новый метод, который возможно будет использовать информацию от класса родителя, а implements все лишь формирует тело класса.
В дочерних классах мы можем спокойно добавлять новые интересующие нас методы. Например, мы хотим добавить в класс Triangle 2-а новых метода: flimHorizontal () и flipVertical ():
Теперь эти 2-а метода принадлежат сугубо классу Triangle. Этот подход используется когда базовый класс не может решить всех проблем.
Или можно использовать другой подход, изменить или переписать методы в дочерним классе:
Довольно интересный факт: в java запрещено множественное наследование, но любой из классов по умолчанию наследуется то класса Object. То есть при наследовании любого класса у нас получается множественное наследование)
Но не стоит забивать этим голову!
Шаг 4.
Полиморфизм.
В более общем смысле, концепцией полиморфизма является идея “один интерфейс, множество методов“.
Это означает, что можно создать общий интерфейс для группы близких по смыслу действий. Преимуществом полиморфизма является то, что он помогает снижать сложность программ, разрешая использование того же интерфейса для задания единого класса действий. Выбор же конкретного действия, в зависимости от ситуации, возлагается на компилятор.
Вам, как программисту, не нужно делать этот выбор самому. Нужно только помнить и использовать общий интерфейс.
Прежде всего, нужно сказать, что такое объявление корректно.
Наследники могут объявлять поля с любыми именами, даже совпадающими с родительскими. Объекты класса Child будут содержать сразу две переменных, а поскольку они могут отличаться не только значением, но и типом (ведь это два независимых поля), именно компилятор будет определять, какое из значений использовать.
Компилятор может опираться только на тип ссылки, с помощью которой происходит обращение к полю:
Обе ссылки указывают на один и тот же объект, но тип у них разный. Отсюда и результат. Объявление поля в классе-наследнике «скрыло» родительское поле.
Данное объявление так и называется – «скрывающим». Родительское поле продолжает существовать.
К нему можно обратиться явно:
Переменные b и c получат значения, родительского поля a. Хотя выражение с super более простое, оно не позволит обратиться на два уровня вверх по дереву наследования.
А ведь вполне возможно, что в родительском классе это поле также было скрывающим и в родителе родителя храниться ещё одно значение.
К нему можно обратиться явным приведением, как это делается для b.
Метод вызывается с помощью ссылки типа Child, но метод определен в классеParent и компилятор расценивает обращение к полю x в этом методе именно как к полю класса Parent. Результатом будет 0.
Рассмотрим случай переопределения методов:
Родительский метод полностью перекрыт.
В этом ключевая особенность полиморфизма – наследники могут изменить родительское поведение, даже если обращение к ним производиться по ссылке родительского типа.
Хотя старый метод снаружи недоступен, внутри класса-наследника к нему можно обратиться с помощью super.
Статические методы, подобно статическим полям принадлежат классу и появление наследников на них не сказывается. Статические методы не могут перекрывать обычные методы и наоборот.
Шаг 5.
Абстракция:
Как говорилось в начале статьи, нельзя игнорировать абстракцию, а значит и абстрактные классы и методы.
В контексте ООП абстракция — это обобщение данных и поведения для типа, находящегося выше текущего класса по иерархии.
Перемещая переменные или методы из подкласса в супер класс, вы обобщаете их. Это общие понятия, и они применимы в языке Java. Но язык добавляет также понятия абстрактных классов и абстрактных методов.
Абстрактный класс является классом, для которого нельзя создать экземпляр.
Например, вы можете создать класс Animal (животное). Нет смысла создавать экземпляр этого класса: на практике вам нужно будет создавать экземпляры конкретных классов, например, Dog (собака). Но все классы Animal имеют некоторые общие вещи, например, способность издавать звуки. То, что Animal может издавать звуки, еще ни о чем не говорит.
Издаваемый звук зависит от вида животного.
Как это смоделировать?
Определить общее поведение в абстрактном классе и заставить подклассы реализовывать конкретное поведение, зависящее от их типа.
В иерархии могут одновременно находиться как абстрактные, так и конкретные классы.
Использование абстракции:
Наш класс Person содержит некоторый метод поведения, и мы пока не знаем, что он нам необходим. Удалим его и заставим подклассы реализовывать это поведение полиморфным способом. Мы можем сделать это, определив методы Person как абстрактные. Тогда наши подклассы должны будут реализовывать эти методы.
Что мы сделали в приведенном выше коде?
Объявляя метод абстрактным, вы требуете от подклассов либо реализации этого метода, либо указания метода в этих подклассах абстрактным и передачи ответственности по реализации метода к следующим подклассам. Можно реализовать некоторые методы в абстрактном классе и заставить подклассы реализовывать остальные. Это зависит от вас. Просто объявите методы, которые не хотите реализовывать, как абстрактные и не предоставляйте тело метода. Если подкласс не реализует абстрактный метод супер класса, компилятор выдаст ошибку.






