Что такое общий вид выражения
Основные виды выражений в алгебре
На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.
Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.
Навигация по странице.
Одночлены и многочлены
Начнем с выражений, имеющих название одночлены и многочлены. На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.
Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.
Многочлены – это сумма одночленов.
К одночленам и многочленам относится ряд сопутствующих понятий. К примеру, для одночленов и многочленов характерно понятие их степени, также даются определения одночленов и многочленов стандартного вида. При описании одночленов также пользуются понятием коэффициента, а при описании многочленов используют такие термины, как члены многочлена, которые, в частности, бывают подобными, свободный член многочлена и старший коэффициент. Соответствующие определения вместе с примерами Вы найдете в статье одночлен и его стандартный вид, степень и коэффициент одночлена, а также в статье многочлены – основные определения и примеры.
Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень, в том смысле, что в результате их выполнения получается одночлен.
На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами.
Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен, а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители.
Рациональные (алгебраические) дроби
В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби, которые некоторые авторы называют алгебраическими дробями.
Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.
Приведем несколько примеров рациональных дробей: и
. К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.
На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями.
Часто приходится выполнять и преобразование алгебраических дробей, наиболее распространенными из них являются сокращение и приведение к новому знаменателю.
Рациональные выражения
В школе до изучения иррациональных чисел работа ведется исключительно с рациональными выражениями. Дадим определение рационального выражения.
Числовые и буквенные выражения, в которых используются рациональные числа и буквы, а также операции сложения, вычитания, умножения, деления (деление может быть обозначено дробной чертой) и возведения в целую степень, называются рациональными выражениями.
Важное пояснение: в рациональных выражениях не могут присутствовать знаки и функции, которые могут внести иррациональность. Иными словами, в рациональных выражениях не должно быть знаков радикала (корней), степеней с дробными и иррациональными показателями, степеней с переменными в показателе, логарифмов, тригонометрических функций и т.п.
Теперь можно привести примеры рациональных выражений. Отталкиваясь от данного выше определения, можно утверждать, что числовые выражения и
являются рациональными выражениями. Рациональным является и буквенное выражение
, а также выражения с переменными вида a·x 2 +b·x+c и
.
Рациональные выражения подразделяются на целые рациональные выражения и дробные рациональные выражения.
Целые рациональные выражения
Целыми рациональными выражениями называются рациональные выражения, которые не содержат деления на выражения с переменными и выражений с переменными в отрицательной степени.
А выражения x:(y−1) и не являются целыми рациональными, так как содержат деление на выражение с переменными.
Дробные рациональные выражения
Если рациональное выражение содержит деление на выражение с переменными и/или выражение с переменными в отрицательной степени, то оно называется дробным рациональным выражением.
А вот рациональные выражения (2·x−x 2 ):4 и не содержат деления на выражения с переменными и отрицательных степеней выражений с переменными, поэтому они не являются дробными рациональными выражениями.
Выражения со степенями
Название данного вида выражений говорит само за себя. Выражения со степенями (их еще называют степенные выражения) появляются во время изучения степеней.
Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.
Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями.
Иррациональные выражения, выражения с корнями
Знакомство с понятием корня приводит к возникновению выражений, в записях которых присутствуют знаки корней (радикалы). Такие выражения обычно называют выражениями с корнями или выражениями, содержащими операцию извлечения корня. Их же называют иррациональными выражениями.
Так как корни тесно связаны со степенями, то они очень часто присутствуют в выражениях совместно. Например, и т.п.
В статье преобразование иррациональных выражений (выражений с корнями) мы поговорим про основные приемы работы с иррациональными выражениями.
Тригонометрические выражения
Тригонометрическими выражениями обычно называют выражения, содержащие sin, cos, tg и ctg, а также обратные тригонометрические функции arcsin, arccos, arctg и arcctg.
Приведем примеры тригонометрических выражений: ,
.
При работе с тригонометрическими функциями обычно используются свойства синуса, косинуса, тангенса, котангенса, основные формулы тригонометрии, свойства arcsin, arccos, arctg и arcctg и формулы с arcsin, arccos, arctg и arcctg. Подробнее об основных принципах обращения с тригонометрическими выражениями мы расскажем в статье преобразование тригонометрических выражений.
Логарифмические выражения
Логарифмические выражения возникают после знакомства с логарифмами.
Выражения, содержащие логарифмы называют логарифмическими выражениями.
Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .
В продолжение темы обращайтесь к материалу преобразование логарифмических выражений.
Дроби
Дробь расширяет понятие обыкновенной дроби. Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.
Итак, дадим определение дроби.
Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.
Данное определение позволяет привести примеры дробей.
Выражения общего вида
В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или
. Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида, а при описании говорят просто выражение, не добавляя дополнительных уточнений.
Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.
Основные виды выражений в алгебре
Уроки алгебры знакомят нас с различными видами выражений. По мере поступления нового материала выражения усложняются. При знакомстве со степенями они постепенно добавляются в выражение, усложняя его. Также происходит с дробями и другими выражениями.
Чтобы изучение материала было максимально удобным, это производится по определенным названиям для того, чтобы можно было их выделить. Данная статья даст полный обзор всех основных школьных алгебраических выражений.
Одночлены и многочлены
Выражения одночлены и многочлены изучаются в школьной программе, начиная с 7 класса. В учебники были даны определения такого вида.
Одночлены – это числа, переменные, их степени с натуральным показателем, любые произведения, сделанные с их помощью.
Многочленами называют сумму одночленов.
Чтобы отличать одночлен от многочлена, обращают внимание на степени и их определения. Немаловажно понятие коэффициента. При приведении подобных слагаемых их разделяют на свободный член многочлена или старший коэффициент.
Над одночленами и многочленами чаще всего выполняются какие-то действия, после которых выражение приводится к вижу одночлена. Выполняется сложение, вычитание, умножение и деление, опираясь на алгоритм для выполнения действий с многочленами.
Когда имеется одна переменная, не исключено деление многочлена на многочлен, которые представляются в виде произведения. Такое действие получило название разложение многочлена на множители.
Рациональные (алгебраические) дроби
Понятие рациональные дроби изучаются в 8 классе средней школы. Некоторые авторы называют их алгебраическими дробями.
Рациональной алгебраической дробью называют дробь, в которой на месте числителя и знаменателя выступают многочлены или одночлены, числа.
Алгебраические дроби можно складывать, вычитать, умножать, делить, возводить в степень. Подробнее это рассматривается в разделе действий с алгебраическими дробями. Если необходимо преобразовать дробь, нередко пользуются свойством сокращения и приведения к общему знаменателю.
Рациональные выражения
В школьном курсе изучается понятие иррациональных дробей, так как необходима работа с рациональными выражениями.
Рациональные выражения считаются числовыми и буквенными выражениями, где используются рациональные числа и буквы со сложением, вычитанием, умножением, делением, возведением в целую степень.
Рациональные выражения могут не иметь знаков, принадлежащих функции, которые приводят к иррациональности. Рациональные выражения не содержат корней, степеней с дробными иррациональными показателями, степеней с переменными в показателе, логарифмических выражений, тригонометрических функций и так далее.
Все рациональные выражения подразделяют на целые и дробные.
Целые рациональные выражения
Целые рациональные выражения – это такие выражения, не содержащие деления на выражения с переменными отрицательной степени.
Дробные рациональные выражения
Дробное рациональное выражение – это выражение, которое содержит деление на выражение с переменными отрицательной степени.
Выражения со степенями
Выражения, которые содержат степени в любой части записи, называют выражениями со степенями или степенными выражениями.
Иррациональные выражения, выражения с корнями
Корень, имеющий место быть в выражении, дает ему иное название. Их называют иррациональными.
Иррациональными выражениями называют выражения, которые имеют в записи знаки корней.
Тригонометрические выражения
Для работы с такими функциями необходимо пользоваться свойствами, основными формулами прямых и обратных функций. Статья преобразование тригонометрических функций раскроет этот вопрос подробней.
Логарифмические выражения
После знакомства с логарифмами можно говорить о сложных логарифмических выражениях.
Выражения, которые имеют логарифмы, называют логарифмическими.
Для углубления изучения материала, следует обратиться к материалу о преобразовании логарифмических выражений.
Дроби
Существуют выражения особого вида, которые получили название дроби. Так как они имеют числитель и знаменатель, то они могут содержать не просто числовые значения, а также выражения любого типа. Рассмотрим определение дроби.
Дробью называют такое выражение, имеющее числитель и знаменатель, в которых имеются как числовые, так и буквенные обозначения или выражения.
Выражение общего вида
Их вид говорит о том, что можно отнести к любому из вышеперечисленных видов. Чаще всего их не относят ни к какому, так как они имеют специфичное комбинированное решение. Их рассматривают как выражения общего вида, причем для описания не используются дополнительные уточнения или выражения.
При решении такого алгебраического выражения всегда необходимо обращать внимание на его запись, наличие дроби, степеней или дополнительных выражений. Это нужно для того, чтобы точно определиться со способом его решения. Если нет уверенности в его названии, то рекомендуется называть его выражением общего типа и решать, согласно выше написанному алгоритму.
Выражения
Выражение — это любое сочетание чисел, букв и знаков операций. Можно сказать, что вся математика состоит из выражений.
Выражения бывают двух видов: числовые и буквенные.
Числовые выражения состоят из чисел и знаков математических операций. Например, следующие выражения являются числовыми:
Буквенные выражения помимо чисел и знаков операций содержат ещё и буквы. Например, следующие выражения являются буквенными:
Буквы, которые содержатся в буквенных выражениях, называются переменными. Запомните это раз и навсегда! Спросите любого школьника что такое переменная — этот вопрос поставит его в ступор, несмотря на то что он будет решать сложные задачи по математике, не зная что это такое. А между тем, переменная это фундаментальное понятие, без понимания которого математику невозможно изучать.
Под словом «изучать» мы подразумеваем самостоятельное чтение соответствующей литературы и способность понимать, что там написано. А то вроде и знаешь математику на четвёрку, задачи решаешь, но не можешь понять, что написано в лекциях и книгах. Каждому знакомо такое чувство, особенно студентам.
Поскольку понятие переменной очень важно, остановимся на нём подробнее. Посмотрите внимательно на слово «переменная». Ничего не напоминает? Слово «переменная» происходит от слов «меняться», «изменить», «изменить своё значение». Переменная в математике всегда выражена какой-то буквой. Например, запишем следующее выражение:
Значение переменной a подставляется в исходное выражение.
В результате имеем: 5 + 5 = 10
Конечно, мы рассмотрели простейшее выражение. На практике встречаются более сложные выражения, в которых присутствуют дроби, степени, корни и скобки. Выглядит это устрашающе. На самом деле ничего страшного. Главное понять сам принцип.
Значение переменной x подставляется в выражение x + 10
Переменная это своего рода контейнер, где хранится значение. Переменные удобны тем, что они позволяют, не приводя примеров доказывать теоремы, записывать различные формулы и законы.
Имея выражение a + b = c, можно пользоваться им, подставляя вместо переменных a и b любые числа. А переменная c будет получать своё значение автоматически, в зависимости от того, какие числа будут подставлены вместо a и b
Решение:
Значение выражения
Фраза « выполнить действие » означает выполнить одну из операций действия.
Значение выражения — это результат выполнения действий, содержащихся в выражении.
Рассмотрим еще примеры:
Алгебраические выражения
Алгебраическое выражение — это запись, составленная со смыслом, в которой числа могут быть обозначены и буквами, и цифрами. Также она может содержать знаки арифметических действий и скобки.
Любую букву, обозначающую число, и любое число, изображённое с помощью цифр, принято считать в алгебре также алгебраическим выражением.
Алгебраические выражения, входящие в состав формул, могут применяться к решению частных арифметических задач, если в них заменить буквы данными числами и произвести указанные действия. Число, которое получится, если взять вместо букв какие-либо числа и произвести над ними указанные действия, называется численной величиной алгебраического выражения. Из этого легко сделать вывод, что одно и то же алгебраическое выражение при различных значениях входящих в него букв может иметь различные числовые величины.
при a = 2, m = 5, b = 1, n = 4 вычисляется:
а при a = 3, m = 4, b = 5, n = 1 вычисляется:
3 · 4 + 5 · 1 = 17 и т. д.
при a = 1, b = 2, c = 3 равно:
а при a = 2, b = 3, c = 4 равно:
Коэффициент
Коэффициент — это числовой множитель алгебраического выражения, представляющего собой произведение нескольких сомножителей. Коэффициент в выражении ставится перед всеми остальными буквенными множителями. Таким образом,
произведение чисел a, b, c, d, 4 записывается так: 4abcd;
произведение чисел m, n, , p записывается так:
.
Числа 4 и — это коэффициенты. Очевидно, что
.
Итак, коэффициент показывает, сколько раз целое алгебраическое выражение или известная его часть берется слагаемым.
Если в алгебраическом выражении нет числового множителя, то подразумевается, что коэффициент равен единице, так как
Виды выражений
Алгебраическое выражение, в которое не входят буквенные делители, называется целым, в противном случае дробным или алгебраической дробью.
Целые алгебраические выражения:
Дробные алгебраические выражения:
Выражения, не содержащие корней, называются рациональными, а содержащие корни — иррациональными или радикальными. Например, все выражения, приведённые выше, являющиеся целыми или дробными, так же можно назвать и рациональными.
Математические термины
Алгебра — это наука, изучающая действия над числовыми и буквенными величинами. Кроме того, она занимается решениями уравнений и связанными с ними действиями. Под буквенными величинами обычно понимают конкретные или переменные числовые значения. Входящие в состав записи буквы могут иметь различные числовые величины. Например, в формуле S * 4 + 12 символом S может быть заменена известная или неизвестная величина или даже целое выражение.
Математики под алгебраическим выражением понимают запись, составленную со смыслом, состоящую из букв и цифр, обозначающих числа. При этом она может содержать скобки и знаки арифметических действий. Исходя из этого простейшего определения можно утверждать, что формулы 2 * k — s, 4 * (y — 3/2), 0,89 * a — g * (9a + 4b), a 2 и (29p — 56) / log (a + c) являются примерами алгебраических выражений. Так как буквы в записях обозначают различные числа, то их считают переменными, а само уравнение — выражением с переменной.
Если же значение переменной известно и его можно подставить на место буквенного обозначения, то результат, полученный после выполнения указанных в уравнении действий, называется ответом алгебраического выражения. Но если число, подставляемое вместо буквы, приводит к бессмысленности записи, то оно считается недопустимым. Из этого можно сделать вывод, что одна и та же алгебраическая запись при различных величинах букв может иметь отличные значения.
На практике приходится сталкиваться с довольно сложными и громоздкими алгебраическими выражениями, поэтому над ними приходится выполнять ряд действий, правил, законов или использовать свойства для упрощения записи.
Кроме определений здесь применяется понятие «тождественность». Под ним понимают два выражения, для которых при любых значениях переменных, входящих в их состав, будет справедливо их равенство, например, 56* (x+с) = 56 * x + 56 * с.
Эти два выражения можно заменить друг другом или, выражаясь математическим языком, — «выполнить тождественное преобразование».
Виды выражений
В школе на уроках алгебры приходится сталкиваться с различными видами выражений. Обычно они состоят из нескольких членов. В математике существует группирование, объединяющее сходные элементы. Обучение понятиям начинают в седьмом классе с того, что приводят следующие определения:
Многочлен всегда подразумевает выполнение действий. При описании понятия используют и такие термины, как коэффициент, член, степень. Во время работы с одночленами применяют тождественное их приведение к стандартному виду.
В нём выражение представляют как произведение числового множителя и натуральной степени разных переменных, например, 2 * a, −x * 3.
Выражения в алгебре могут быть следующих видов:
Все указанные виды относят к простым, но с 7 класса алгебраические выражения будут усложняться. Сложный вид записи обычно состоит из многочлена, включающего в себя извлечение корня, логарифмы и возведение в степень, например, ln (x 2 — 1) * tg ((x + p) / cos x). И хоть среди них попадаются перечисленные типы, их относят к общему виду.
Вычисление сложных выражений подразумевает выполнение преобразований, которые позволят проще решить задание и найти правильный ответ.
Алгебраические действия
Решая задачу, приходится выполнять те или иные преобразования. Чаще всего сложность задания определяется громоздкостью и объёмом соответствующих преобразований, поэтому в школе на уроках элементарной математики часто попадаются задачи на упрощения.
Основу всех алгебраических действий составляют три закона. Это правила, касающиеся сложения и умножения: переставное, соединительное и распределительное. Но наряду с ними применяют и формулы сокращённого умножения.
На начальном этапе обучения рекомендуется даже записать данные правила отдельно на листик и пользоваться им, пока применение законов не дойдёт до автоматизма. Вот некоторые практические рекомендации, решаться с которыми примеры будут намного легче:
Не стоит забывать и о такой операции, как деление многочлена. Для этого используют метод столбика. Заключается он в размещении слагаемых многочлена в порядке убывания степени переменной и разделения первого слагаемого числителя многочлена на первое слагаемое знаменателя.
Затем результат умножают на делитель и отнимают ответ от делимого.
Применение преобразований
Алгебраические выражения, показывающие, что одна величина больше другой или равна ей, называют уравнениями и равенствами. При этом их используют для составления формул, то есть для записи, выражающей зависимость между двумя или несколькими переменными. Это удобно, так как преобразования позволяют привести формулу к простому для запоминания виду.
При решении примеров важно знать все существующие методы. Какой из них применять, конкретно указать нельзя, всё зависит от личных предпочтений и опыта решения подобных заданий. Например, пусть нужно упростить сложное выражение (a 3 (b — c) + b 3 (c — a) + c 3 (a — b)) / (a 2 (b — c) + b 2 (c — a) + c 2 (a — b)).
Сначала можно попробовать разложить на множители делитель и делимое. Один из вариантов преобразования числителя следующий:
a 3 (b — c) + b 3 (c — a) + c 3 (a — b) = a 3 b — b 3 c — a 3 c + b 3 c + c 3 (a — b) = ab (a 2 — b 2 ) = ab (a 2 — b 2 ) — c (a 3 — b 3 ) + c 3 (a — b) = (a — b) (ab (a + b) — c (a 2 + ab + b 2 ) + c 3 = (a — b) (a 2 b — a 2 c + ab 2 — abc + c 3 — cb 2 ) = (a — b) (a 2 (b — c) + ab (b — c) — c (b 2 — c 2 ) = (a — b) (b — c) (a 2 — c 2 + ab — cb) = (a — b) (b — c) (a — c) (a + b + c).
По аналогии раскладывая знаменатель, можно прийти к результату: (a — b) (b — c) (a — c). В итоге получится равенство (a 3 (b — c) + b 3 (c — a) + c 3 (a — b)) / (a 2 (b — c) + b 2 (c — a) + c 2 (a — b)) = ((a — b) (b — c) (a — c) (a + b + c)) / ((a — b)(b — c)(a — c)) = a + b + c.
В числителе возможно выделить множитель (a — b) на том основании, что делимое равно нулю, когда a совпадает с b. Обычно в двух взаимно обратных операциях выполнение одной сложнее, чем другой. Это касается, в частности, выполнения умножения алгебраических выражений и разложения на множители или возведения в степень с извлечением корня. Например, легко увидеть, что (5 + 3 √2) 2 = 43 + 30 √2, но значительно труднее прочитать это равенство справа налево.
Следует помнить, что когда при решении задачи встречается выражение подкоренного вида √с + n * √k или √a + b√k, то необходимо попытаться добыть соответствующий корень. Если же это невозможно, то нужно воспользоваться подбором.
Если нужно упростить выражение √11 + 6 √ 2, то его можно представить как c + b √2. Следовательно, справедливо будет следующее равенство: 11 + 6 √2 = с 2 + 2b 2 + 2 cb √2. Поиск целых (рациональных) c и b приведёт к решению системы: a 2 + 2b 2 = 11, ab = 3.
При этом подобрать нужную пару целых легко: a = 3, b = 1, то есть можно записать равенство как √11 + 6√ 2 = 3 + √2.