Что такое неотрицательные числа

Целые числа. Определение.

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Ряд целых чисел.

Этот ряд чисел называется рядом целых чисел.

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами. А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

Целые числа – это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.
Что такое неотрицательные числа. Смотреть фото Что такое неотрицательные числа. Смотреть картинку Что такое неотрицательные числа. Картинка про Что такое неотрицательные числа. Фото Что такое неотрицательные числа
Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.

Вопросы по теме:
Как называются числа, находящиеся в ряду целых чисел: а) справа от нуля; б) слева от нуля?
Ответ: а) натуральные числа или целые положительные числа. Оба термина несут один и тот же смысл.
б) целые отрицательные числа.

Назовите наибольшее целое число?
Ответ: ряд положительных целых чисел бесконечен, поэтому наибольшего целого числа не существует.

Какое наименьшее целое число?
Ответ: ряд отрицательных чисел бесконечен, поэтому наименьшего целого числа не существует.

Источник

Неотрицательное число

Отрицательное число — элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате расширения получается множество (кольцо) целых чисел, состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Содержание

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или признавались как промежуточный этап, полезный для вычисления окончательного, положительного результата. Правда, умножение и деление для отрицательных чисел тогда ещё не были определены.

Диофант в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако и он рассматривал их лишь как временные значения.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1:(-1) = (-1):1 — в ней первый член слева больше второго, а справа — наоборот, и получается, что большее равно меньшему («парадокс Арно»). Непонятно было также, какой смысл имеет умножение отрицательных чисел, и почему произведение отрицательных положительно; на эту тему проходили жаркие дискуссии.

Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).

Источник

Какие числа называются целыми

Что такое неотрицательные числа. Смотреть фото Что такое неотрицательные числа. Смотреть картинку Что такое неотрицательные числа. Картинка про Что такое неотрицательные числа. Фото Что такое неотрицательные числа

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение целых чисел

Что важно знать о целых числах:

Целые числа на числовой оси выглядят так:

Что такое неотрицательные числа. Смотреть фото Что такое неотрицательные числа. Смотреть картинку Что такое неотрицательные числа. Картинка про Что такое неотрицательные числа. Фото Что такое неотрицательные числа

На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.

Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.

Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.

Выглядит эти ребята вот так:

Что такое неотрицательные числа. Смотреть фото Что такое неотрицательные числа. Смотреть картинку Что такое неотрицательные числа. Картинка про Что такое неотрицательные числа. Фото Что такое неотрицательные числа

Последовательность целых чисел можно записать так:

Свойства целых чисел

Таблица содержит основные свойства сложения и умножения для любых целых a, b и c:

Источник

Общее представление о целых числах.

Информация этой статьи формирует общее представление о целых числах. Сначала дано определение целых чисел и приведены примеры. Далее рассмотрены целые числа на числовой прямой, откуда становится видно, какие числа называются целыми положительными числами, а какие – целыми отрицательными. После этого показано, как при помощи целых чисел описываются изменения величин, и рассмотрены целые отрицательные числа в смысле задолженности.

Навигация по странице.

Целые числа – определение и примеры

Дадим определение целых чисел. Чтобы его понять, нужно знать про натуральные числа, а также иметь представление о противоположных числах.

Целые числа – это натуральные числа, число нуль, а также числа, противоположные натуральным.

Все целые числа удобно представлять как последовательность целых чисел, которая имеет следующий вид: 0, ±1, ±2, ±3, … Последовательность целых чисел можно записать и так: …, −3, −2, −1, 0, 1, 2, 3, …

Из определения целых чисел следует, что множество натуральных чисел является подмножеством множества целых чисел. Поэтому, любое натуральное число является целым, но не любое целое число является натуральным.

Целые числа на координатной прямой

Давайте взглянем на координатную прямую, чтобы увидеть точки, соответствующие целым числам. Будем считать, что координатная прямая проведена горизонтально и направлена вправо.

Что такое неотрицательные числа. Смотреть фото Что такое неотрицательные числа. Смотреть картинку Что такое неотрицательные числа. Картинка про Что такое неотрицательные числа. Фото Что такое неотрицательные числа

Из построения координатной прямой следует, что началу отсчета и точкам, отмеченным штрихами, взаимно однозначно соответствуют целые числа. То есть, каждой из указанных точек соответствует единственное целое число, следовательно, несовпадающим точкам отвечают разные целые числа. Началу отсчета (точке O ) соответствует целое число нуль, а точкам, которые отмечены штрихами, соответствуют другие целые числа. Никаким другим точкам координатной прямой целые числа не соответствуют, и никакому целому числу не отвечает точка координатной прямой, отличная от указанных выше.

В любую точку, отмеченную штрихом (координатами этих точек являются целые числа), мы можем попасть, если от начала отсчета последовательно отложим некоторое количество единичных отрезков.

Целые положительные и целые отрицательные числа

Изучив материал статьи положительные и отрицательные числа, мы из всех целых чисел можем выделить целые положительные и целые отрицательные числа.

Целые отрицательные числа – это целые числа со знаком минус.

Число нуль (число 0 ) не является ни целым положительным, ни целым отрицательным числом. Нуль как бы отделяет целые отрицательные числа от целых положительных.

Вообще, в силу определения противоположных чисел, любое число, противоположное целому положительному числу, есть целое отрицательное число. И наоборот, любое число, противоположное целому отрицательному числу, есть целое положительное. Это утверждение позволяет дать определения целых положительных и целых отрицательных чисел на основе их сравнения с нулем (здесь нужно владеть материалом статьи сравнение целых чисел).

Целые положительные числа – это целые числа, которые больше нуля.

Целые отрицательные числа – это целые числа, которые меньше нуля.

Понятно, что множество всех целых положительных чисел представляет собой множество натуральных чисел. В свою очередь множество всех целых отрицательных чисел – это множество всех чисел, противоположных натуральным числам.

Отдельно обратим Ваше внимание на то, что любое натуральное число мы можем смело назвать целым, а любое целое число мы НЕ можем назвать натуральным. Натуральным мы можем назвать лишь любое целое положительное число, так как целые отрицательные числа и нуль не являются натуральными.

Целые неположительные и целые неотрицательные числа

Дадим определения целых неположительных чисел и целых неотрицательных чисел.

Все целые положительные числа вместе с числом нуль называют целыми неотрицательными числами.

Другими словами, целое неотрицательное число – это целое число, которое больше нуля, либо равно нулю, а целое неположительное число – это целое число, которое меньше нуля, либо равно нулю.

Наиболее часто термины «целые неположительные числа» и «целые неотрицательные числа» используют для краткости изложения. Например, вместо фразы «число a целое, причем a больше нуля или равно нулю» можно сказать « a – целое неотрицательное число».

Описание изменения величин при помощи целых чисел

Пришло время поговорить о том, для чего вообще нужны целые числа.

Основное предназначение целых чисел заключается в том, что с их помощью удобно описывать изменение количества каких-либо предметов. Разберемся с этим на примерах.

Пусть на складе находится некоторое количество деталей. Если на склад привезут еще, к примеру, 400 деталей, то количество деталей на складе увеличится, а число 400 выражает это изменение количества в положительную сторону (в сторону увеличения). Если же со склада заберут, например, 100 деталей, то количество деталей на складе уменьшится, а число 100 будет выражать изменение количества в отрицательную сторону (в сторону уменьшения). На склад не будут привозить детали, и не будут увозить детали со склада, то можно говорить о неизменности количестве деталей (то есть можно будет говорить о нулевом изменении количества).

Целые числа также могут выражать не только изменение количества, но и изменение какой-либо величины. Разберемся с этим на примере изменения температуры.

Источник

Целые числа

Что такое целые числа

Целые числа — это множество натуральных чисел, отрицательных и нуль.

Другими словами определение можно сформулировать так: целые числа — такие, у которых нет дробной части. Любое натуральное число считается целым, но не любое целое является натуральным.

-98; 24; 0; 3; 4512 — это все целые числа.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что такое неотрицательные числа. Смотреть фото Что такое неотрицательные числа. Смотреть картинку Что такое неотрицательные числа. Картинка про Что такое неотрицательные числа. Фото Что такое неотрицательные числа

Целые числа имеют обозначение в виде знака Z (от нем. названия Zahlen — «числа»). Им присущи три базовые арифметические операции:

А также можно провести специфическую операцию — деление с остатком.

Использование целых чисел при описании изменения величин

Изменение величин каких-либо предметов или объектов удобнее всего описывать с помощью целых чисел. Именно они со своими знаками «+» или «-» наглядно показывают увеличение/уменьшение величины или же ее неизменность, если использовать 0. В этом выражении заключается одно из главных отличий множества целых чисел от натуральных.

Для наглядности можно привести пример, который покажет, как вычислить изменение величин:

На полке хранилось некое количество книг. Затем к ним поставили 10 новых экземпляров. Параметр 10 означает изменение (увеличение, «+») количества предметов. Если с полки потом уберут 5 книг, то этот показатель тоже будет выражать изменение количества предметов, но уже в сторону уменьшения (значение знака «-»).

Если же на полку не поставят новые книги и не заберут старые, то число 0 окажется индикатором неизменности количества предметов.

Кроме того, понятие о целых числах используется не только в алгебре, но и в таких областях, как география, история, медицина, физика.

Положительные и отрицательные целые числа

Положительные целые числа — это числа, которые отмечаются знаком «плюс». К примеру, к ним относятся: 1; 2; 3; 4.

Свойство нуля состоит в том, что он не принадлежит ни к положительным, ни к отрицательным. Оно их разделяет.

Для любого положительного целого числа существует единственное противоположное отрицательное. Справедливо и обратное правило. 0 противоположен самому себе.

Неположительные и неотрицательные целые числа

Неотрицательные целые числа — это положительные целые числа и нуль. К ним можно отнести числа типа 54; 146; 0.

По другому, неположительными целыми числами считают те, которые меньше или равны нулю. И наоборот, неотрицательные те, которые больше или равны нулю.

Данные термины ввели для удобства изъяснения. Для того, чтобы не говорить, что число n — меньше или равно нулю, можно сократить фразу и сказать: число n — целое неположительное.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *