Что такое оптическая мощность
9
Тестирование волоконно-оптических систем
Введение
После установки волоконно-оптической системы крайне важно тщательно ее протестировать, чтобы убедиться в соответствии техническим требованиям проекта. Тестирование волоконно-оптической системы как во время установки, так и при вводе системы в эксплуатацию является обязательной частью проекта. Проводимые приемочные испытания определят, является ли окончательно установленный кабель цельным и стабильным, были ли причинены какие-нибудь повреждения при установке кабеля, правильны ли вычисленные на этапе проектирования значения потерь соединений, коннекторов, длины волокна и т. д. и работает ли окончательно установленная система с должной производительностью..
Если система была тщательно спроектирована, а затем правильно установлена, результаты приемочного теста обычно показывают лучшие значения производительности, чем проектные параметры (в предположении, что придерживались консервативного подхода к проектированию). В редких случаях связь будет хуже, чем проектировалась. Это может быть из-за неожиданных потерь вследствие избыточных изгибов. В течение срока службы показатели линии связи также будут ухудшаться, что должно быть принято в расчет при проектировании. Во время приемочных испытаний будет также подтвержден учитываемый для этих непредвиденных потерь запас надежности.
Данная глава рассматривает требования к тестированию волоконно-оптических кабелей и передающего и приемного оптического оборудования. В первой части главы изучаются фундаментальные понятия, характерные для оптических измерений. Во второй части подробно исследуются основные волоконно-оптические тесты и оборудование. В заключение обсуждается ряд других, менее распространенных тестов, связанных с характеристиками окончательно установленных систем.
9.1. Фундаментальные понятия оптических измерений
9.1.1. Оптическая мощность
Основной единицей измерения, используемой в волоконной оптике, является мощность света. Как и электрическая мощность, оптическая мощность измеряется в ваттах.
Свойства света похожи на электрические. Световая энергия, как и электрическая энергия, теоретически принимает форму синусоидальных волн. Поэтому основные компоненты математических формул, использующихся для вычисления связанных с мощностью электрических измерений, могут также использоваться для вычисления связанных с мощностью оптических измерений.
К оптическим измерениям применяются следующие аналогии.
• Мощность является мерой скорости передачи энергии (где энергия Q измеряется в Джоулях). То есть:
• Мощность является функцией напряжения (U) и тока (I). У световой волны есть электрический компонент и магнитный компонент, что аналогично компонентам напряжения и тока в электрической энергии. Поэтому для электрической энергии:
для световой энергии:
• Световая энергия прямо пропорциональна квадрату амплитуды электромагнитной волны. Мощность электрической энергии прямо пропорциональна квадрату амплитуды напряжения или тока.
В случае световой энергии сопротивление фактически является проницаемостью стекла. Для света общая энергия Q вычисляется по формуле
Мощность света обычно измеряется и указывается в децибелах. Обсуждение в разделе 2.3, касающееся измерения в децибелах, относится также к оптическим измерениям.
Оптический передатчик передает сигнал в форме импульсов. Уровень мощности передаваемого сигнала постоянно меняется. Можно измерить мгновенное пиковое значение или среднее значение этой мощности. Это показано на рис. 9.1.
Рис.9.1. Мощность полученного сигнала
Мощность также прямо пропорциональна частоте и обратно пропорциональна длине электромагнитной волны (С = λ х f). Теоретически свет представляется в форме крошечных частиц, называемых фотонами, которые излучаются атомами при переходах электронов между энергетическими уровнями, окружающими атомы. С возрастанием частоты (то есть снижением длины волны) пропорционально увеличивается энергия фотона. o Фактически это означает, что для возбуждения электрона для излучения фотона с высокой частотой необходимо больше энергии, чем для излучения фотона с низкой частотой. Следовательно, поскольку измерение оптической энергии есть мера потока фотонов в единицу времени, оптическая мощность прямо пропорциональна частоте и обратно тропорциональна длине волны. Эта зависимость описывается законом Планка:
9.1.2. Измерение мощности
Различные материалы, использующиеся при производстве детекторов света, чувствительны к различным длинам волн. Например, кремниевые детекторы интенсивно отвечают на сигналы 850 нм, тогда как детекторы из арсенида индия и галлия (InGaAs) дают сильные ответы на сигналы 1300 и 1550 нм. Поэтому детекторы света, используемые для целей измерений, должны быть откалиброваны для той частоты, которую они измеряют.
Детекторы обеспечивают линейный ответ лишь в ограниченном динамическом диапазоне уровня входного сигнала. Поэтому они должны быть откалиброваны для определенного применения и ожидающегося на входе в детектор из волоконно-оптического кабеля диапазона мощностей.
Время ответа детектора в экспонометре очень большое по сравнению со скоростью входных импульсов. Поэтому большинство экспонометров калибруется для измерения средней мощности.
9.1.3. Оптическая и электрическая полоса пропускания
Полоса пропускания определяется в двух разновидностях, оптической и электрической. Оптической полосой пропускания называют наивысшую частоту модуляции, при которой мощность оптической системы снижается на 3 дБ по сравнению с оптической мощностью на более низкой частоте. Из-за процесса преобразования в оптическом детекторе световой энергии в электрическую снижение оптической мощности на 3 дБ дает снижение электрической мощности на 6 дБ. При измерении электрической полосы пропускания используются те же правила, что и для оптической; электрическая полоса пропускания определяется снижением мощности на 3 дБ. Поэтому при необходимости измерения оптической полосы пропускания нужно помнить, что детектор покажет снижение электрической мощности на-6 дБ. Оборудование измерения мощности компенсирует это и покажет правильное значение оптической мощности. Процесс измерения оптической полосы пропускания обсуждается в разделе 9.3.3.
Знакомство оптической мощности TX/RX на оптических портах
Migelle
Купить FS оптические модули
Оптическая мощность TX и RX имеет жизненно важное значение для обеспечения нормальной передачи модулей. Но что вы знаете об оптической мощности TX/RX? А как проверить оптическую мощность оптического модуля? Найдите ответы в этой статье.
Что такое оптическая мощностьTX/RX модуля?
Мощность передатчика (TX) относится к выходной оптической мощности модуля на передающей стороне, а мощность приемника (RX) означает входную оптическую мощность на приёмной стороне. Оба они являются важными параметрами, влияющими на дальность передачи сигнала. Как правило, только когда мощность передатчика и приёмника находится в пределах пороговых значений, можно гарантировать расстояние передачи или качество модулей. Однако оптические модули с разными длинами волн, скоростями передачи и расстояниями передачи имеют различную передаваемую и принимаемую оптическую мощность. Например, на следующем рисунке показана мощность передатчика и приёмника модулей 1G SFP с разными расстояниями передачи и длинами волн.
| Параметр | Расстояние передачи | Длина волны | TX мощность | RX мощность |
|---|---|---|---|---|
| 1G SFP модуль | 500m | 850nm | -9.5 dBm |
0 dBm
-3.0 dBm
-3.0dBm
-3.0dBm
-3.0dBm
Как измерить оптическую мощность TX/RX модуля?
Для модуля с высокой доступностью и надежностью мощность передатчика и приёмника должна быть в пределах нормального диапазона. Но как проверить, находятся ли мощность передатчика и приёмника модуля в пределах нормы?
Вообще говоря, клиенты могут напрямую контролировать мощность передатчика и приёмника модуля через функцию DDM (Digital Diagnostic Monitoring). Однако, если что-то случилось с информацией DDM или DDM не поддерживается модулем, рекомендуется сначала устранить неполадки оптического модуля, а затем решить проблемы. После этого вы можете получить оптическую мощность TX/RX модулей.
Кроме того, использование измерителя оптической мощности является еще одним способом для измерения оптической мощности передатчика и приёмника модулей.
Сначала вставьте 10GBASE-LR SFP+ модуль в SFP+ порт коммутатора 10G.
Затем подключите оптический модуль к измерителю оптической мощности с использованием LC-FC одномодовых оптических патч-кордов.
Наконец, нажмите коммутатор параметра оптической мощности и нажмите клавишу «λ» для модуляции длины волны 10GBASE-LR SFP+ модуля (то есть, чтобы модулировать длину волны на 1310 нм). После завершения, число отображается на экране является передаваемой оптической мощностью модулей. Кроме того, мощность передатчика эквивалентна принимаемой оптической мощности модуля на другой стороне по короткой линии связи.
Рисунок 1: оптическая мощность TX/RX модуля, проверенная измерителем оптической мощности
Как устранить проблемы с оптической мощностью модулей?
Когда что-то случилость с оптической мощностью оптических модулей, например большая/малая оптическая мощность, нестабильная оптическая мощность, низкий коэффициент подавления боковых мод и т. д., что влияет на производительность и дальность передачи модулей. Так почему же возникают эти нежелательные явления? Должно быть что-то случилость с аппаратным обеспечением оптических модулей, и проблемы представлены ниже:
Передаваемый компонент TOSA (Transmitter Optical Sub Assembly) имеет плохую производительность.
Компоненты PD и PIN TOSA не сварены прочно.
LD+ и LD- PINs на TOSA не приварены прочно.
Плохая работа чипа модуля.
Компоненты (например, конденсаторы, резисторы, катушки индуктивности или магнитные шарики) под штифтам чипа памяти отсутствуют или работают с плохой производительностью.
Оптическая мощность не соответствует сопротивлению.
Если вышеупомянутые нежелательные ситуации возникают в оптических модулях, рекомендуется напрямую связаться с поставщиком трансивера для возврата или гарантии.
Вывод
Измерение оптической мощности
В процессе сертификации оптических линий измеряются потери мощности в оптической линии. Для этого используются приборы OLTS (оптические тестеры), которые замеряют оптическую мощность, поданную специализированным источником оптического излучения, изначально входящего в комплект оптического тестера или приобретаемого отдельно. Потери выражаются в дБ и характеризуют только оптическую линию. Фактически, мощность источника на потери не влияет, поскольку они рассчитываются как разность мощностей, измеренных без тестируемого сегмента и с ним.
Измерение оптической мощности от абонента в сетях PON
На рынке доступно много вариантов измерителей оптической мощности. Взятые отдельно, они используются в соответствии с названием, для измерения мощности [активного оборудования]. В сочетании с источником излучения они превращаются в наборы для измерения оптических потерь. Если точность измерителя достаточно высока, такие приборы могут использоваться для сертификации в соответствии с телекоммуникационными стандартами. Если точность невелика, то комплекты следует считать верификационными, для сертификации не достаточными, но позволяющими в общих чертах оценить характеристики оптической кабельной системы.
Например, приборы FOD 1202, 1202H, 1202Si предназначены для измерения средней оптической мощности немодулированного оптического излучения. Без источников прибор позволяет замерять оптическую мощность оборудования на длинах волн 820-889 нм, 1270-1340 нм и 1520-1580 нм для моделей FOD 1202 и 1202H; на длинах волн 630-690 нм, 750-810 нм и 820-880 нм для модели FOD 1202Si. При использовании совместно с источниками FOD 21XX оборудование превращается в комплект OLTS для измерения потерь. Технические характеристики обязательно указываются производителями подобного оборудования в спецификациях.
Семейство приборов GreenLee включает в себя измерители оптической мощности 560XL, 567XL и 568XL. Если их использовать в сочетаниях с источниками 570XL, 573XL, 577XL, 578XL (длины волн 650/850/1300 нм) или 580XL (длины волн 1310/1550 нм), можно определять оптические потери в кабельной системе.
Многие подобные устройства помимо измерения мощности могут использоваться и как индикаторы активности линии. Например, прибор SimpliFiber Pro производства Fluke Networks может не только проводить измерения на длинах волн 850, 1300, 1310, 1490, 1550, 1625 нм, но и выдавать звуковой сигнал и сообщение на экране, если линия, к которой подключен прибор, активна (функция CheckActive).
Измеритель оптической мощности (OPM): необходимость для тестирования оптоволоконного кабеля
Измеритель оптической мощности (OPM), также называемый тестером оптической мощности или OPM тестером, представляет собой инструмент тестирования, работающий для точного измерения мощности волоконно-оптического оборудования или мощности оптического сигнала, проходящего через оптоволоконный кабель. Изготовленный из откалиброванного датчика, который измеряет схему усилителя и дисплей, оптический измеритель мощности может использовать для установки, отладки и обслуживания любой оптоволоконной сети. И он может адаптироваться к различным стилям разъемов, таких как SC, ST, FC и т. д. Как правило, на оптическом измерителе мощности имеется пять кнопок: кнопка POWER, кнопка LIGHT, кнопка dB, кнопка ZERO и кнопка λ. Функции каждой кнопки показаны ниже:
Типы измерители оптической мощности
Существуют различные измерители оптической мощности из-за разного разрешения от 0,001 дБ до 0,1 дБ. Нужно выбрать соответствующее разрешение для измерения в соответствии с необходимостью тестирования. Например, лабораторные сети обычно нуждаются в измерителях оптической мощности с разрешением 0,01 дБ, а разрешение на уровне 0,001 дБ доступно на нескольких специализированных волоконно-оптических измерителях мощности.
Кроме того, неопределенность измерения почти всех оптических измерителей мощности одинакова, ограничена физическими ограничениями передачи стандартов с оптическими разъемами.
Процедура тестирования измерители оптической мощности
Тестирование измерителя мощности и источника света, также известное как метод 1-jumper, является наиболее точным способом измерения конец-в-конец потерь сигнала волокна, называемых затуханием. Ниже перечислены ограничения вносимых потерь TIA/EIA-568 для различных компонентов. Определенные установки или протоколы могут налагать более строгие ограничения.
Потеря бюджета (ограничения спецификации TIA/EIA)
Результаты тестирования должны сравниваться с допуском на затухание в линии связи, рассчитанным следующим образом:
Допуск затухания в линии (дБ) = Допуск затухания в кабеле (дБ) + Допуск на вносимые потери разъема (дБ) + Допуск на вносимые потери соединения (дБ)
Тогда, как работают оптический измеритель мощности и источник оптического света? Видео ниже дает вам четкую процедуру тестирования оптического измерителя мощности и покажет, как проверить вносимые потери волокна с двумя оптическим тестером.
Как проверить мощность оптического сигнала SFP модуля?
Worton
Купить FS оптические модули
SFP модуль представляет собой компактный компонент с горячей заменой, который предоставляет оптическое подключение для оптических сетей. Они поддерживают различные приложения, такие как FC (Fiber Channel) коммутаторы, SONET/SDH сеть, Gigabit Ethernet, высокоскоростные компьютерные каналы, и интерфейсы CWDM и DWDM. При подключении к коммутаторам, мощность сигнала SFP модулей является критическим параметром для обеспечения нормальной работы всех соединений. В этой статье будет представлен метод измерения сигналов SFP модуля и как проверить мощность сигнала SFP модуля.
Обзор мощности оптического сигнала SFP модулей и их важности
1000BASE SFP модуль
Измерение мощности оптического сигнала SFP модуля
Вообще говоря, существуют два обычных метода измерения оптической мощности: милливатт (мВт) и дБм, что является сокращением от децибела измереной мощности относительно одного милливатта. Первый измеряет мощность сигнала по мощности, в второй описывает мощность сигнала с абсолютным значением мощности. Различные поставщики могут использовать один из них для описания мощности сигнала. Например, Cisco коммутаторы обычно использует дБм для измерения мощности, а другие коммутаторы используют мВт. Поскольку оптическая мощность невелика, некоторые производители коммутаторов иногда используют микроватт (мкВт). Следовательно, между этими методами есть преобразования.
дБм = 10*lgP (P означает оптическую мощность в мВт.) Например, 1мВт может преобразовать в 0 дБм.
Вот некоторые цифры, рекомендованные EMC.
| микроватт | милливатт | дБм | Описание |
|---|---|---|---|
| 1.0 | 0.0010 | -30.00 | Потеря сигнала |
| 10.0 | 0.0100 | -20 | |
| 25.1 | 0.0251 | -16 | 2 Гбит/с минимальный сигнал о приёмке |
| 31.6 | 0.0316 | -15 | 4 Гбит/с минимальный сигнал о приёмке |
| 50.0 | 0.0500 | -13.01 | |
| 100.0 | 0.1000 | -10.00 | 2 Гбит/с минимальный сигнал отправки |
| 125.9 | 0.1259 | -9.00 | 4 Гбит/с минимальный сигнал отправки |
| 150.0 | 0.1500 | -8.24 | |
| 200.0 | 0.2000 | -6.99 | Нормальный диапазон мощности оптического сигнала |
| 250.0 | 0.2500 | -6.02 | |
| 300.0 | 0.3000 | -5.23 | |
| 350.0 | 0.3500 | -4.26 | |
| 400.0 | 0.4000 | -3.98 |
Примечание: Оптические сигналы ослабляются во время передачи. Для обеспечения качества передачи, сетевым операторам также необходимо обратить внимание на затухание, вызванное оптическими модулями. Существует приемлемый диапазон затухания освещенности для некоторых обычных модулей.
Как просмотреть мощность оптического сигнала модуля SFP?
Чтобы определить, работает ли модуль SFP (пара передатчика и приёмника) на соответствующих уровнях сигнала, следует обратиться к техническим характеристикам SFP модулей. Она часто предоставляет ключевую информацию, такую как охват линии связи, тип волокна (одномод или многомод), диапазон выходной мощности передатчика, диапазон оптической мощности приёма и т. д., что полезно.
Более того, некоторые коммутаторы, таких как Cisco и Brocade SAN коммутаторы предлагать пользователям справочник по CLI (интерфейс командной строки) для просмотра сведений о SFP модулях, включая скорость SFP, серийный номер, номер детали, Оптическая мощность сигнала направления приёма/отправки. На следующих рисунках показаны результаты детализации SFP модуля в коммутаторах Cisco и Brocade. Конечно, оптическая мощность сигнала включена.
Из вышеуказанного результата видно, что метод Cisco и Brocade, обозначающий мощность сигнала разный. Но оба они предлагают текущее мощность сигнала и диапазон эффективной мощности оптического сигнала модулей SFP. Пока мощность сигнала SFP находится в допустимом диапазоне, модуль SFP можно считаться нормальным.
Вывод
Мощность сигнала является важным элементом, влияющим на все оптические линии связи. В этом посте дается простое введение в него и как посмотреть уровень сигнала модуля SFP в коммутаторах Cisco и Brocade. Надеюсь, это поможет тебе.
- Что такое географические процессы и явления 5 класс
- Что такое опорный конспект для пересказа и как составить


















