Что такое однократные и многократные измерения
Что такое однократные и многократные измерения?
Однократное измерение — измерение, выполненное один раз.
Например, определение времени по часам. При таких измерениях показания средств измерений являются результатом измерений, а погрешность используемого средства измерений определяет погрешность результата. Поэтому перед проведением измерений принимают меры по созданию и поддержанию нормальных условий, т. е. определяются влияющие факторы и меры, направленные на уменьшение их влияния, значения поправок, выбирается средство измерений, изучаются его метрологические характеристики. Одним из главных итогов этой работы должна быть уверенность в том, что погрешности метода и оператора малы по сравнению с допускаемой погрешностью измерений (обычно допускается их сумма не свыше 30% от допускаемой погрешности измерений). Если это условие выполняется, то в результате измерения получают одно значение отсчета, которое используется для получения единственного значения Q измеряемой величины (результата измерений). Однократные измерения используют в тех случаях, когда случайная составляющая погрешности мала по сравнению с не исключенными систематическими погрешностями, или в тех случаях, когда для их проведения есть производственная необходимость, т.е. условия измерений не позволяют провести повторные измерения.
Если необходима большая уверенность в получаемом результате, то проводятся многократные измерения.
Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений (выполненных не менее 4 раз).
За результат многократного измерения обычно принимают среднее арифметическое значение из результатов однократных измерений, входящих в ряд.
Эти измерения повторяются оператором в одинаковых условиях, использующим одни и те же средства измерений. Такие измерения характерны при выполнении метрологических работ, а также находят широкое применение в научных исследованиях. По результатам многократных измерений проводится анализ, главной особенностью которого является получение и использование большого объема измерительной информации.
Прежде чем приступить к обобщению результатов измерений, определяют, нет ли в полученных результатах грубых погрешностей.
Применение многократных измерений позволяет повысить точность измерения до определенного предела, но недостаток полученной информации не позволяет получить точное значение поправок, значений составляющих погрешностей и т.п. В связи с этим устанавливают необходимое число измерений, которое позволяет получить результат измерений, в котором случайная погрешность пренебрежимо мала по сравнению с неисключенной систематической погрешностью. Число измерений находят по формуле n = 64(s/q) где s – среднее квадратическое отклонение ряда измерений, q – неисключенная систематическая погрешность.
Виды измерений (абсолютные и относительные, однократные и многократные)
Виды измерений (прямые и косвенные, совокупные и совместные измерения).
Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.
Измерение физической величины (измерение величины; измерение) – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины ( РМГ 29 – 99).
Метод измерений – совокупность приемов использования принципов и средств измерений.
Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.
Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения Q = F (X, Y, Z ), где X, Y, Z – результаты прямых измерений.
Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.
При совокупных измерениях осуществляется измерение нескольких одноименных величин, например, длин L1, L2, L3 и т.д.
Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
Это крайне неудачное определение сопровождается примером (измерение силы F = mg основано на измерении основной величины — массы m и использовании физической постоянной g в точке измерения массы), который подтверждает нелепость предложенной трактовки. В примечании сказано, что понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах.
Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.
Пример — Измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованном в качестве эталонной меры активности.
Однократное измерение – измерение, выполненное один раз.
Многократное измерение (измерения с многократными наблюдениями) – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.
Классификация видов измерений
Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.
По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.
Прямые измерения – это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.
Косвенные измерения – отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.
Совокупные измерения – сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.
Совместные измерения – это измерения двух или более неоднородных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.
По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.
По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.
Однократные и многократные измерения
Однократное измерение – измерение, выполненное один раз .
Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящее из ряда однократных измерений .
Фактически многократные измерения («измерения с многократными наблюдениями»)проводят для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). В зависимости от поставленной цели число наблюдений при многократных измерениях может колебаться в широких пределах (от двух до ста и более наблюдений).
Статические и динамические измерения
Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
Динамическое измерение – измерение изменяющейся по размеру физической величины.
Широко используются также понятия измерений в статическом и динамическом режимах. При измерении в динамическом режиме запаздывание преобразования входного сигнала измерительной информации, поступающего от объекта измерения, может привести к появлению дополнительных динамических погрешностей. При измерении в статическом (или квазистатическом) режиме скорость преобразования сигнала в измерительной цепи настолько высока (например, по отношению к скорости изменения входного сигнала), что результаты фиксируются без динамических искажений.
Метрологические, технические и ориентировочные измерения
К техническимследует относить измерения, которые выполняют с заранее установленной точностью, т.е. с соблюдением такого условия, что погрешность измерения D не должна превышать заранее заданного допустимого значения [D]:
D £ [D].
Метрологические измерениявыполняют с максимально достижимой точностью, добиваясь минимальной (при имеющихся ограничениях) погрешности измерения D, что можно записать как
D® 0
В тех случаях, когда цель измерений состоит в приблизительной оценке физической величины, а точность результата измерений не имеет принципиального значения прибегают к ориентировочным измерениям. Их погрешности могут колебаться в широких пределах, поскольку любая реализуемая в процессе измерений погрешность D, принимается за допустимую [D]
[D] = D.
Равноточные и неравноточные, равнорассеянные и неравнорассеянные измерения
Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.
Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.
Кроме того, измерения в двух сериях могут быть равнорассеяннымиили неравнорассеянными.
Фактически оценки равноточности и равнорассеянности результатов измерений зависят от выбранных критериев расхождения мер точности или оценок рассеяния. Равноточными называют серии измерений 1 и 2, для которых однотипные оценки погрешностей (например Di) можно считать практически одинаковыми
а к неравноточным относят измерения с различающимися погрешностями
Измерения в двух сериях в зависимости от совпадения или различия однотипных оценок случайных составляющих погрешностей измерений сравниваемых серий 1 и 2 считают равнорассеянными ( ), или при D1 ¹ D2 неравнорассеянными. Допустимые расхождения оценок устанавливают в зависимости от задачи измерения.
Методы измерений
Метод измерений– прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.
2.1 Классификация методов измерения:
Однократные и многократные измерения
Однократные измерения находят широкое применение в различных об-
ластях. В обычных условиях нас устраивает их точность и простота выполне-
ния. При таких измерениях, как правило, показания средств измерений являют-
ся результатом измерений, а погрешность используемого средства измерений
определяет погрешность результата.
Поэтому перед проведением измерений принимают меры по созданию и
поддержанию нормальных условий, т.е. определяются влияющие факторы и
меры, направленные на снижение их влияния (экранирование, термостатирова-
ние и т.д.), значение поправок, выбирается средство измерений, изучаются его
Должна быть уверенность в том, что погрешность метода и погреш-
ность, вносимая оператором, малы по сравнению с допускаемой погрешностью
Однократные измерения используются, если случайная погрешность
мала по сравнению с неисключенными систематическими погрешностями или
если нет возможности провести повторные измерения.
При повышенных требованиях к точности измерений для уменьшения
погрешности результата измерений проводятсямногократные измерения од-
ной и той же величины. Это измерения, которые повторяются оператором в од-
них и тех же условиях одними и теми же средствами измерений. Такие измере-
ния применяются при выполнении метрологических работ или в научных ис-
41
|