Что такое общее увеличение микроскопа и разрешающая способность биологического микроскопа
Микроскопирование
Материал из Wiki.biomed
Лабораторная работа Цель работы: изучить устройство микроскопа.
Содержание
Методические указания
Для изучения объектов имеющих малые размеры и неразличимых невооруженным глазом, используют специальные оптические приборы – микроскопы. В зависимости от назначения различают: упрощенные, рабочие, исследовательские и универсальные. По используемому источнику освещения микроскопы подразделяются на: световые, люминесцентные, ультрафиолетовые, электронные, нейтронные, сканирующие, тоннельные. Конструкция любого из перечисленных микроскопов включает механическую и оптическую части. Механическая часть служит для создания условий наблюдения – размещения объекта, фокусировки изображения, оптическая – получения увеличенного изображения.
Устройство светового микроскопа
Микроскоп называется световым, так как он обеспечивает возможность изучать объект в проходящем свете в светлом поле зрения. На (рис.Внешний вид Биомед 2) представлен общий вид микроскопа Биомед-2.
Механическая часть микроскопа состоит из основания микроскопа, подвижного предметного столика и револьверного устройства.
Фокусировка на объект осуществляется перемещением предметного столика путем вращения ручек грубой и тонкой настройки.
Диапазон грубой фокусировки микроскопа – 40 мм.
Предметный столик укреплен на кронштейне. Координатное перемещение предметного столика, возможно, при вращении рукояток. Крепление объекта на столике осуществляется держателями препарата. Держатели можно перемещать относительно друг друга.
Координаты объекта и величина перемещения отсчитывается по шкалам с ценой деления 1 мм и нониусам с ценой деления 0,1 мм. Диапазон перемещения объекта в продольном направлении 60 мм, в поперечном направлении – 40 мм. Конденсор
Микроскоп оборудован узлом крепления конденсора с возможностью центрировочного и фокусировочного перемещения.
При настройке освещения плавное изменение числовой апертуры пучка лучей освещающих препарат, осуществляется с помощью апертурной диафрагмы.
Конденсор устанавливается в держатель конденсора в фиксированное положение и закрепляется стопорным винтом.
Винты для центрировки конденсора используются в процессе настройки освещения для перемещения конденсора в плоскости, перпендикулярной к оптической оси микроскопа, при центрировке изображения полевой диафрагмы относительно краев поля зрения.
Рукоятка перемещения конденсора вверх-вниз, расположена на левой стороне кронштейна держателя конденсора, используются при настройке освещения для фокусирования на изображение полевой диафрагмы.
Светофильтры устанавливаются в поворотное кольцо, расположенное в нижней части конденсора.
Оптическая часть микроскопа
Состоит из осветительной и наблюдательной систем. Осветительная система равномерно освещает поля зрения. Наблюдательная система предназначена для увеличения изображения наблюдаемого объекта.
Осветительная система
Наблюдательная система
Состоит из объективов, монокулярной насадки и окуляров.
Объективы
Объективы составляют самую важную, наиболее ценную и хрупкую часть микроскопа. От них зависит увеличение, разрешающая способность и качество изображения. Они представляют собой систему взаимно центрированных линз, заключенных в металлическую оправу. На верхнем конце оправы имеется резьба, при помощи которой объектив крепится в гнезде револьвера. Передняя (ближайшая к объекту) линза в объективе называется фронтальной, единственная в объективе, производящая увеличение. Все остальные линзы объектива называются коррекционными и служат для устранения недостатков оптического изображения.
При прохождении через линзы пучка световых лучей с разной длиной волны возникает радужное окрашивание изображения – хроматическая аберрация. Неодинаковое преломление лучей на кривой поверхности линзы приводит к сферической аберрации, возникающей вследствие неравномерного преломления центральных и периферических лучей. В результате точечное изображение получается в виде размытого кружка.
Объективы увеличением более 10X снабжены пружинящими оправами, предохраняющими от повреждения препарат и фронтальные линзы объективов при фокусировании на поверхность препарата.
На корпусе объектива в соответствии с увеличением может быть нанесено цветное кольцо, а также:
Окуляры
Окуляр микроскопа состоит из двух линз: глазной (верхней) и собирательной (нижней). Между линзами находится диафрагма. Боковые лучи диафрагма задерживает, близкие к оптической оси пропускает, что усиливает контрастность изображения. Назначение окуляра состоит в увеличении изображения, которое дает объектив. Окуляры имеют собственное увеличение ×5, ×10, ×12.5, ×16 и ×20, что указано на оправе.
Наименование | Видимое | Примечание | |
Широкоугольный 5/20 | 5 | 20 | |
Широкоугольный 5/22 | 5 | 22 | |
Широкоугольный 10/20 | 10 | 20 | |
Широкоугольный 10/20Ш измерительный со шкалой | 10 | 20 | |
Широкоугольный 10/22 | 10 | 22 | Для работы в очках |
Широкоугольный 10/26,5 | 10 | 26,5 | |
Широкоугольный 16/12 | 16 | 12 | |
Широкоугольный 16/12Ш измерительный со шкалой | 16 | 12 | |
Широкоугольный 15/16 | 15 | 16 |
Дополнительно микроскоп может комплектоваться окуляром WF10/22 со шкалой; цена деления шкалы 0,1 мм.
Характеристики микроскопов
Увеличение микроскопа
К основным характеристикам микроскопа относятся увеличение и разрешающая способность. Общее увеличение, которое дает микроскоп, определяется как произведение увеличения объектива на увеличение окуляра. Однако увеличение не характеризует качества изображения, оно может быть четким и нечетким. Четкость получаемого изображения характеризуется разрешающей способностью микроскопа, т.е. той наименьшей величиной объектов или их деталей, которые можно увидеть с помощью этого прибора.
Общее увеличение Г микроскопа при визуальном наблюдении определяется по формуле: Г = βок × βок, где:
Диаметр поля, наблюдаемого в объекте, Доб мм, определяется по формуле: Доб= Док × βоб. Док –диаметр окулярного поля зрения(маркируется на окуляре)мм. Расчетные значения увеличения микроскопа и диаметра наблюдаемого поля на объекте приведены в таблице 3.
Увеличение объектива | Увеличение микроскопа и наблюдаемое поле на объекте с окуляром: Разрешающая способность микроскопаРазрешающая способность микроскопа определяется минимальным (разрешающим) расстоянием между двумя точками (или двумя тончайшими штрихами), видимыми раздельно, и вычисляется по формуле Увеличить разрешающую способность (т.е. уменьшить абсолютную величину d, так как это обратные величины) можно следующими путями: освещать объект светом с более короткой длиной волны λ (например, ультрафиолетовыми или коротковолновыми лучами), использовать объективы с большей апертурой А1 или повышать апертуру конденсора А2. Рабочее расстояние объективаМикроскопы снабжают четырьмя съемными объективами с собственными увеличениями 4×, 10×, 40× и 100×, обозначенными на металлической оправе. Увеличение объектива зависит от кривизны основной фронтальной линзы: чем больше кривизна, тем короче фокусное расстояние и тем больше увеличение. Это необходимо помнить при микроскопировании – чем большее увеличение дает объектив, тем меньше свободное рабочее расстояние и тем ниже следует опускать его над плоскостью препарата. ИммерсияВсе объективы разделяются на сухие и иммерсионные, или погружные. Сухим называется такой объектив, между фронтальной линзой которого и рассматриваемым препаратом находится воздух. При этом ввиду разницы показателя преломления стекла (1,52) и воздуха (1,0) часть световых лучей отклоняется и не попадает в глаз наблюдателя. Объективы сухой системы имеют обычно большое фокусное расстояние и дают малое (10×) или среднее (40×) увеличение. Иммерсионными, или погружными, называют такие объективы, между фронтальной линзой которых и препаратом помещается жидкая среда с показателем преломления, близким к показателю преломления стекла. В качестве иммерсионной среды используют обычно кедровое масло. Можно использовать также воду, глицерин, прозрачные масла, монобромнафталин и др. При этом между фронтальной линзой объектива и препаратом устанавливается однородная (гомогенная) среда (стекло препарата – масло – стекло объ- ектива) с одинаковым показателем преломления. Благодаря этому все лучи, не преломляясь и не изменяя направления, попадают в объектив, создавая условия наилучшего освещения препарата. Величина (n) показателя преломления равна для воды 1,33, для кедрового масла 1,515, для монобромнафталина 1,6. Техника микроскопированияМикроскоп при помощи кабеля питания подключают к электрической сети. С помощью револьвера устанавливают в ход лучей объектив с увеличением ×10. Легкий упор и звук щелчка пружины револьвера свидетельствуют о том, что объектив установлен по оптической оси. Ручкой грубой фокусировки опускают объектив на расстояние 0,5 – 1,0 см от предметного столика. Правила работы с сухими объективами.Приготовленный препарат помещают на предметный столик и закрепляют зажимом. С помощью сухого объектива с увеличением ×10 просматривают несколько полей зрения. Передвигают предметный столик боковыми винтами. Нужный для исследования участок препарата устанавливают в центре поля зрения. Поднимают тубус и вращением револьвера переводят объектив с увеличением ×40, наблюдая сбоку, макрометрическим винтом снова опускают тубус с объективом почти до соприкосновения с препаратом. Смотрят в окуляр, очень медленно поднимают тубус до появления контуров изображения. Точную фокусировку производят с помощью микрометрического винта, вращая его в ту или другую сторону, но не более чем на один полный оборот. Если при вращении микрометрического винта чувствуется сопротивление, значит, ход его пройден до конца. В этом случае поворачивают винт на один-два полных оборота в обратную сторону, снова находят изображение при помощи макрометрического винта и переходят к работе с микрометрическим винтом. При смене объективов не следует забывать, что разрешающая способность микроскопа зависит от соотношения апертуры объектива и конденсора. Числовая апертура объектива с увеличением ×40 составляет 0,65, неиммергированного конденсора – 0,95. Привести их в соответствие практически можно следующим приемом: сфокусировав препарат с объективом, следует вынуть окуляр и, глядя в тубус, прикрывать ирисовую диафрагму конденсора до тех пор, пока ее края не станут видны у границы равномерно освещенной задней линзы объектива. В этот момент числовые апертуры конденсора и объектива будут примерно равны. Правила работы с иммерсионным объективом.На препарат (лучше фиксированный и окрашенный) наносят небольшую каплю иммерсионного масла. Поворачивают револьвер и устанавливают по центральной оптической оси иммерсионный объектив с увеличением 100×. Конденсор поднимают вверх до упора. Ирисовую диафрагму конденсора открывают полностью. Глядя сбоку, макрометрическим винтом опускают тубус до погружения объектива в масло, почти до соприкосновения линзы с предметным стеклом препарата. Это нужно проводить очень осторожно, чтобы фронтальная линза не сместилась и не получила повреждения. Смотрят в окуляр, очень медленно вращают макрометрический винт на себя и, не отрывая объектив от масла, приподнимают тубус до появления контуров объекта. При этом следует помнить, что свободное рабочее расстояние в иммерсионном объективе равно 0,1 – 0,15 мм. Затем точную фокусировку производят макрометрическим винтом. Рассматривают в препарате несколько полей зрения, передвигая столик боковыми винтами. По окончании работы с иммерсионным объективом поднимают тубус, снимают препарат и осторожно протирают фронтальную линзу объектива сначала сухой мягкой хлопчатобумажной салфеткой, затем той же салфеткой, но слегка смоченной чистым бензином. Оставлять масло на поверхности линзы нельзя, так как оно способствует оседанию пыли и может привести со временем к повреждению оптики микроскопа. Препарат освобождают от масла сначала кусочком фильтровальной бумаги, затем обрабатывают стекло бензином или ксилолом. Поговорим о микроскопахПомнится, в далеком детстве мне подарили микроскоп «Натуралист» – игрушечный, но таки дающий фиксированное увеличение аж в шестьдесят раз. Состоял он из одной трубки, закрепляемой на пластмассовом футляре, одновременно играющим роль основания. Сколько интересных вещей тогда было пересмотрено через окуляр, подсвеченный тусклым зеркальцем – от листьев водорослей до целого таракана… Рис. 1. Детский микроскоп «Натуралист» (за неимением лучшего — фото с торговой площадки) С тех пор прошло более тридцати лет, но о детском увлечении я не забыл. И вот однажды под влиянием приступа ностальгии я решил купить себе такую же игрушку, только чуть посовременнее. Но первый же взгляд на соответствующий раздел Интернет-площадки показал: чего-то я в этой жизни не понимаю. От обилия самый разных устройств, описываемых одним и тем же словом «микроскоп», просто рябило в глазах. И вот вместо пары быстрых щелчков мышкой пришлось плотно сесть и разобраться хотя бы в самых азах современной микроскопии. Результаты ниже. Предупреждение: обзор не претендует на исчерпывающее описание и рассчитан на энтузиастов-любителей, интересующихся предметом для себя или для детей. Статья не содержит никакой теории, связанной с оптикой, ее в избытке хватает в других материалах. Типы микроскоповСуществует довольно много самых разных задач, в которых необходимо детально рассмотреть мельчайшие детали объектов – от драгоценных камней и монет до внутренностей живой клетки. От того, что и как нам нужно увидеть, сильно зависят и применяемые методы. Оставим сейчас за кадром самые мелкие объекты типа вирусов или молекулярной структуры вещества и сосредоточимся на более крупных предметах размерами от бактерии и выше. Оптические устройства, применяемые для таких задач, делятся на два больших класса: биологические (компаундные) и стереомикроскопы. Подробно останавливаться на стереомикроскопах не станем. Замечу только, что, вопреки подсознательным ожиданиям от названия, данный класс устройств предназначен не для создания стереокартинок. Стереомикроскопы используются для обследования сравнительно крупных непрозрачных предметов в отраженном свете: микросхем, камней, насекомых и т.п. Они отличаются сравнительно небольшим оптическим увеличением (40-60-80х, хотя наиболее продвинутые могут иметь даже 200х) и часто снабжены встроенными мониторами либо цифровыми интерфейсами. Источник света находится над образцом. Размеры – от карманных устройств до солидных стационарных установок. Некоторые стереомикроскопы для промышленных целей даже лишены оптического окуляра и предназначены исключительно для подключения к компьютеру/смартфону через USB/WiFi («цифровые микроскопы»). Такие микроскопы сравнительно дешевы. Если надо как следует рассмотреть таракана, бриллиант или распайку элементов на плате, этот тип устройств для вас. Только помните, что супер-увеличения типа 1600х, которые часто можно встретить в описаниях даже самых дешевых устройств, относятся к цифровому увеличению и даже близко не отражают реальное оптическое. Каково оно? А кто его знает, производители до таких деталей не снисходят.
Биологические микроскопыОсновной класс устройств, на котором мы сконцентрируемся – то, что называется биологическим микроскопом, в английской терминологии «компаундным» (составным, от compound). Он предназначен для рассматривания тонких прозрачных образцов (срезы тканей, бактерии, микроорганизмы и т.п.) в проходящем свете. Образец подготавливается на предметном стекле, умещаемом на рабочей платформе, источник света – внизу, под образцом. Следует понимать, что под биологический микроскоп того же таракана засунуть сложно: для мощной оптики, где расстояние между линзой и препаратом составляет буквально десятую долю миллиметра, препарат должен быть очень тонким, плоским и прозрачным, специально подготовленным и, возможно, окрашенным. Обычно это капля или тонкая пленка, размещенная между предметным и покровным стеклом. Под маломощный объектив таракан влезет (фокусное расстояние у них от нескольких миллиметров до нескольких сантиметров). Однако следует озаботиться хорошим внешним источником света и не стоит рассчитывать на высокую глубину резкости: в каждый момент времени вы сможете отчетливо видеть только определенный слой изображения. Типовой биологический микроскоп состоит из трех частей: механическая платформа (база, предметный столик, устройства наведения и фокусировки), подсветка и оптическая система.
Механическая платформаМеханическая часть состоит из основания, на которой монтируются все прочие компоненты, и предметного столика, на котором умещается образец. Очень важной частью механики является система, отвечающая за перемещение предметного столика в трех измерениях – именно так образец подводится в точку фокуса неподвижного объектива. Существуют модели, в которых перемещается объектив, но это редкая экзотика. В устройствах начального уровня механика самая примитивная. Подстройка по высоте (фокусировка) есть только грубая (coarse), перемещение образца в плоскости – пальцами. В более сложных моделях в дополнение к грубой фокусировке появляется тонкая (fine), а также зажим, перемещающий предметное стекло в горизонтальной плоскости (его подвижная сторона имеет характерный вид полумесяца, ее хорошо видно на изображениях устройств). В наиболее простых микроскопах вертикальное перемещение регулируется разными винтами/рукоятками, в более продвинутых они совмещены на одной оси. В микроскопах без тонкой фокусировки есть реальная опасность раздавить как предметное стекло, так и линзу объектива из-за неловкого движения руки. Материал корпуса – пластик либо металл. Пластик легче, но и хрупче. Обычно он применяется в мобильных моделях, предназначенных для детей либо полевых лабораторий – там, где важно минимизировать вес. Для стационарных микроскопов используется металл: он не только прочнее, но и менее подвержен вибрациям, которые на высоких увеличениях становятся критичными. Вес металлического микроскопа – 3-4 килограмма. Исторически база микроскопа состояла из неподвижного основания и подвижного кронштейна, позволяющего менять ориентацию микроскопа относительно вертикали. Это было необходимо не только для комфорта работы, но и для получения качественной подсветки. Однако современные микроскопы имеют монолитное основание с фиксированным углом наклона глазных тубусов, что не всегда удобно. Учтите, что от этого угла прямо зависит комфорт вашей шеи во время работы, так что подбирайте устройство с углом, подходящим именно вам.
Электрические компонентыМало подвести образец в точку фокуса, его надо еще и правильно подсветить. Плохая подсветка приведет к слишком темному или, наоборот, пересвеченному неразборчивому изображению, а также к неоднородному освещению поля. Исторически для подсветки использовалось вогнутое зеркало, расположенное под отверстием в столике. Однако с его помощью сложно добиться качественного равномерного освещения поля зрения, что критично на высоких увеличениях. Также оно накладывает очень серьезные ограничения по размещению микроскопа относительно источника света, а также на сам источник. Такое зеркало сегодня осталось только в самых примитивных устройствах, обычно в полевых либо детских микроскопах, как в показанном в начале статьи «Натуралисте». Иногда, впрочем, оно может поставляться как дополнительная опция, замещающая основной источник света. Сегодня для подсветки используются разные виды встроенных в основание ламп. До относительно недавнего времени применялись лампы галогенные или накаливания, но они имели свои проблемы. В первую очередь – из-за того, что свет генерировался тонкой нитью, а проецировать его приходилось на круглое поле, что, опять же, создает проблемы с равномерностью. Однако в современных условиях индустрия широко использует LED-источники света, что проблему сняло. Запитывается подсветка либо от батареек (такие микроскопы особенно хороши для детей, поскольку их можно повсюду таскать с собой), либо проводом от розетки. Если заказываете проводное устройство за рубежом, помните о переходниках для вилки. Регулировка подсветки выполняется как интенсивностью лампы, так и световым конденсором под рабочим столиком, имеющим диафрагму и линзу для фокусировки света на образце. В недорогих моделях наиболее распространен конденсор Аббе (Abbe condenser) или его модификации, это название можно часто увидеть в описании микроскопа. Для любительских занятий обычно применяется подсветка вида «светлое поле» (в смысле, прозрачные объекты рассматриваются на ярком белом фоне), хотя есть и другие типы: «темное поле», дающее инвертированное изображение, флуоресцентная подсветка и т.п. Конденсор может быть сменным, позволяя получать в одном и том же микроскопе разные типы подсветки. Попадаются также модели с дополнительной верхней подсветкой, как на картинке ниже (этакий гибрид биологического и стереомикроскопа), но обычно это удел любительских устройств и малых увеличений: мощные объективы, практически втыкающиеся в покровное стекло, попросту заслоняют верхний свет. На практике уже сорокакратный объектив даже при хорошей внешней подсветке почти ничего не видит, а стократный показывает полный мрак. Обратите, кстати, внимание: микроскоп на картинке не обладает полноценным конденсором, вместо него – только источник света и диафрагма. На столике присутствуют только самые примитивные зажимы-клипсы для предметного стекла, перемещение препарата в плоскости – пальцами.
Оптическая система – объективыОптическая система состоит из объективов (смотрят непосредственно на образец) и окуляров (eyepiece, прилегают к глазу). Объективы, непосредственно рассматривающие образец, монтируются на револьверном диске для быстрой их смены. По нынешним временам они имеют четыре типовых диапазона увеличения: 4-5х (сканирующий объектив, обычно служит для грубой наводки на цель), 10-15х (маломощные линзы), 40-60х (высокомощные) и 90-100х и выше (сверхмощные). Объективы с увеличением выше 100х встречается редко и уж точно не в любительских микроскопах. Первые три типа («сухие») обычно стандартны для всех моделей, даже для детских. Последний тип объективов встречается в более продвинутых моделях и для получения качественного изображения требует специальной техники использования – иммерсионной. Суть в том, что коэффициенты преломления воздуха и стекла разные для разных длин волн (именно на этом основано разложение белого цвета в спектр). Если между образцом и объективом есть воздух, на стократном увеличении проявляется сильная хроматическая аберрация, снижающая резкость вплоть до полной неразборчивости. Поэтому для сильных (девяностократных и выше) объективов обычно используется техника погружения (иммерсии) передней линзы объектива в специальное масло, имеющее тот же коэффициент преломления, что и стекло. На покровное стекло наносят каплю масла, в которое непосредственно опускается объектив. После исследования масло с линзы смывается. Такие объективы обычно помечаются словом oil. Могут они использоваться и насухо, но добиться высокой резкости в этом случае невозможно. Масло входит в начальный комплект микроскопа с такими объективами, а также может быть куплено отдельно (из натуральных масел идеально подходит кедровое). Масляную иммерсию нельзя использовать с менее мощными объективами, для которых она не упомянута явно. Что интересно, еще в середине прошлого века иммерсионными были даже объективы 50х, но с тех пор техника заметно продвинулась вперед. Исторически первой иммерсионной жидкостью являлась обычная вода (техника изобретена еще в начале 19 в.), подходящее масло впервые подобрали ближе к концу того же столетия. Также стократные объективы могут напрямую упираться в покровное стекло препарата. Защита фронтальной линзы обычно выполняется с помощью специальной пружинящей оправы (слово spring в описании объектива). Несколько раз в описаниях также попадалось слово feather вместо spring, хотя найти определение мне так и не удалось. Для любительских исследований такие объективы избыточны как с точки зрения дополнительной немалой цены, так и с точки зрения затрачиваемых усилий. Особой дополнительной ценности в домашних условиях они не представляют.
Оптическая система – окулярыСменные окуляры вставляются в тубусы в верхней части микроскопа и имеют свое собственное фиксированное увеличение, например 10х, 16х, 25х. Чем выше увеличение, тем короче окуляр. Очкарикам типа меня надо держать в уме, что, в отличие от фотоаппарата, работа с окуляром микроскопа в очках крайне затруднена: окуляр должен практически прижиматься к глазу. Вынос зрачка (eye relief) у обычных окуляров составляет 7-13 мм, с очками нужны специальные окуляры с высоким выносом (15-20 мм). Однако это особой проблемы не составляет. В любом случае резкость в микроскопе подстраивается под глаз индивидуально. Даже с самой высокой близорукостью в микроскопе можно видеть резкое изображение. Неудобство только в том, что очки все время приходится снимать и надевать. Окуляры могут быть широкофокусными (помечаются буквами WF, wide focus). Такой окуляр имеет большую ширину поля зрения, что заметно облегчает работу с широкими препаратами. По количеству окуляров микроскопы делятся на классические монокулярные (один окуляр), бинокулярные (два окуляра, чтобы смотреть обеими глазами) и тринокулярные (третий тубус/порт обычно монтируется вертикально и служит для подсоединения фото- или видеокамеры). Наиболее прост в использовании монокуляр. К нему очень легко привыкнуть, а проблему он создает единственную – сильную нагрузку на один глаз при расслабленном другом. При долгом использовании это может кончиться неприятными последствиями для зрения. Бинокулярные микроскопы используются для обоих глаз сразу и создают стереоизображение. Они позволяют регулировать расстояние между окулярами для подгонки под свои зрачки. Также один из тубусов бинокуляра содержит регулировку, позволяющую компенсировать разницу в диоптриях между глазами. Следует держать в уме, однако, что создание цельного изображения при использовании бинокуляра гораздо сложнее, чем с монокуляром, к нему следует привыкать. Кроме того, регулировка имеет свои ограничения по расстоянию между зрачками, так что подстройка под ребенка может оказаться невозможна. Детский микроскоп следует брать монокулярный, да и для эпизодических любительских упражнений бинокуляр особо не пригодится. Тринокулярные устройства выглядят эффектно и удобно, если речь идет о трансляции изображения наружу одновременно с работой. Однако следует учитывать, что не всегда все три порта могут использоваться одновременно. Встречаются решения, в которых, например, приходится выбирать между одним из глазных тубусов и третьим портом.
Оптическая система – заключениеСуммарная мощность биологического микроскопа вычисляется как произведение увеличений окуляра и объектива. Например, с объективом 40х и окуляром 10х общее увеличение составит 400х. Однако следует учитывать, что для стандартных ахроматических линз добиться четкого изображения на сверхмощном увеличении из-за законов оптики практически невозможно. Начиная с определенного момента, линзы будут только увеличивать уже видимые детали, но не добавлять новые. Максимальное эффективное оптическое увеличение составляет примерно 1500х, а то и меньше, в домашних условиях 1000х – практический потолок. Для более высоких разрешений применяются дорогие апохроматические линзы либо электронные микроскопы, что уже совсем другая песня. Вообще 1000х – много это или мало? Размер золотистого стафилококка – около 1 мкм (1/1000 мм), амебы – 200-600 мкм, одноклеточной водоросли – около 40 мкм. Тысячекратного увеличения вполне хватит, чтобы разглядеть все это с подробностями. Так что не обращайте особого внимания на маркетинговые цифры максимального увеличения 2500-3000х, получаемого тупым перемножением максимальных мощностей объективов и окуляров. Установить вы его установите, только в результате получится как в песне «Сиреневый туман под линзой проплывает…» При работе с препаратами также важна правильная установка диафрагмы конденсора. Узкая диафрагма повышает контрастность и резкость, но затемняет изображение. Широкая диафрагма пропускает больше света, но может сделать изображение пересвеченным и малоконтрастным, скрывая детали и даже целые объекты. Подбор диафрагмы для каждого препарата выполняется индивидуально. На картинке ниже обратите внимание на вращающуюся головку микроскопа, позволяющую ориентировать окуляры в нужном направлении. Такая конструкция удобна при работе нескольких человек. Однако подстраивать резкость под свои глаза каждому все равно придется индивидуально.
Оптическая система – сопряжение микроскопа с компьютеромПодключение микроскопа к внешним устройствам, таким как монитор или компьютер, выполняется за счет установки специальной видеокамеры *вместо* окуляра или в выделенный порт тринокуляра. Следует держать в уме, что в этом случае теряется увеличение, даваемое окуляром, остается только увеличение объектива и нерегулируемых линз камеры. В параметрах камер обычно указывается только емкость ее матрицы (3, 5, 10 и более мегапикселей), оптическое увеличение остается тайной за семью печатями. Кроме того, поле зрения камеры существенно уже, чем у человеческого глаза. Сама по себе камера может не распознаваться стандартными средствами Windows и приложений (и не надо – без микроскопа она полностью слепа), так что производители прилагают к ней специализированный софт. Он позволяет как делать фотографии, так и записывать видео. На рынке есть разные виды камер – от стареньких с разрешением 640х480 до современных с разрешением аж до 20 мегапикселей. Отличаются они также интерфейсами, что влияет на возможности записи видео в первую очередь (получение видеопотока с высоким FPS и разрешением через USB 2.0 будет затруднительно). Также камеры могут подключаться напрямую к монитору или иному устройству через HDMI, иметь WiFi-интерфейс и т.п. Многие производители предлагают для своих микроскопов также и камеры, но никто не мешает купить камеру от другого вендора. Следует только учитывать, что диаметр тубуса у разных микроскопов может отличаться, так что следует удостовериться, что данная камера подходит для данного тубуса. Ну, или использовать переходники, которые тоже продаются. Стандартный диаметр для окуляра биологического микроскопа – 23,2 мм, стереомикроскопа – 30 и 30,5 мм. Существуют также относительно дешевые насадки, позволяющие перенаправлять оптический поток из окуляра в объектив камеры смартфона. Плюс такого устройства – сохранение оригинального увеличения, поскольку монтируются они поверх окуляра. Минус – возможности получения и сохранения изображения ограничиваются невеликими возможностями смартфона. Ну, и поле зрения у такой камеры все равно уже, чем у глаза.
Цены и производителиЦены на биомикроскопы можно найти самые разные. Те, что позиционируются для детей, попадаются и за 30-40 евро, однако следует помнить о возможных ограничениях типа фиксированного окуляра 10х, не поддерживающего установку камеры, отсутствия конденсора, а то и вообще подсветки, примитивном предметном столике и т.п. В Европе можно купить монокулярные микроскопы с тремя объективами, рассчитанные на энтузиастов и студентов, их ценовая категория – от 100 евро. Камера для микроскопа – от 50 евро (и далее в космос: двадцатимегапиксельная может стоит и семь сотен). Более профессиональные микроскопы – би- и тринокуляры со стократными объективами – стоят от 250 евро. Наконец, многие вендоры предлагают комплекты, специально рассчитанные на детей, студентов и энтузиастов. В них могут входить монокуляр входного уровня, простенькая видеокамера, базовый набор инструментов и предметных стекол и т.п. Цены на такие комплекты начинаются от полутора сотен евро. К покупке следует обязательно добавить минимум один набор из предметных и покровных стекол (от 8-10 евро – учтите, это расходный материал), а также, по желанию, набор заранее подготовленных препаратов (крылья, ноги, хвосты, листики и подобные нехитрые препараты для вхождения в тему). Ну, а дальше – скальпели, пинцеты, микротомы, чашки Петри, пробирки, препараторские иглы и так далее, и тому подобное в зависимости от ваших увлечений. Также обязательно купите изопропиловый спирт (чем выше концентрация, тем лучше), кисточки, продувки, салфетки из микрофибры и т.п. – оптика имеет свойство пачкаться и пылиться, а даже отдельные пылинки на линзах микроскопа отобьются пятнами на изображении. Учитывайте также, что цены на одни и те же товары на американском, английском и немецком Амазонах, не говоря уже про eBay, могут очень существенно различаться, так что после выбора модели стоит порыться на разных площадках в поисках цены пониже. Также можно искать микроскопы на Алиэкспрессе. Однако хотя там цены заметно ниже, чем в Европе, цена на доставку оказывается сопоставима с ценой самого микроскопа, что полностью лишает затею смысла. Какой бренд выбрать? Поскольку оптика для микроскопов критично важна, на этом рынке отметились крупные мировые производители, связанные с оптикой – Олимпус, Цейс, Лейка, Никон и так далее. Однако цены на их устройства даже входного уровня, мягко говоря, не радуют, да и в розницу они могут просто не работать. Так что любителю стоит приглядеться к более демократичным вендорам, таким как Swift, Bresser, Omax или AmScope. Также можно приобрести отдельные объективы и окуляры, в том числе китайского производства (есть неплохие, судя по отзывам), но в этом случае нужно удостовериться что они совместимы с микроскопом. Европейский стандарт, определяющий резьбу и прочие механические и оптические параметры, называется DIN. Немного практики. Игрушка в реальностиПосле месяца мучительных раздумий, в которых детское «хочу!» отчаянно боролось с взрослой скупостью и рационализмом, я остановился на бинокуляре Swift 350B. Почему? Ничего особенного: микроскопы Swift при умеренных ценах имеют качество, подходящее даже для лабораторных условий. Плюс на осенней распродаже на английском Амазоне эта модель продавалась всего за 160 фунтов. Чтобы два раза не вставать, вторым компонентом покупки стала трехмегапиксельная камера Swift стоимостью 80 фунтов. Выглядит комплект поставки микроскопа примерно так: Четыре объектива (4х, 10х, 40х и 100х) уже установлены в револьверное кольцо, наборы окуляров (10х и 25х) вложены отдельно. Обратите внимание на пустую вертикальную выемку над головкой и два пустых гнезда – упаковка универсальна и рассчитана в том числе на тринокуляры. Шнур/гнездо питания – C13/C14, блок питания встроен в основание. В комплект входит простенький пластиковый чехол а-ля «мешок мусорный обыкновенный». В сборе и с подключением к ПК выглядит так (на мониторе – транслируемое с микроскопа изображение пчелиной ноги): Теперь посмотрим, как выглядят образцы с разным увеличением при трансляции с камеры. Начнем с препарата листа флокса (поперечный срез) из продаваемого набора образцов. Использованы объективы 4х, 10х, 40х и 100х (без масла).
Как видно, без иммерсии стократный объектив ничего внятного не показывает. Сорокакратный показывает, но из-за малой глубины резкости приходится выбирать, какой слой препарата рассматривать. Поскольку вместо окуляра использована оптика камеры, финальное оптическое увеличение я определить затрудняюсь. Для сравнения: на снимке ниже то, что видит камера сотового телефона через окуляр 25х и объектив 4х (итоговое увеличение 100х). Снималось с рук, поскольку держатель для телефона я не купил, отсюда обрезанность по бокам. Можно предположить, что камера дает увеличение 20-25х, но какова его часть оптическая, а какова цифровая, определить сложно. Второй препарат – сделанный самостоятельно. Просто капля воды из кухонной раковины под покровным стеклом без какой-либо подготовки. Объективы те же: 4х, 10х, 40х.
Обратите внимание на радужную кайму по границе капли (дугообразная черная линия на втором и третьем снимках). Если на 4х аберраций не видно никаких, то на 10х уже появляется слабое искажение цветов на границах объектов. На 40х радуга становится настолько заметной, что отчетливо видна даже на снимке камеры и заметно ухудшает резкость. Именно для ликвидации такого эффекта стократные объективы погружают в масло. Для сравнения: что видит камера смартфона через окуляр при с комбинацией 4х * 25х: Напоследок пара слов о стеклах. Препарат, помимо наблюдаемого объекта, состоит из толстого предметного стекла и тонкого покровного. Предметное стекло кладется на столик, покровное обращено к окуляру. Следует быть чрезвычайно осторожным при работе с покровными стеклами: при толщине 0,13-0,17 мм они имеют весьма острые грани, несмотря даже на специальную их обработку. При неаккуратном обращении они могут запросто распластать вам палец, а то и сломаться в ране. Ни в коем случае не позволяйте работать с ними малым детям, да и подростков тоже следует проконтролировать на начальном этапе. По окончании работы с препаратом следует либо как следует очистить и обезжирить стекла. Остатки жира и масла приведут к тому, что капля будет не растекаться по стеклу, а разбиваться на еще более мелкие капли, затрудняя рассмотрение. В лабораториях применяются разные методы обезжиривания, но они небезопасны и требуют специальных химикатов, зачастую ядовитых, и оборудования типа вытяжек. В домашних условиях наиболее простой способ – изопропиловый спирт либо получасовое кипячение на медленном огне в растворе 2-5% растворе пищевой соды (примерно чайная ложна на 100 мл). Грязное покровное стекло, скорее, проще выбросить – оно слишком хрупкое и легко ломается. Да и за предметные стекла тоже особо держаться не стоит – это дешевый расходный материал. Иммерсионные объективы от масла чистятся так же, как и любая другая оптика: изопропиловым спиртом на микрофибре. На этом введение в основы оптической микроскопии закончены. Успехов в самостоятельном плавании.
|
---|