Что такое общий разбег ротора и рабочий

Большая Энциклопедия Нефти и Газа

Разбег ротора или зазора между упорным диском и баббитовой заливкой упорных колодок проверяют во время ремонта дважды: перед его разборкой и после ремонта и окончательной сборки узла. [1]

Разбег ротора регулируют, изменяя толщину установочных шайб или прокладок в подшипники. [2]

После разбега ротора пусковая обмотка отключается и двигатель продолжает работать при пульсирующем магнитном поле основной обмотки. Вспомогательная обмотка, в отличие от пусковой, вместе с конденсатором остается включенной и в рабочем режиме, поэтому двигатель называют конденсаторным. [4]

Величину разбега ротора проверяют с помощью щупа или индикатора, когда соединительные муфты разобраны, а подшипник собран полностью. [7]

Устранение разбега ротора осуществляется изменением толщины установочных колодок или протачиванием баббитового слоя рабочих колодок. Поверхность колодок не должна иметь рисок, трещин и выкрашиваний. Баббитовый слой должен плотно прилегать к телу колодки. Со стороны входа масла каждая колодка может иметь небольшой радиус закругления на кромке. [8]

Устранение разбега ротора выполняется изменением толщины установочных колодок или протачиванием баббитового слоя рабочих колодок. Поверхность колодок не должна иметь рисок, трещин и выкрашиваний. Баббитовый слой должен плотно прилегать к телу колодки. Со стороны входа масла каждая колодка может иметь небольшой радиус закругления на кромке. [10]

Величину разбега ротора проверяют с помощью щупа или индикатора, когда соединительные муфты разобраны, а подшипник собран полностью. [12]

Устранение разбега ротора осуществляется изменением толщины установочных колодок или протачиванием баббитового слоя рабочих колодок. Поверхность колодок не должна иметь рисок, трещин и выкрашиваний. Баббитовый слой должен плотно прилегать к телу колодки. Со стороны входа масла каждая колодка может иметь небольшой радиус закругления на кромке. [13]

По мере разбега ротора частота токов в нем уменьшается и вместе с тем уменьшается влияние индуктивного сопротивления на распределение токов. При номинальной скорости частота токов ротора имеет значение порядка 1 Гц; в этих условиях индуктивные сопротивления рассеяния весьма малы и распределение токов между клетками ротора определяется отношением активных сопротивлений клеток. [14]

При проверке разбега ротора в упорном подшипнике комбинированного типа его консольную часть следует поддерживать на кране тонким тросом. [15]

Источник

3.4.11. При нормальной работе подшипника на номинальной частоте вращения ротора турбины (3000 об/мин) материал поверхности вкладыша, охватывающий шейку, не играет никакой роли, поскольку между ними существует слой масла (масляный клин). Однако при полусухом трении на ВПУ и особенно на оборотах менее 300 до всплытия вала – происходит сильный износ вкладышей подшипников, поэтому внутреннюю поверхность и заливают баббитом – сплавом обладающим повышенной износостойкостью.

3.4.12. Упорный подшипник, как указывалось выше, воспринимает осевое усилие. Действующее на ротор, и фиксирует положение вала турбины в осевом направлении, обеспечивая необходимые осевые зазоры в проточной части. В паровых турбинах используют исключительно сегментные, упорные подшипники. На турбине Т-100 – применен комбинированный опорно-упорный подшипник.

3.4.13. Вкладыш опорного подшипника, состоящий из двух половин, служит корпусом упорного подшипника, в который вставлены два разъемных по горизонтальному диаметру установочных кольца. Фиксация установочных колец осуществляется стопорными пластинами, установленными в зоне горизонтального разъема. На штифтах устанавливаются рабочие и дополнительные, упорные колодки, между которыми расположен упорный диск (гребень),выполненный за одно с валом и прилегающий своим торцом к поверхностям упорных колодок, залитых баббитом толщиной 1,5 мм.

3.4.14. К упорным колодкам подается масло, которое заполняет весь вкладыш и может вытекать только через отверстия в верхней половине вкладыша. Таким образом, гребень вращается в масляной ванне и придавливается осевым усилием к поверхностям колодок. Между гребнем и колодками образуется несущий слой масла толщиной 50 – 60 мкм, препятствующий металлическому контакту поверхностей колодок и гребня и обеспечивающий малые потери на трение и слабый износ колодок.

3.4.16. Следует помнить различную роль баббитовой заливки в опорных и упорных подшипниках. В опорных подшипниках она нужна только для работы в режимах полусухого или сухого трения. В упорных подшипниках в большинстве случаев полусухого трения не наблюдается, так как упорный гребень вращается в масляной ванне. Однако, при внезапном и значительном повышении осевого усилия происходит практически мгновенное выплавление баббитовой заливки; резкий осевой сдвиг, появляющийся при этом, используется в качестве сигнала для немедленного отключения турбины, т.е. очень просто осуществляется защита турбины по осевому сдвигу.

3.4.17. В процессе работы – толщина баббитовой заливки на колодках становится меньше 1,5 мм и доходит до 0,8 мм, когда необходимо их перезаливать. Осевое перемещение ротора турбины, появляющееся при внезапном выплавлении баббитовой заливки, всегда меньше, чем осевые зазоры в проточной части и уплотнениях, для того, чтобы они остались не поврежденными. Колодки выполнены из бронзы ОФ-10-1, этот материал позволяет, при аварийном подплавлении баббита, продолжать выполнять им свои функции на выбеге ротора- предотвращая дальнейшее развитие аварии.

3.4.18. Осевой разбег ротора в рабочих условиях меньше, чем в условиях сборки, так как под действием масляного клина, как рабочие, так и установочные колодки несколько поворачиваются. Поэтому сборочный разбег 0,5 – 0,6 мм означает, что в условиях работы он составит 0,3 – 0,4 мм. Это условие важно для настройки контрольно-измерительной аппаратуры по тепломеханическим величинам.

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Определение парового разбега ротора

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Восстановление осевых зазоров

Восстановление зазоров в уплотнениях

Проверка зазоров в проточной части и уплотнениях

Восстановление зазоров между статором и ротором

Маятниковая проверка биения конца ротора

При соединении полумуфт соседних роторов из-за неравномерности затяжки болтов появляется биение переднего конца РВД (ротора высокого давления). Маятниковая проверка производится с помощью специального приспособления, установленного на фланцах ЦВД, или подвешивая передний конец РВД на стропе к подъёмному крану.

Замеряют биение индикаторами установленными сверху и сбоку. Допустимое биение ротора 0,1 – 0,15 мм, при большем биении нужно производить перезатяжку соединительных болтов полумуфт. Если биение не устраняется, нужно производить шабрение торцов полумуфт. После шабровки снова замеряют биение

Измерение проводят в строго определённом положении ротора. Осевое положение ротора контролируется по его установочному размеру, который определяется расстоянием между отбойным щитком или маслоотбойным кольцом одного из подшипников и буртом на валу.

Состояния уплотнений определяется по следам задеваний и по следам оплавления гребней. При повреждениях отдельных участков гребней или при несоответствии зазора номинальному значению гребень заменяют по всей окружности. Из диафрагмы гребень вырезают на карусельном станке. Паз зачищают и устанавливают уплотнительные сегменты, начиная от центра каждой половины диафрагмы в обе стороны к разъёму. Если уплотнения выступают из диафрагмы их подрезают заподлицо с диафрагмой.

После установки уплотнений проверяют зазор между уплотнениями и ротором. Если зазор меньше необходимого, то гребни уплотнений стачивают с помощью приспособления, закрепленного на борштанге. Если зазоры больше необходимого, то фрезеруют заплечики уплотнений.

Паровой разбег даёт общее представление о состоянии осевых зазоров в проточной части и уплотнениях турбины. Измерение выполняется при разобранном упорном подшипнике и муфтах. Перед разборкой упорного подшипника фиксируется рабочее положение ротора в осевом направлении измерением зазора между буртом вала и маслоотбойным кольцом. Затем ротор сдвигается до упора в сторону генератора от рабочего положения и опять делается замер между буртом маслоотбойным кольцом. После этого ротор сдвигают до упора в сторону регулятора (центробежного), то есть в сторону ЦВД и опять делается замер. Полный паровой разбег равен сумме замеров осевых перемещений в обе стороны. Проверка парового разбега выполняется при закрытом цилиндре. При отклонении этого значения от требуемого по формуляру цилиндр вскрывается и определяется причина отклонения. После ремонта для определения качества сборки также определяют паровой разбег.

Источник

Трансформаторные подстанции высочайшего качества

с нами приходит энергия

develop@websor.ru

Осевые колебания асинхронного двигателя

ПОВЫШЕННЫЙ УРОВЕНЬ ВИБРАЦИИ И ШУМ ЭЛЕКТРОДВИГАТЕЛЯ
19. Осевые колебания

Между наружными кольцами и бортиками крышек у обоих шарикоподшипников (см. рис. 22, а) или у одного из шарикоподшипников (см. рис. 22, б) предусматриваются осевые зазоры 0,5-0,8 мм для возможности смешения подшипников при удлинении вала вследствие нагревания. Бортики крышек ограничивают смешение ротора в первом случае и фиксируют положение одного конца вала (левого) во втором случае и таким образом предохраняют ротор от задевания за неподвижные части электродвигателя. По указанным причинам расстояние между втулками подшипников скольжения делается больше длины вала между шейками на 2-5 мм (рис. 29).

Рис. 29. Расположение статора и ротора: а — при правильной сборке электродвигателя, б — при смещении ротора относительно статора

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Смещение ротора вызывается осевыми силами, обусловленными: несовпадением положения магнитопроводов ротора и статора по длине машины, скосом пазов ротора или статора, отклонением линии вала от горизонтального положения, недостатками передачи или соединительной муфты. Если эта сила или сочетание сил имеет периодический характер, то могут возникнуть продольные колебания ротора.

При правильной сборке электродвигателя магнитопроводы ротора и статора занимают одинаковое положение по длине машины (рис. 29, а) и у обоих подшипников образуются торцевые зазоры а. В электродвигателях с подшипниками скольжения можно проверить наличие этих зазоров и приблизительно величину их, если нажать деревянным рычагом на торец вала вращающегося ротора. Ротор легко смещается в сторону нажатия. Если происходит устойчивое смешение ротора в одну сторону, иногда до упора в подшипник (рис. 29, б), при холостом ходе и при нагрузке, а при отключении электродвигателя имеются зазоры у обоих подшипников, то причиной смешения является неправильная сборка электродвигателя. Для устранения этой неисправности при установке статора и подшипниковых стоек на обшей фундаментной плите необходимо передвинуть статор, как указано стрелкой на рис. 29, б, или сместить стойки в противоположном направлении. При щитковых подшипниках необходимо сдвинуть втулки в щитах, если это возможно, или проточить вал, увеличив длину одной шейки (левой на рис. 29, б), а на вторую шейку надеть кольцо для уменьшения осевого зазора. При исправных шарикоподшипниках осевое смешение не наблюдается, неправильная сборка электродвигателя приводит к увеличению нагревания и износа шарикоподшипника, воспринимающего осевую нагрузку. Проверку установки подшипников можно произвести путем измерения соответствующих деталей в разобранном электродвигателе. В случае необходимости можно сместить ротор за счет уменьшения бортика крышки, удерживающей наружное кольцо шарикоподшипника.
Если осевое смещение ротора увеличивается при уменьшении нагрузки и получается наибольшим при отключении электродвигателя от сети, то вероятной причиной этого является отклонение вала от горизонтального положения. В этом случае причиной периодического смешения ротора являются осевая составляющая силы тяжести и осевая сила магнитного притяжения.

Рис. 30. Осевая сила при изношенном пальце полумуфты

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Увеличивающееся осевое смещение ротора при нагрузке электродвигателя может быть вызвано неравномерным износом частей эластичной муфты или недостатками передачи. При непараллельности соприкасающихся частей муфты и оси электродвигателя (рис. 30) давление Р между пальцем 1 муфты и эластичным диском 2 имеет осевую составляющую Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий. Эти составляющие от всех пальцев складываются и могут вызвать осевое смещение ротора. Периодическое смещение ротора может быть вызвано косой сшивкой ремня или другими недостатками передачи или неисправностями соединенной с электродвигателем машины.
Продольные колебания ротора могут нарушить нормальную работу подшипников и щеток, а в некоторых случаях привести к разрушению их, поэтому величина торцевых зазоров не должна превышать рекомендуемые значения. Если в электродвигателе или в передаче при нормальной работе возможно появление неуравновешенных осевых сил (например, вследствие скоса пазов, применения косых зубцов в зубчатых колесах, конических зубчатых или червячных передач), то необходимо выбрать закрепленный шарикоподшипник с учетом этих сил и предусмотреть в подшипнике скольжения увеличенную торцевую поверхность.

Источник

РЕМОНТ НАСОСОВ

Ремонт насосного оборудования должен носить профилактический, предупредительный характер и мо­жет выполняться на месте эксплуа­тации или в цехе ремонтного пред­приятия. Различают текущий, сред­ний и капитальный ремонты насо­сов.

Текущий ремонт насосов прово­дится на месте их установки. Сред­ний и капитальный ремонты могут осуществляться на месте установки насоса с выполнением ремонта от­дельных сборочных единиц в цехе ремонтного предприятия. Самым прогрессивным методом капиталь­ного ремонта в настоящее время является централизо­ванный ремонт, с применением демонтажа насосов и заменой их заранее отремонтированными.

Перед остановом насоса на пла­ново-предупредительный капиталь­ный ремонт в зависимости от типа и назначения насоса проводятся ис­пытания для определения: высоты всасывания; давления при номи­нальной подаче; вибрации опор; вне­шних утечек; давления жидкости в разгрузочной полости; температуры подшипников; параметров работы электродвигателя.

При выполнении капитального ремонта разборка (демонтаж) на­ружных корпусов питательных и конденсатных насосов, корпусных частей осевых и вертикальных на­сосов производится при невозможно­сти их ремонта на месте эксплуата­ции или при замене.

В процессе демонтажа центро­бежного лопастного насоса произ­водятся следующие обязательные проверки:

— несоосности валов насоса и элек­тродвигателя, измеряемой по ободу и торцам полумуфт в четырех точ­ках;

— осевого разбега ротора у насо­сов с упорным подшипником сколь­жения или автоматическим устрой­ством уравновешивания осевых сил, действующих на ротор;

— зазоров по дистанционным бол­там, продольным и поперечным шпонкам, фиксирующим насос на фундаментной плите.

Проверка несоосности валов, на­соса и электродвигателя выполня­ется по скобам и щупу (см. п. 3.1.7). Необходимо также про­верить тепловой зазор между тор­цами полумуфт и маркировку их взаимного положения.

Зазоры между дистанционными болтами и корпусом насоса, а так­же в шпоночных соединениях уста­навливаются для возможности теп­ловых перемещений и сохранения центровки при работе насоса. На рис. 3.27 показаны места измере­ний и значения тепловых зазоров питательного насоса.

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Рис. 3.27. Места измерений тепловых зазоров питательного насоса:

а – вид спереди; б – передние лапы; в – задние лапы; г – зазоры удистанционных болтов и у шпонок;

1 – корпус насоса; 2 – постамент; 3 – траверса; 4 – вертикальная шпонка

Осевой разбег ротора любого насоса секционного типа измеряет­ся до удаления разгрузочной пяты (рабочий разбег) и после него (пол­ный разбег).

Например, при разборке насоса секционного типа (рис. 3.28) для измерения рабочего разбега ротора вскрывают подшипник со стороны выходного патрубка и устанавлива­ют индикатор. Индикатор часового типа устанавливают с упором конца измерителя в торец вала, после чего ротор насоса сдвигают до отказа сначала в одну, а затем в другую сторону.

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Рис. 3.28. Насос секционного типа:

1 – всасывающий патрубок, 2 – секция; 3 – разгрузочная пята, 4 – разгрузочный диск; 5 – кронштейн подшипника, 6 – защитная втулка вала;

7 – напорный патрубок, 8 – стяжная шпилька

На валу по торцевой крыш­ке другого подшипника наносят рис­ки, соответствующие рабочему поло­жению ротора. После выполнения этого измерения снимают крышки и верхние вкладыши подшипников, вынимают набивку сальников, сни­мают полумуфту и кронштейн под­шипника (вал насоса подпирают временной опорой). Вслед за этим снимают защитную втулку вала и разгрузочный диск. Защитную втул­ку на резьбе отворачивают специ­альным ключом, при гладкой по­садке втулку стягивают приспособ­лением, приведенным на рис. 3.29, а.Упорный диск сни­мают приспособлением, изобра­женным на рис. 3.29, б.После уда­ления разгрузочной пяты 3 (см. рис. 3.28) измеряют полный разбег ротора. Для этого разгрузочный диск надевают на вал, зажимают втулкой вала и смещают поочередно до отказа в сторону выходного и входного патрубков. После замера общего разбега ротора насоса сни­мают стяжные шпильки 8,напор­ный патрубок 7,рабочее колесо и корпус выходной секции и вновь из­меряют осевой разбег ротора. Эту операцию повторяют до тех пор, по­ка не будут снятые все рабочие коле­са и секции корпуса. Снятие рабо­чих колес выполняют приспособлением, приведенным на рис. 3.29, а.

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Рис. 3.29. Приспо­собления для снятия деталей с вала на­соса:

а – для снятия рабочих колес и защитных вту­лок; б – для снятия разгрузочного диска;

1 – рабочее колесо; 2 – кольцо; 3 – захваты; 4 – шпильки; 5 – фланец;

6 – разгрузочный диск.

При разборке насоса проверяют правильность расположения рабо­чего колеса по отношению к на­правляющему аппарату, замеряют радиальные и осевые зазоры в уп­лотнениях рабочих колес. Зазор между рабочими колесами и уплотнительными кольцами опреде­ляют как полуразность диаметров рабочих колес в месте уплотнения и внутренних диаметров уплотнительных колец. Измерения произво­дят по двум взаимно перпендику­лярным диаметрам. Диаметр коль­ца замеряют микрометрическим ну­тромером (штихмасом), a диаметр места уплотнения рабочего колеса — микрометрической скобой. Зазоры должны соответствовать данным, указанным вчертежах. Значения радиальных зазоров в уплотнениях рабочих колес зависят от размера насоса и температуры рабочей среды и обычно находятся в пределах 0,2—0,5 мм на каждую сторону. Осевые зазоры между уплотнительными кольцами и колесами насоса должны быть больше осевого разбега ротора насоса на 1,0—1,5 мм для обеспечения свободных тепло­вых расширений ротора относитель­но корпуса. Определение плотности посадки рабочего колеса на вал производят измерением диаметров ступицы и вала. Измерение выпол­няют в двух сечениях по длине по двум диаметрально противополож­ным направлениям.

Разность диаметров ступицы и вала даст значение натяга или за­зора при посадке рабочего колеса на вал. Это значение должно соот­ветствовать данным технических ус­ловий или указаниям чертежа кон­кретного насоса.

При разборке насосов необходи­мо проверять, а при необходимости наносить метки взаимного распо­ложения сопрягаемых деталей для последующей сборки. При отсутст­вии меток их наносят на поверхно­сти, не являющиеся посадочными, уплотняющими или стыковыми, без нарушения защитных покрытий.

Разборку неподвижных сопря­гаемых деталей производят на прессах с помощью специальных приспособлений или предусмотрен­ных конструкцией специальных уст­ройств (отжимных болтов, шпилек и т. п.). При разборке сопряженных частей допускается нагрев охватывающей сопрягаемой составной части соединения без местных пережогов равномерно от периферии к центру разбираемого соединения. Температура предварительного на­грева должна быть около 100130°С. Подшипники качения снима­ются без предварительного подо­грева с приложением усилия к коль­цу, имеющему неподвижную по­садку.

Разборку фланцевых и стыковых соединений выполняют специальными приспособлениями и устройства­ми (домкратами, отжимными бол­тами и т. п.). Разборка стыкую­щихся поверхностей расклинивани­ем (зубилами или отвертками) не допускается.

Разборка лопастного осевого вертикального насоса начинается со слива мас­ла из ванны верхнего подшипника электродвигателя. Разбирают и уда­ляют маслоохладитель, рассоединя­ют валы насоса и электродвигателя, затем демонтируют ступицы пяты и сег­менты подпятника. После удаления роторной части проверяют центров­ку корпусных деталей насоса. Для этого опускают струну с грузом в центре агрегата, используя для этой цели калиброванную проволоку без сгибов и узлов диаметром 0,3 0,5 мм. Вертикальную струну цент­рируют по закладному кольцу с точностью 0,10,2 мм. Для учета эллипсности расточек корпусных де­талей до подвеса струны измеряют штихмасом диаметры всех расточек в двух взаимно перпендикулярных направлениях. Проверку центриро­вания корпусных деталей насоса вы­полняют измерением расстояний от поверхностей их расточек до струны в двух взаимоперпендикулярных направлениях. При необходимости передвигают корпусные детали на­соса, увеличивают отверстия во фланцах и перешлифовывают флан­цы.

В процессе разборки насоса про­веряют идентичность углов установ­ки лопастей рабочего колеса. Разница углов установки лопастей не должна быть более 30′. Проверяют зазоры между валом и вкладышем верхнего и несущего подшипников, а также степень касания расточкой вкладыша шейки вала. Диаметральный зазор в подшипниках должен быть 0,30,4 мм.

При измерении зазоров подшип­ник соединяют на валу и, поворачи­вая его, измеряют снизу в четырех положениях диаметральный зазор по всей длине вкладыша. Если за­зоры в подшипнике больше чем на 20 % отличаются от проектных, устанавливают проклад­ки под планки или заменяют вкла­дыш (при большом износе).

Корпусные детали проточной части насоса подвергают проверке с целью выявления их кавитационно-коррозионного и абразивного из­носа. На валах обычно обнаружива­ют дефекты в виде изменения фор­мы центрирующего выступа полу­муфты, который должен плотно входить в заточку сопрягаемого ва­ла. Если изменение диаметра составляет около 0,10,2 мм, то со­пряжение восстанавливают удара­ми в торец выточки с последующей проточкой вала на станке. При больших зазорах посадочное сопря­жение восстанавливают наплавкой буртика или выточки с последую­щей проточкой. Если обнаружено повышенное торцевое биение флан­цев вала, его исправляют на стан­ке. В таких случаях рекомендуется одновременная проточка шеек вала и центрирующих буртиков или впа­дин.

Наиболее частыми дефектами рабочих колес являются кавитационно-коррозионный и абразивный износы. Кроме проверки рабочего колеса с целью выявления поверх­ностных разрушений и трещин про­веряют жесткость посадки лопасти насоса во втулке. Рабочие колеса не должны иметь люфтов в меха­низме разворота лопастей. Не до­пускаются протечки масла в уплот­нениях цапф лопастей колес и по прокладке между втулкой и обте­кателем. Зазор между камерой и лопастью колеса должен быть 0,001 DK (DK диаметр камеры).

В поворотно-лопастных осевых насосах камера сферическая, поэто­му после наварки торцов лопастей в случае их с работки торцы обраба­тываются на карусельном станке. Для этой цели лопасти после навар­ки свертывают, прихватывая каж­дую лопасть к соседней. Поверх­ность лопасти после наплавки шли­фуют заподлицо со старым метал­лом, профиль проверяют по шабло­ну. В случае наплавки, большого ко­личества металла рабочее колесо балансируют.

При обслуживании и ремонтах насоса особое внимание должно уделяться состоянию уплотнений вала.

Уплотнения вала в местах выхо­да его на корпуса насоса (рис. 3.30) выполняют две функции: соб­ственно уплотнения и охлаждения. В насосах тепловых электростанций и котельных применяют в основном уплотнения сальникового и щелевого типов.

Причинами быстрого износа сальниковой набивки и как следст­вие выхода из строя сальниковых уплотнений могут быть:

— применение в качестве набивки материала, не отвечающего режи­му работы насоса, что приводит к обугливанию набивки и пропуску воды через сальник;

— некачественное изготовление на­бивок сальникового уплотнения, за­ключающееся в плохой заделке замка, недостаточной опрессовке ко­лец, неправильном взаимном распо­ложении стыков колец;

— сильный износ защитных втулок;

— большая вибрация насоса;

— разработка нажимной втулки, фонарного и упорного колец, приво­дящая к попаданию (и деформиро­ванию) колец сальниковой набивки в увеличенный зазор между валом и этими деталями;

— прекращение подачи уплотняю­щей жидкости на фонарное кольцо или ее нарушение в результате не­правильной установки фонарного кольца;

— нарушение или прекращение по­дачи охлаждающей воды в камеры сальников насосов, работающих на горячей воде.

Что такое общий разбег ротора и рабочий. Смотреть фото Что такое общий разбег ротора и рабочий. Смотреть картинку Что такое общий разбег ротора и рабочий. Картинка про Что такое общий разбег ротора и рабочий. Фото Что такое общий разбег ротора и рабочий

Рис. 3.30. Уплотнения вала насоса:

а – сальниковое; б – щелевое;

1 – нажимная втулка; 2 – трубка подвода воды; 3 – упорное коль­цо; 4 – фонарное кольцо; 5 – сальниковая набивка; 6 – защитная втулка; 7 – разгрузочная пя­та; 8 – камера подвода холодного конденсата; 9 – камера отвода конденсата в бак низших точек; 10 – камера отвода конденсата в конденсатор; 11 – обойма; 12 – втулка; 13 – вал на­соса

Во время работы насоса набив­ка изнашивается, из нее вымывает­ся графит и отлагаются приносимые водой твердые частицы, что при­водит к пропуску воды через саль­ник и износу защитной втулки вала. Сальниковая набивка через опреде­ленный период должна заменяться новой, защитная втулка вала по мере износа.

При капитальном ремонте на­бивку сальников производят после окончания всех работ по сборке и центровке насоса, убедившись в свободном вращении ротора от ру­ки.

Для большинства насосов при­меняется хлопчатобумажная набив­ка, пропитанная салом, смешанным с графитом. Для насосов, работаю­щих на горячей воде, применяется специальная набивка, пропитанная графитом и армированная медной проволокой.

Толщина набивки выбирается по размеру кольцевого отверстия саль­ника. Внутренний диаметр колец сальниковой набивки выполняют точно по наружному диаметру за­щитной втулки вала.

Перед набивкой сальника точно измеряют расстояние от торца на­жимной втулки до отверстия, через которое поступает уплотняющая во­да, и располагают фонарь так, что­бы его кромка, смещенная в сторо­ну нажимной втулки, захватывала половину диаметра отверстия. Такая установка фонарного кольца обеспечивает соединение его поло­сти с отверстием подвода воды и возможность подтягивания сальни­ка при работе насоса.

В питательных насосах применя­ют щелевые бессальниковые уплот­нения (рис. 3.30, б).Через ради­альный зазор (0,300,35 мм) меж­ду обоймой и втулкой горячая питательная вода не может прони­кать наружу корпуса, поскольку кольцевой зазор между буксой и втулкой заперт холодным конденса­том, поступающим в камеру 8 под давлением несколько большим, чем давление питательной воды в раз­грузочной (или всасывающей) ка­мере насоса.

При ремонте щелевых уплотне­ний промывают подводящий кон-денсатопровод и установленный на нем фильтр. Проверяют щупом ра­диальные зазоры в уплотнении.

При необходимости выполняют центрирование вала относительно обойм уплотнений перемещением корпусов подшипников и изменени­ем установки их контрольных штиф­тов.

Сборку насосов производят со­гласно техническим условиям или руководству по ремонту конкретно­го насоса. Все детали собирают в сборочные единицы согласно имею­щимся меткам.

При сборке сопрягаемых дета­лей по посадкам с натягом и по скользящей посадке допускается нагрев охватывающей составной ча­сти в кипящей воде или в горячем масле.

При запрессовке подшипников качения допускается их нагрев в масле до 8090 °С, передача уси­лий производится через кольцо, со­прягающееся с натягом. При сбор­ке насосов необходимо проверять совпадение осей каналов рабочих колес и отводящих устройств, допу­стимое несовпадение ±0,5 мм. У се­кционных насосов проверяют пер­вую ступень, последующие контро­лируют поочередно по разбегу рото­ра после установки рабочих колес.

После окончательной центровки ротора со статором выполняют про­верку прилегания разгрузочного диска к пяте автоматического уст­ройства уравновешивания осевой силы, действующей на ротор. Про­верку производят по краске, кото­рая должна быть равномерно рас­пределена по всей площади контак­та, и занимать не менее 70 % поверх­ности.

Для секционных насосов с авто­матической компенсацией осевой силы, действующей на ротор, про­верку осевого перемещения ротора относительно статора проводят до и после установки разгрузочного ди­ска, для остальных насосов до и после сборки опорного и упорного подшипников. Осевое перемещение ротора при собранном подшипнике должно быть в соответствии с требованиями рабочего чертежа или технических условий на ре­монт.

Для насосов, ротор которых ус­тановлен на упорных подшипниках качения с регулируемым осевым за­зором, осевое перемещение ротора при собранном упорном подшипни­ке должно быть не более 0,02 мм. Этого добиваются подбором про­кладок между кольцами подшип­ников.

После сборки насоса и присоеди­нения входного и выходного патруб­ков выполняют центровку насоса с двигателем по полумуфтам. Цент­ровка, при которой в качестве базы всегда принимается насос, осущест­вляется в два приема. Сначала пра­вильность установки привода выве­ряют по валу насоса при помощи линейки, которую помещают на об­разующие полумуфт, затем монти­руют скобы и окончательно центри­руют по щупу.

Каждый отремонтированный на­сос должен проходить приемосда­точные испытания с целью провер­ки его соответствия требованиям технических условий на ремонт или другой нормативно-технической до­кументации.

Вопросы для самоконтроля

1. В чем заключается ремонт зубчатых передач?

2. С какими дефектами подшипники качения подлежат замене?

3. Как выполняется центровка валов?

4. Что проверяют перед выводом в ремонт дымососов и вентиляторов?

5. Как подбирают по массе лопатки перед установкой в ротор центробежного дымососа?

6. Как ремонтируют редуктор шаровой мельницы?

7. Какие детали наиболее подвержены износу в лопастном питателе пыли?

8. Какие ремонтные процедуры выполняют в сепараторах?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *