Что такое натуральные и ненатуральные числа в математике

Что такое Натуральное число

Определение натурального числа

Натуральные числа — это те числа, которые появились натуральным способом, когда считали сколько у человека есть предметов. Например: 1, 2, 3, 4, 5 и т. д.

Наибольшее натуральное число: не существует. Наименьшее натуральное число: 1.

Например, люди считали, сколько у них было фруктов: 1 яблоко, 3 апельсина, 2 дыни.

Нуль (0) не является натуральным числом, хотя некоторые области математики всё-таки считают 0 натуральным числом.

Отрицательные числа (–1, –3, –5. ) не являются натуральными числами («–3» яблок сложно посчитать физически).

Дроби (например, ⅓ или ⅖) тоже не являются натуральными числами.

Такие понятия, как отрицательные («–3»), дроби («⅓») и нуль («0») появились много позже.

Множество натуральных чисел

Множество натуральных чисел бесконечно и обозначается буквой N, т. е.:

Натуральные числа: Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Натуральные числа с нулём: Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Ряд натуральных чисел

Если записать все натуральные числа в порядке возрастания (каждое натуральное число отличается от предыдущего на 1), это будет ряд натуральных чисел. Но если какие-то числа будут отсутствовать, это уже не будет считаться рядом натуральных чисел. Например:

Наибольшего натурального числа не существует — натуральный ряд бесконечен.

Ненатуральные числа

Ненатуральные числа — это отрицательные и нецелые числа (обычно 0 тоже считается ненатуральным, но не всегда).

Отрицательные числа — это все те, которые ниже нуля, например: –1, –2, –3, –4, –5 и др.;

Свойства натуральных чисел

Натуральные числа обладают следующими свойствами:

Источник

Понятие о натуральном числе

Натуральные числа и десятичная запись числа

Чтобы сосчитать некоторое количество предметов, используются числа, которые называют натуральными.

С помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 можно записать любое натуральное число. (подобным образом мы используем буквы алфавита, чтобы записать слова)

Такую запись числа называют десятичной десять единиц каждого разряда состав­ляют одну единицу следующего старшего разряда.

Натуральный ряд

Если натуральные числа записать в порядке возрастания, то получится ряд натуральных чисел ‒ натуральный ряд.

Каждое число в этом ряду меньше последующего на единицу. Наи­меньшее число среди натуральных чисел — это 1, а наибольшего числа нет.

Многозначные числа

Натуральное число называют однозначным, если его запись состоит из одного знака — одной цифры.

Например, числа 3, 7, 9 — однозначные.

Если запись числа состоит из двух знаковдвух цифр, то его называют двузначным.

Например, числа 25, 44, 65, 80 — двузначные.

Числа 100, 543, 888 — трёхзначные:

Числа 2000, 6791, 1060 — четырёхзначные и т. д.

Двузначные, трехзначные, четырёхзначные, пятизначные и т. д. — это многозначные числа.

Классы и разряды

Прочитать записи однозначных, двузначных и трехзначных чисел (например: 7, 54, 976) затруднений не вызывает.

Чтобы прочесть многозначное натуральное число, его необходимо разбить справа налево на группы по три цифры в каждой. Крайняя левая группа может состоять из одной или двух цифр.

Эти группы называют классами.

Три первые цифры спра­ва ‒ это класс единиц, три следующие — класс тысяч, затем класс миллионов, класс миллиардов и т. д.

Место, занимаемое цифрой в записи числа, назы­вают разрядом.

Если считать справа налево, то первое место в за­писи числа называют разрядом единиц, второе — разрядом десятков, третье — разрядом сотен и т. д.

Например, в числе 5034 имеем 4 единицы разряда единиц, 3 единицы разряда десятков, 0 единиц раз­ряда сотен и 5 единиц разряда тысяч.

Можно также сказать, что в классе единиц 34 единицы.

Названия некоторых больших чисел

1 тысяча (1 тыс.) – 1 000 (тысяча)

1 миллион (1 млн)1 000 000 (тысяча тысяч)

1 миллиард (1 млрд)1 000 000 000 (тысяча миллионов)

1 триллион (1 трлн)1 000 000 000 000 (тысяча миллиардов)

Рассмотрим число 6 000 126 754.

Его читают: 6 миллиардов 126 тысяч семьсот пятьдесят четыре.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

В классе миллионов во всех разрядах стоят нули. Поэтому при чтении числа 6 000 126 754 не произносят название этого класса.

Примеры прочтения чисел:

а) Число 200 700 читается так: двести тысяч семьсот;

б) Число 6 000 008 читается так: шесть миллионов восемь;

в) Число 14 000 002 000 читается так: четырнадцать миллиардов две тысячи.

Значение цифры в записи числа

Значение цифры зависит от её позиции (места) в записи числа.

Например, в записи числа 56 978 цифра 8 означает 8 единиц, так как она стоит на последнем месте в записи числа (в разряде единиц);

В записи числа 42 389 цифра 8 означает 8 десятков, так как она стоит на предпоследнем месте в записи числа (в разряде десятков);

В записи числа 5 300 847 цифра 8 означает 8 сотен, так как она стоит на третьем месте от конца в записи числа (в разряде сотен).

Число 0 и цифра 0

Число 0 натуральным не является.

Цифра 0 означает отсутствие единиц данного разряда в десятичной записи числа. Она служит и для обозначения числа «нуль» (что означает ‒ «ни одного»).

(Например, счёт 1 : 0 хоккейного матча говорит о том, что вторая команда не забила ни одной шайбы в ворота противника.)

Поделись с друзьями в социальных сетях:

Источник

Натуральные числа

Содержание

Определение натуральных чисел [ править ]

Неформальное определение [ править ]

Определение:
Натура́льные чи́сла (англ. natural numbers, естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел — числа, используемые при:

Отрицательные и нецелые числа натуральными числами не являются.

Формальное определение [ править ]

Определить множество натуральных чисел позволяют аксиомы Пеано (англ. Peano axioms):

Теоретико-множественное определение [ править ]

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Классы эквивалентности этих множеств относительно биекций также обозначают [math]0, 1, 2, \dots.[/math]

Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».

Операции над натуральными числами [ править ]

Сложение [ править ]

Умножение [ править ]

Вычитание [ править ]

Деление чисел с остатком [ править ]

Формула деления с остатком: [math]n = m \cdot k + r,[/math] где [math]n\,[/math] — делимое, [math]m\,[/math] — делитель, [math]k\,[/math] — частное, [math]r\,[/math] — остаток, причем [math]0\leqslant r \lt b [/math]

Основная теорема арифметики [ править ]

Лемма Евклида [ править ]

Основная теорема арифметики [ править ]

Существование. Пусть [math]n[/math] — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если [math]n[/math] составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, [math]n[/math] тоже является произведением простых чисел. Противоречие.

Принцип индукции, существование наименьшего числа в любом множестве натуральных чисел [ править ]

Индукция [ править ]

Формулировка принципа математической индукции:

Верность этого метода доказательства вытекает из так называемой аксиомы индукции, пятой из аксиом Пеано, которые определяют натуральные числа. Рассмотрение аксиом Пеано выходит за рамки этой статьи.

Также существует принцип полной математической индукции. Вот его строгая формулировка:

Существование наименьшего элемента [ править ]

Аксиому индукции можно заменить на аксиому существования минимума, и доказать аксиому индукции как теорему.

Из этой теоремы вытекает следующее утверждение, эквивалентное аксиоме математической индукции, но иногда более удобное при проведении доказательств.

Источник

Числа. Натуральные числа.

Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.

Всякое натуральное число легко записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000. – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Обозначение натуральных чисел: Множество натуральных чисел обозначают символом N.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Сравнение натуральных чисел.

Таблица разрядов и классов чисел.

1-й разряд единицы тысяч

2-й разряд десятки тысяч

3-й разряд сотни тысяч

1-й разряд единицы миллионов

2-й разряд десятки миллионов

3-й разряд сотни миллионов

4-й класс миллиарды

1-й разряд единицы миллиардов

2-й разряд десятки миллиардов

3-й разряд сотни миллиардов

Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.

Основные свойства натуральных чисел.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Действия над натуральными числами.

1. Сложение натуральных чисел результат: сумма натуральных чисел.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Формулы для сложения:

В основном, сложение натуральных чисел выполняется « столбиком ».

2. Вычитание натуральных чисел – операция, обратная сложению: разница натуральных чисел.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Формулы для вычитания:

Вычитание натуральных чисел удобно производить « столбиком ».

3. Умножение натуральных чисел : произведение натуральных чисел.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Формулы для умножения:

(а + b) ∙ с= а ∙ с + b ∙ с

(а – b) ∙ с = а ∙ с – b ∙ с

4. Деление натуральных чисел – операция, обратная операции умножения.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Формулы для деления:

Числовые выражения и числовые равенства.

Запись, где числа соединяются знаками действий, является числовым выражением.

Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами. У равенства есть левая и правая части.

Порядок выполнения арифметических действий.

Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.

Когда в выражении есть скобки – сначала выполняют действия в скобках.

Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

Источник

Натуральные числа. Ряд натуральных чисел.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Что такое натуральные и ненатуральные числа в математике. Смотреть фото Что такое натуральные и ненатуральные числа в математике. Смотреть картинку Что такое натуральные и ненатуральные числа в математике. Картинка про Что такое натуральные и ненатуральные числа в математике. Фото Что такое натуральные и ненатуральные числа в математике

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Теорема (О существовании минимума):