Что такое оос в усилителе
AudioKiller’s site
Audio, Hi-Fi, Hi-End. Электроника. Аудио.
Материалы раздела:
Отрицательная обратная связь в усилителе
Обратная связь – процесс передачи сигнала с выхода усилителя обратно на его вход, а также цепь, осуществляющая эту передачу.
Обратная связь (ОС) называется отрицательной (ООС, NFB), если выходной сигнал усилителя вычитается из входного. Для простоты будем рассматривать установившийся режим работы всей системы, причем усилитель работает в активном режиме (т.е. нормально усиливает сигнал без всяких там перегрузок).
Структурная схема усилителя, охваченного ООС, показана на рис.1.
Здесь некоторый «виртуальный» усилитель с коэффициентом усиления по напряжению Ku’ получается из исходного «реального» усилителя, имеющего коэффициент усиления Ku, и охваченного цепью ООС. На самом деле термин «виртуальный» не совсем корректен, но я буду пользоваться им, потому что с точки зрения внешних устройств, подключенных к системе в целом, она представляет собой усилитель с параметрами, отличающимися от параметров реального исходного усилителя без ООС.
С выхода реального усилителя напряжение передается на его вход через цепь ООС с коэффициентом передачи β:
Обычно цепь ООС является пассивной, и β ≤ 1. Если цепь ООС усиливает, то это принципиально ничего не меняет, и все формулы в этом случае выводятся аналогично. Если β = 0, то это означает, что Uоос = 0 и обратная связь отсутствует. Обратите внимание, что совершенно безразлично, какую именно схему имеет цепь ООС. Главное – это насколько (во сколько раз) она ослабляет напряжение.
В данной системе присутствует два разных входных напряжения, и чтобы не путаться, я им дам различные наименования:
1. Напряжение, подаваемое на вход «виртуального» усилителя от источника сигнала. Его будем обозначать Uсигн.
2. Напряжение, приходящее на вход реального усилителя – Uвх.
Итак, выходное напряжение усилителя Uвых превращается цепью ООС в напряжение обратной связи Uоос и вычитается из входного напряжения. Результат – входное напряжение реального усилителя:
Важный момент: Uоос всегда меньше Uсигн, поэтому Uвх всегда больше нуля.
Реальный усилитель усиливает свой входной сигнал в Ku раз:
Преобразуем формулу (3):
Но Uвых/Uсигн – это коэффициент усиления Ku’ «виртуального» усилителя, как он проявляется для внешнего мира, поэтому:
Таким образом, мы получили формулу для вычисления коэффициента усиления для усилителя, охваченного ООС.
Теперь можно объяснить, почему Uоос Uсигн, рассмотрите самостоятельно. С точки зрения математики, исходное утверждение доказывается элементарно:
Рассматривая физику процессов, следует помнить, что выходное напряжение усилителя появляется не само по себе, а является следствием его усиления и образуется из его входного напряжения: Uвых = Ku∙Uвх.
Итак, при охвате усилителя ООС, его коэффициент усиления уменьшается в (1+β∙Ku) раз. Но введение ООС изменяет и другие параметры усилителя.
1. Отрицательная обратная связь изменяет в (1+β∙Ku) раз входное и выходное сопротивления усилителя. При этом они могут как увеличиваться, так и уменьшаться в зависимости от способа соединения цепи ООС со входом и выходом усилителя – последовательно или параллельно. Способы подключения цепи ООС ко входу усилителя показаны на рис. 2, а к выходу усилителя – на рис. 3.
Эти формулы несложно вывести, но мы это делать не будем, а будем пользоваться готовыми. И объяснить их с точки зрения схемотехники также несложно. Например, на рис. 2а, напряжение на входе усилителя после замыкания цепи ООС возросло в (1+β∙Ku) раз: Uсигн = Uвх∙(1+β∙Ku), а входной ток остался прежним. Значит, по закону Ома (R=U/I) и сопротивление возросло в (1+β∙Ku) раз.
При последовательной по выходу ООС через ее цепь проходит выходной ток усилителя (ток нагрузки), поэтому ее часто называют обратной связью по току. Несколько примеров разных включений цепи ООС показано на рис. 4 и рис. 5. Цепь ООС является четырехполюсником, который обычно замыкается через «землю» цепи, явным образом это показано на рис. 4б.
2. Отрицательная обратная связь расширяет частотный диапазон усилителя. Нижняя fн и верхняя fв граничные частоты увеличиваются примерно в (1+β∙Ku), если усилитель имеет спад АЧХ 6 дБ/октаву. На самом деле, при охвате усилителя ООС могут происходить самые разные процессы, вплоть до превращения усилителя в генератор, но если все работает, то частотный диапазон обязательно расширяется. Это иллюстрируют АЧХ исходного усилителя (синяя) и усилителя, охваченного ООС (красная) на рис. 6. Там же показаны границы частотного диапазона без ООС и с ней. Напоминаю, что граничной частотой считается такая частота, где коэффициент усиления уменьшается в корень из двух (примерно 1,41) раз.
3. Введение ООС уменьшает нелинейные искажения усилителя (коэффициент гармоник) примерно в (1+β∙Ku) раз. Это происходит оттого, что ООС линеаризует систему и уменьшает ее ошибки. Изменяется и амплитудная характеристика усилителя (рис.7), на ней плавный переход к области насыщения превращается в довольно острый излом – ООС линеаризует этот участок и «пытается» вытянуть пропорциональное усиление даже там, где оно уже начинает уменьшаться.
На самом деле (1+β∙Ku) – это очень приблизительная оценка, поскольку для анализа нелинейных цепей используется уже совсем другая математика и там все очень сильно зависит от нелинейности усилителя. Но, тем не менее, искажения усилителя снижаются тем сильнее, чем глубже ООС, и в «простых» случаях формула (1+β∙Ku) работает достаточно хорошо.
Итак, мы видим, что охват усилителя отрицательной обратной связью изменяет ряд его основных параметров в (1+β∙Ku) раз. Проанализируем это выражение сначала чисто математически, не вникая пока в его физический смысл. Очевидно, что тут возможны три варианта:
а) β∙Ku > 1. Тут обратная связь очень глубока. Интересно, что для очень глубокой ООС формула (4) превращается вот во что:
То есть, свойства усилителя (коэффициент усиления и АЧХ) определяются исключительно параметрами цепи ООС. При значении β∙Ku = 100, погрешность применения вместо формулы (4) упрощенной формулы (5) составляет 1%, такой погрешностью в большинстве случаев можно пренебречь. А в реальных схемах на операционных усилителях величина β∙Ku может достигать десятков тысяч, делая погрешность «упрощения формулы» практически незначимой.
Обратите внимание, что в формуле присутствует величина β∙Ku, как произведение. При этом одинаковое значение этого произведения можно получить как при большой величине Ku и маленьком β, так и при большом β и небольшом Ku, так что в данном смысле эти два параметра равнозначны. Термин «глубина обратной связи» часто ассоциируется с термином «коэффициент передачи цепи ООС», который обозначает величину β, а хорошо было бы ввести некоторое понятие, отражающее именно величину β∙Ku, как более важную для применения. Так сейчас и поступим, только не забывайте, что у нас β ≤ 1, так что понятие большое или маленькое β означает, например, такие значения: β = 0,1 или β = 0,0001.
Теперь давайте оценим степень влияния отрицательной обратной связи, исходя из физического смысла и электроники. Обратимся к рис. 1. Внутри усилителя присутствует два напряжения: Uвх и Uоос. Очевидно, что степень влияния ООС на усилитель зависит от соотношения этих напряжений. Если Uоос > Uвх, то главную роль во входном сигнале «реального» усилителя играет именно ООС (т.к. Uсигн = Uоос + Uвх и значит входной сигнал «виртуального» усилителя практически равен Uоос). С другой стороны, Uоос получается из напряжения Uвх, после усиления его усилителем и ослабления цепью ООС. Как оно получается? Мысленно разомкнем петлю обратной связи в точке А (разрывать цепь электрически можно не всегда – иногда от этого изменяется величина β), рис. 8.
Со стороны точки приложения сигнала ООС (это точка А), входной сигнал проходит два элемента – усилитель и цепь ООС. Общий коэффициент передачи последовательно соединенных устройств равен произведению их коэффициентов передачи: Ku∙β. Эта величина является коэффициентом усиления сигнала в петле обратной связи и называется петлевым усилением:
Это то самое взаимоотношение между напряжением ООС и входным напряжением «реального» усилителя, которое показывает степень влияния обратной связи. Кроме того, оно полностью соответствует выражению, которое мы вывели, математически анализируя формулу коэффициента усиления усилителя с замкнутой ООС. Так что глубину обратной связи характеризует именно петлевое усиление, и именно его имеют ввиду, когда говорят о глубине ООС. Хотя иногда под глубиной ООС подразумевают коэффициент передачи цепи обратной связи β – в случаях, когда Ku велико, и величину A = β∙Ku определяет в основном β.
Таким образом, именно петлевое усиление определяет свойства усилителя, которые он проявляет для внешнего мира. Именно на эту величину изменяются коэффициент усиления, входное и выходное сопротивления, граничные частоты и коэффициент гармоник.
В некоторых случаях вычисление петлевого усиления по формуле (6) может быть затруднено, тогда можно найти его из изменения коэффициента усиления усилителя при охвате его ООС:
Последнее выражение достаточно точно, при А≥100. Проще всего определять таким способом петлевое усиление по логарифмической АЧХ усилителя (диаграмме Боде). На рис. 9 петлевое усиление А = 100 – 60 = 40 дБ, т.е. 100 раз. На самом деле А = 100 – 1 = 99 раз (39,9 дБ), но этим зачастую можно пренебречь, поэтому обычно в таких случаях говорят, что петлевое усиление равно ровно 40 дБ.
Пока что я ничего не говорил о свойствах и схеме самой цепи ООС. На самом деле, значение ее коэффициента передачи не обязательно являются константой. Эта цепь может быть частотнозависимой, тогда величина β меняется с частотой. Такое свойственно современным усилителям сигналов, когда для постоянного тока стремятся получить стопроцентную обратную связь (β=1), дающую максимальную стабильность режима работы усилителя, а для переменного тока глубину ООС выбирают такой, чтобы Ku’ для него (усиливаемого сигнала) был равен 10…1000 (β≈0,1…0,001). На самом деле при снижении частоты f ниже определенного значения, β начинает расти, доходя до единицы при f = 0, т.е. на постоянном токе. Но это все происходит ниже рабочего диапазона частот усилителя, поэтому в таких случаях глубину ООС принято оценивать двумя значениями: для постоянного тока, и для переменного тока (в рабочем диапазоне частот).
Если вернуться к формуле (5) для коэффициента усиления с замкнутой цепью ООС, то видно, что при достаточно большом значении петлевого усиления, свойства усилителя – это обратная величина от свойств цепи обратной связи. Такая ситуация лучше всего получается, если усилитель имеет очень большой коэффициент усиления без ООС – десятки-сотни тысяч и миллионы. Для работы в таких условиях созданы специальные микросхемы, называемые операционными усилителями (ОУ).
Понятие операционного усилителя появилось во второй половине ХХ века, когда получили широкое распространение аналоговые электронно-вычислительные машины (АВМ). Принцип их применения был основан на том, что подбиралась соответствующая электрическая цепь, описываемая теми же уравнениями, что и исследуемый неэлектрический процесс. Измеряя напряжения и токи в цепи, получали значения параметров исследуемого процесса. Для АВМ требовались блоки (функциональные узлы), выполняющие определенные математические операции: масштабирование (усиление), сложение, вычитание, интегрирование, дифференцирование и др. Довольно быстро пришли к выводу, что вместо того, чтобы разрабатывать каждый такой блок по-отдельности, проще получить их все из одинаковых усилителей, охваченных цепью ООС – так и появились ОУ. В настоящее время возможности цифровых вычислительных машин настолько велики, что моделирование (и управление) проще и точнее выполнять на них, и АВМ практически исчезли, а операционные усилители остались – они оказались очень удобными для применения, ведь из них можно получить практически любое устройство, всего лишь охватив их соответствующей ООС.
Так что получить, например, усилитель с нужной АЧХ достаточно просто, достаточно охватить его ООС, имеющей АЧХ «зеркальной» к требуемой (рис. 10).
Схемы, реализующие данные АЧХ показаны на рис. 11.
Однако, конструируя схемы на операционных усилителях, следует помнить, что их огромный коэффициент усиления сохраняется только на очень низких частотах, а потом начинает падать со скоростью 20 дБ/декада. У большинства ОУ широкого применения спад АЧХ начинается с частоты порядка 10 Гц. Поэтому на частотах в десятки килогерц Ku может быть довольно мал, и при попытке получить на такой частоте большое усиление, глубина обратной связи (петлевое усиление) может оказаться слишком маленьким. При этом возрастет погрешность выполняемой функции, и повышаются нелинейные искажения. На рис. 12 показаны АЧХ усилителя (см. рис. 10 и рис. 11) без ООС и с ООС. На частотах 20 Гц, 1 кГц и 20 кГц глубина ООС (петлевое усиление) составляет 39 дБ, 24 дБ и 11 дБ соответственно. Вполне можно считать, что на частоте 20 кГц обратная связь имеет очень низкую глубину и практически не улучшает параметров усилителя.
В заключение хотелось бы отметить, что это только элементарная теория обратной связи. Здесь, например, не учтен тот факт, что на переменном токе и коэффициент усиления «реального» усилителя, и коэффициент передачи цепи обратной связи обычно величины комплексные (петлевое усиление также является комплекным). Поэтому формула (4) верна только для модулей, а «на все случаи жизни» ее надо записывать так:
При этом цепь ООС может изменять не только амплитуду сигнала, но и его фазу. Причем, если сдвиг фаз в петле ООС станет равным 180 градусам, то сигнал обратной связи будет не вычитаться из сигнала источника, а прибавляться к нему, и обратная связь из отрицательной превратится в положительную. Но это уже совсем другая история…
Главная цель этого материала – дать понимание основ обратной связи для дальнейшего углубленного ее изучения, тем более что физика и математика процессов показана совершенно правильно.
Готовлю продолжение о секретах применения отрицательной обратной связи.
Обратная связь в усилителях
Общие сведения и классификация
Обратной связью (ОС) называется явление передачи части энергии усиленных колебаний из выходной цепи усилителя в его входную цепь.
Причинами, способствующими передаче энергии с выхода на вход усилителя, могут быть:
а) физические свойства и конструктивные особенности применяемых транзисторов (наличие емкостей и индуктивностей выводов, емкостей р—п-переходов и пр.). Возникающая при этом ОС называется внутренней обратной связью;
б) неудачное расположение и монтаж усилительных каскадов, когда паразитные емкостные и индуктивные связи создают путь для передачи колебаний с выхода на вход. Обратные связи, возникающие в этом случае, называют паразитными;
в) специальные цепи, введенные конструктором для передачи колебаний с выхода усилителя на его вход с целью придать устройству нужные свойства. Такую обратную связь называют внешней обратной связью.
Из перечисленных видов ОС первые два являются нежелаемыми, поэтому конструктор вынужден принимать дополнительные меры к их устранению.
Цепь, по которой осуществляется передача энергии с выхода усилителя на его вход, называется цепью обратной связи.
Обычно цепь ОС представляет собой некоторый линейный пассивный четырехполюсник с коэффициентом передачи g, вход которого присоединен к выходу усилителя, а выход – ко входу усилителя (рисунок 2.9). В общем случае четырехполюсник ОС может быть линейным или нелинейным, с частотозависимым или частотонезависимым коэффициентом передачи.
Рисунок 2.9 – Усилитель с цепью обратной связи
Цепь обратной связи может быть общей, охватывающей все или несколько каскадов усилителя (рисунок 2.10, а, б), или местной, охватывающей отдельные каскады (рисунок 2.10, б, цепь ОС с коэффициентом передачи g1).
а
б
Рисунок 2.10 – Виды обратных связей
При сложении колебаний источника сигнала с колебаниями, поступающими с выхода усилителя через цепь ОС, на входе усилителя образуется результирующее колебание. Результирующее колебание равняется сумме двух колебаний, если оба эти колебания складываются в фазе, или разности двух колебаний, если они складываются в противофазе. В первом случае имеет место положительная обратная связь (ПОС),во втором – отрицательная обратная связь (ООС).
Практическое совпадение или противоположность фаз возможно только в ограниченном диапазоне усиливаемых частот, так как присущие усилителям фазовые сдвиги изменяются с частотой. Это может привести к тому, что обратная связь, отрицательная для одних частот, превратится в положительную для других. Поэтому принято относить обратную связь к отрицательной или положительной по тому, какой знак она имеет в основной части диапазона усиливаемых частот (то есть в пределах полосы пропускания усилителя).
Положительная ОС находит применение в устройствах формирования сигналов различной формы, называемых автогенераторами. В усилителях используется только отрицательная обратная связь для улучшения их некоторых показателей. Положительная ОС в усилителях может возникать только как паразитная ОС, приводящая к самовозбуждению усилительных каскадов. С целью предотвращения этого явления приходится принимать дополнительные меры. В дальнейшем будем рассматривать только отрицательную обратную связь.
Внешнюю обратную связь, создаваемую с помощью специальной цепи обратной связи, всегда можно отнести к тому или иному виду, зная способ соединения этой цепи с усилителем.
Различают следующие четыре основных вида обратных связей в усилителе (первая часть названия определяет способ подключения выхода цепи ОС ко входу усилителя, а вторая – способ подключения входа цепи ОС к выходу усилителя):
— последовательная ОС по напряжению;
— параллельная ОС по напряжению;
— последовательная ОС по току;
— параллельная ОС по току.
Если источник входного сигнала соединен последовательно с входом усилителя и выходом цепи ОС, то обратная связь называется последовательной (рисунок 2.11, а). В этом случае сигнал обратной связи uсв подается на вход усилителя последовательно с входным сигналом ивх.
Параллельная обратная связь имеет место тогда, когда цепь обратной связи включается параллельно источнику входного сигнала (рисунок 2.11, б). При параллельной обратной связи на входе усилителя происходит алгебраическое сложение (с учетом полярности или начальной фазы) токов, а не напряжений, как в случае последовательной обратной связи.
Таким образом, при последовательной отрицательной обратной связи в качестве сигнала обратной связи используется напряжение, которое вычитается из напряжения источника сигнала, а при параллельной отрицательной обратной связи в качестве сигнала обратной связи используется ток, который вычитается из тока внешнего источника сигнала.
а б
Рисунок 2.11 – Последовательная (а) и параллельная (б) ОС
По способу включения обратной связи на выходе усилителя различают обратную связь по напряжению и току. При обратной связи по напряжению выход усилителя, нагрузка и цепь обратной связи соединены параллельно друг другу (рисунок 2.12, а). В этом случае сигнал обратной связи пропорционален выходному напряжению усилителя. Если выход усилителя, нагрузка и цепь обратной связи соединены последовательно (рисунок 2.12, б), то имеет место обратная связь по току, при которой сигнал обратной связи пропорционален току через нагрузку.
а б
Рисунок 2.12 – ОС по напряжению (а) и по току (б)
Для определения, какая ООС имеет место, по току или по напряжению, необходимо учитывать следующее. В режиме короткого замыкания нагрузки (при RН = 0) обратная связь по напряжению исчезает, а по току – сохраняется. В режиме холостого хода (то есть при RН ® ¥) обратная связь по напряжению сохраняется, а по току – исчезает.
Влияние отрицательной обратной связи на основные параметры и характеристики усилителей
Влияние ООС на коэффициенты усиления усилителя.
Усилитель, охваченный обратной связью (рисунок 2.13), можно представить в виде собственно усилителя (без обратной связи) с коэффициентом усиления KU, на входе которого действует напряжение U, и четырехполюсника обратной связи, обладающего коэффициентом передачи g.
Рисунок 2.13 – Усилитель с цепью последовательной ООС
Рассмотрим случай, когда имеет место последовательная ООС по входу. Тогда напряжение Uвх, поступающее с выхода источника сигнала на вход усилителя противоположно по фазе напряжению обратной связи Uсв. В этом случае можно записать
. (2.24)
Разделим левую и правую части уравнения (2.24) на Uвых:
. (2.25)
В равенстве (2.25) – коэффициент усиления напряжения усилителя без ОС. Отношение
представляет собой коэффициент усиления напряжения усилителя, охваченного цепью ООС, а
– коэффициент передачи четырехполюсника цепи ООС. Тогда равенство (2.25) можно переписать в виде
,
. (2.26)
Таким образом, из полученного выражения видно, что при последовательной ООС по входу коэффициент усиления напряжения усилителя, охваченного обратной связью KU ООС, меньше, чем его собственный коэффициент усиления KU (то есть коэффициент усиления напряжения этого же усилителя, но без цепи ООС). Причем выражение справедливо, независимо от того, какой вид ООС по выходу – последовательная по току или последовательная по напряжению. Произведение gKU называется петлевым усилением, а величина F = 1 + gKU – глубиной ООС. Для положительной ОС глубина обратной связи определяется выражением: F = 1 – gKU.
Глубина обратной связи показывает, во сколько раз изменится коэффициент усиления усилителя при введении цепи ОС. Если при наличии ООС выполняется условие gKU >> 1, то говорят, что усилитель охвачен глубокой (стопроцентной) обратной связью. В этом случае коэффициент усиления усилителя с обратной связью не зависит от его собственного коэффициента усиления и определяется только коэффициентом передачи цепи обратной связи g. Действительно при условии gKU >> 1
. (2.27)
При последовательной обратной связи коэффициент усиления тока не изменяется, так как в этом случае коэффициент усиления тока равен
, (2.28)
то есть не отличается от коэффициента усиления тока усилителя без обратной связи KI. Это объясняется следующим. При неизменных параметрах источника сигнала и нагрузки усилителя отрицательная обратная связь уменьшает напряжение сигнала на выходе усилителя в F раз и во столько же раз уменьшается выходной ток. Но так как при последовательной обратной связи увеличивается входное сопротивление усилителя также в F раз (будет показано позже), то уменьшается входной ток и коэффициент усиления тока не изменяется.
При параллельной отрицательной обратной связи (и по току, и по напряжению, рисунок 2.14) коэффициент усиления напряжения не изменяется, то есть в этом случае можно записать
. (2.29)
Рисунок 2.14 – Усилитель с цепью параллельной ООС
Выведем соотношение для определения коэффициента усиления тока в усилителе при наличии параллельной обратной связи по входу.
Собственный коэффициент усиления тока усилителя KI равен:
. (2.30)
Учитывая, что , получим
. (2.31)
Можно показать, что полученное выражение справедливо, независимо от того, какой вид отрицательной обратной связи по выходу – параллельная по току или параллельная по напряжению.
Влияние ООС на входное и выходное сопротивления усилителя.
Обратная связь оказывает существенное влияние на входное и выходное сопротивления усилителя.
Входное сопротивление усилителя с ООС зависит от способа подключения цепи ООС ко входу усилителя и не зависит от способа ее подключения к выходу. Выходное сопротивление усилителя с ООС наоборот зависит от способа подключения цепи ООС к выходу усилителя и не зависит от способа ее подключения ко входу этого усилителя.
Рассмотрим, как проявляется влияние различных видов ООС на входное сопротивление усилителя.
Для определения влияния последовательной обратной связи на входное сопротивление усилителя воспользуемся схемой, приведенной на рисунке 2.13. Анализ схемы показывает, что выражение для определения входного сопротивления усилителя с последовательной ООС будет иметь вид
(2.32)
где Rвх – входное сопротивление усилителя без ООС;
KU – коэффициент усиления напряжения усилителя без ООС в пределах полосы пропускания (в области средних частот).
Из последнего выражения следует, что при последовательной ООС входное сопротивление усилителя увеличивается в (1 + gKU) раз.
Однако входное сопротивление усилителя обычно носит комплексный характер, поэтому для полной оценки влияния ООС на входное сопротивление последнее необходимо записать в комплексном виде
. (2.33)
Для определения влияния параллельной ООС на входное сопротивление усилителя воспользуемся схемой, приведенной на рисунке 2.14. Анализ схемы показывает, что параллельная ООС уменьшает входное сопротивление усилителя, так как при таком виде ООС к входному сопротивлению усилителя Rвх как бы присоединяется параллельно сопротивление Rсв.
Для количественной оценки влияния параллельной ООС на входное сопротивление усилителя используют выражение:
, (2.34)
или, в общем случае, выражение
. (2.35)
Таким образом, ООС позволяет управлять значением входного сопротивления усилителя и обеспечивать как достаточно высокие (сотни кОм – десятки МОм) – при последовательной ООС, так и достаточно низкие (десятые – тысячные доли Ом) – при параллельной ООС входные сопротивления.
Выходное сопротивление усилителя сильно зависит от того, каким образом снимается сигнал ООС. Если он снимается по напряжению, то выходное сопротивление уменьшается, а если по току – то увеличивается.
Для количественной оценки влияния ООС по напряжению на выходное сопротивление усилителя используют выражение:
, (2.36)
где Rвых – выходное сопротивление усилителя без ООС.
Для расчета выходного сопротивления усилителя в диапазоне частот за пределами полосы пропускания используют выражение:
. (2.37)
Из последнего выражения следует, что введение в усилитель ООС по напряжению уменьшает его выходное сопротивление в F раз.
Физический смысл действия ООС по напряжению заключается в следующем. Любая ООС стремится поддержать неизменным значение того параметра, который используется для получения обратной связи. Поэтому ООС по напряжению при действии внешних возмущений, в частности, при изменении выходного тока, стремится поддержать неизменным значение выходного напряжения усилителя. Это эквивалентно уменьшению его выходного сопротивления.
Оценка влияния ООС по току на выходное сопротивление электронного усилителя осуществляется на основе выражения
, (2.38)
. (2.39)
Из (2.39) следует, что при ООС по току выходное сопротивление усилителя увеличивается.
Таким образом, введение ООС может быть использовано для целенаправленного изменения выходного сопротивления усилителя и позволяет реализовать усилитель с очень малым (сотые доли Ом) или очень большим (сотни кОм – десятки МОм) выходным сопротивлением. При использовании ООС по напряжению усилитель приближается к идеальному источнику напряжения, выходной сигнал которого мало изменяется при различных сопротивлениях нагрузки. ООС по току стабилизирует ток нагрузки, приближая усилитель к идеальному источнику тока.
Влияние ООС на нелинейные искажения и амплитудную характеристику усилителя.
Ранее было установлено, что последовательная ООС уменьшает коэффициент усиления напряжения, а, следовательно, уменьшает угол наклона амплитудной характеристики (рисунок 2.15). Из рисунка видно, что введение в усилитель последовательной ООС приводит к расширению его динамического диапазона (поскольку ) и к снижению величины нелинейных искажений.
Рисунок 2.15 – Изменение амплитудной характеристики усилителя при наличии цепи ООС
Если напряжение Uвых2 (рисунок 2.15) – максимальное напряжение на выходе усилителя, при котором его еще можно считать линейным устройством – принять одинаковым для усилителя без ООС и усилителя с ООС (это допустимо, поскольку величина Uвых2 в основном зависит от параметров используемого активного элемента и напряжения источника питания), то можно записать
,
,
. (2.40)
Согласно (2.12) нелинейные искажения в усилителе без обратной связи можно оценить с помощью формулы
,
где – эквивалентное суммарное напряжение высших гармоник.
Введение в усилитель цепи последовательной ООС приводит к уменьшению выходного напряжения усилителя, равного , а, следовательно, и каждой гармоники этого напряжения, в F раз, то есть можно записать
. (2.41)
Из (2.41) следует, что для поддержания выходного напряжения в усилителе с ООС на том же уровне, что и в усилителе без ООС, необходимо входное напряжение увеличить в F раз. Но при этом амплитуда первой гармоники в выходном напряжении, при неизменном напряжении , также увеличится в F раз. Тогда можно записать
. (2.42)
Таким образом, введение в усилитель последовательной ООС позволяет расширить его динамический диапазон и уменьшить коэффициент гармоник (снизить нелинейные искажения) примерно в 1 + gKU раз.
Влияние ООС на частотную и фазовую характеристики усилителя.
Ранее при анализе влияния ООС на различные параметры усилителя мы исходили из того, что коэффициент усиления усилителя KU и коэффициент передачи цепи ООС g являются вещественными (то есть оценивалось влияние ООС на частотах в пределах полосы пропускания). Однако как показано в п. 2.1.3.2, за пределами полосы пропускания коэффициент усиления носит комплексный характер.
Коэффициент передачи цепи ООС в общем случае также может быть комплексным. А это значит, что реальный усилитель всегда вносит дополнительные фазовые сдвиги в усиливаемый сигнал, значения которых зависят от параметров компонентов, схемы усилителя и диапазона усиливаемых частот. Эти фазовые сдвиги обусловлены наличием реактивных элементов в цепях усилителя и инерционными свойствами активных приборов (например, транзисторов).
С учетом названных причин выражение (2.26) должно быть записано в виде:
, (2.43)
где (jк – угол сдвига фаз между выходным и входным напряжениями усилителя);
(jg – угол сдвига фаз между напряжениями на выходе и входе цепи обратной связи).
Обычно комплексный характер учитывают на частотах
и
. В этом случае модуль и фаза коэффициента усиления
сложно зависят от изменения с частотой
и
.
Все что сказано выше в отношении коэффициента усиления напряжения может быть перенесено и на коэффициент усиления тока.
Для того чтобы обратная связь была отрицательной, необходимо, чтобы сигнал от источника и сигнал обратной связи складывались на входе усилителя в противофазе. Если носит комплексный характер, то это значит, что
. (2.44)
В многокаскадных усилителях условие (2.44) обычно выполняется только лишь в середине полосы пропускания (при ). При этом
и изменения
меньше, чем изменения
, то есть имеет место улучшение частотных и фазовых характеристик.
На рисунке 2.16 показан вид АЧХ (в общем случае) усилителя с ООС и без нее.
Из рисунка видно, что на частотах w1 и w2 модули и
становятся одинаковыми, то есть обратная связь перестает быть отрицательной и становится «нейтральной». На частотах
обратная связь превращается в положительную, в результате чего усиление становится больше, чем в усилителе без обратной связи. При этом в усилителе могут возникать самовозбуждения, то есть самопроизвольная генерация колебаний.
Рисунок 2.16 – Вид АЧХ усилителя при наличии и отсутствии цепи ООС
Усилитель самовозбуждается, если:
— для какой-либо частоты петлевое усиление представляет собой действительную отрицательную величину (баланс фаз);
— величина петлевого усиления на этой частоте больше или равна единице (баланс амплитуд).
В однокаскадных усилителях чаще всего можно применять достаточно глубокую ООС, не опасаясь за то, что на краях частотного диапазона она может вызвать самовозбуждения в усилителе. В то же время в многокаскадных усилителях (которые в большинстве случаев применяются на практике) приходится применять дополнительные меры для предотвращения самовозбуждения. Особенно важно это в широкополосных усилителях.
На рисунке 2.17 приведен пример АЧХ однокаскадного усилителя без ООС (KU(w)) и этого же усилителя, охваченного цепью ООС (KUООС(w)). Из рисунка видно, что при охвате каскада цепью ООС одновременно с уменьшением коэффициента усиления напряжения происходит расширение полосы пропускания усилителя. Граничные частоты полосы пропускания однокаскадного усилителя с ООС определяют из выражений
, (2.45)
. (2.46)
Рисунок 2.17 – Иллюстрация влияния ООС на ширину полосы пропускания усилителя
Подводя итог изложенному выше, отметим, что введение частотно-независимой ООС улучшает частотные характеристики усилителя, способствует расширению полосы пропускания и снижению частотных искажений в пределах заданного диапазона частот. Кроме этого ООС по напряжению обеспечивает стабилизацию выходного напряжения и коэффициента усиления напряжения усилителя, а ООС по току – стабилизацию выходного тока.